Outline for April 17, 2006

Reading: *text*, §5.2, 30

- 1. Greetings and felicitations!
- 2. Lattice models
 - a. Poset, \leq the relation
 - b. Reflexive, antisymmetric, transitive
 - c. Greatest lower bound, least upper bound
 - d. Example with complex numbers
- 3. Bell-LaPadula Model (security levels)
 - a. Security clearance, categories, levels
 - b. Simple security condition (no reads up)
 - c. *-property (no writes down)
 - d. Discretionary security property
 - e. Basic Security Theorem: if it is secure and transformations follow these rules, it will remain secure
- 4. Bell-LaPadula Model
 - a. Apply lattice work
 - i. Set of classes SC is a partially ordered set under relation dom with glb (greatest lower bound), lub (least upper bound) operators
 - ii. Note: dom is reflexive, transitive, antisymmetric
 - iii. Example: $(A, C) dom (A', C') \text{ iff } A \le A' \text{ and } C \subseteq C'; lub((A, C), (A', C')) = (max(A, A'), C \cup C'), glb((A, C), (A', C')) = (min(A, A'), C \cap C')$
 - b. Simple security condition (no reads up)
 - c. *-property (no writes down)
 - d. Discretionary security property
 - e. Basic Security Theorem: if it is secure and transformations follow these rules, it will remain secure
 - f. Maximum, current security level
- 5. BLP: formally
 - a. Elements of system: \mathbf{s}_i subjects, \mathbf{o}_i objects
 - b. State space $V = B \times M \times F \times H$ where:

B set of current accesses (i.e., access modes each subject has currently to each object); *M* access permission matrix; *F* consists of 3 functions: f_s is security level associated with each subject, f_o security level associated with each object, and f_c current security level for each subject *H* hierarchy of system objects, functions *h*: $O \rightarrow P(O)$ with two properties:

- i. If $o_i \neq o_j$, then $h(o_i) \cap h(o_j) = \emptyset$
- ii. There is no set $\{o_1, ..., o_k\} \subseteq O$ such that for each $i, o_{i+1} \in h(o_i)$ and $o_{k+1} = o_1$.
- c. Set of requests is R
- d. Set of decisions is D
- e. $W \subseteq R \times D \times V \times V$ is motion from one state to another.
- f. System $\Sigma(R, D, W, z_0) \subseteq X \times Y \times Z$ such that $(x, y, z) \in \Sigma(R, D, W, z_0)$ iff $(x_t, y_t, z_t, z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
- g. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security property for any initial state z_0 that satisfies the simple security property iff W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. each $(\mathbf{s}, \mathbf{o}, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(\mathbf{s}) \operatorname{dom} f_o(\mathbf{o})$)
 - ii. if $(\mathbf{s}, \mathbf{o}, x) \in b$ does not satisfy the simple security condition relative to f', then $(\mathbf{s}, \mathbf{o}, x) \notin b'$
- h. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$, for any initial state z_0 that satisfies the *-property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'
 - ii. for each $s \in S'$, if $(\mathbf{s}, \mathbf{o}, x) \in b$ does not satisfy the *-property with respect to f', then $(\mathbf{s}, \mathbf{o}, x) \notin b'$
- i. Theorem: $\Sigma(R, D, W, z_0)$ satisfies the ds-property iff the initial state z_0 satisfies the ds-property and W

satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:

- i. if $(\mathbf{s}, \mathbf{o}, x) \in b' b$, then $x \in m'[\mathbf{s}, \mathbf{o}]$;
- ii. if $(\mathbf{s}, \mathbf{o}, x) \in b$ and $x \in m'[\mathbf{s}, \mathbf{o}]$ then $(\mathbf{s}, \mathbf{o}, x) \notin b'$