Sketch of Class

• Goals
 – To learn some of the theory underlying computer and information security
 – To understand the limits of security

• What we will cover (roughly)
 – Foundations: computability of security
 – Policy models: various types, composition
 – Information flow (and not flow!)
 – A bit of malicious logic
Basic Components

- Confidentiality
 - Keeping data and resources hidden
- Integrity
 - Data integrity (integrity)
 - Origin integrity (authentication)
- Availability
 - Enabling access to data and resources

Policies and Mechanisms

- Policy says what is, and is not, allowed
 - This defines “security” for the site/system/etc.
- Mechanisms enforce policies
- Composition of policies
 - If policies conflict, discrepancies may create security vulnerabilities
Goals of Security

- Prevention
 - Prevent attackers from violating security policy
- Detection
 - Detect attackers’ violation of security policy
- Recovery
 - Stop attack, assess and repair damage
 - Continue to function correctly even if attack succeeds

Trust and Assumptions

- Underlie *all* aspects of security
- Policies
 - Unambiguously partition system states
 - Correctly capture security requirements
- Mechanisms
 - Assumed to enforce policy
 - Support mechanisms work correctly
Assurance

- Requirements analysis
- Specification
 - Statement of desired functionality
- Design
 - How system will meet specification
- Implementation
 - Programs/systems that carry out design
- Deployment, maintenance, operation, retirement
 - Policies and procedures

Human Issues

- Laws and Customs
 - Are desired security measures illegal?
 - Will people do them?
- Organizational Problems
 - Power and responsibility
 - Financial benefits
- People problems
 - Outsiders and insiders
 - Social engineering
Basics of Principles

• Simplicity
 – Less to go wrong
 – Fewer possible inconsistencies
 – Easy to understand

• Restriction
 – Minimize access
 – Inhibit communication

Least Privilege

• A subject should be given only those privileges necessary to complete its task
 – Function, not identity, controls
 – Rights added as needed, discarded after use
 – Minimal protection domain
Fail-Safe Defaults

- Default action is to deny access
- If action fails, system as secure as when action began

Economy of Mechanism

- Keep it as simple as possible
 - KISS Principle
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix
- Interfaces and interactions
Complete Mediation

- Check every access
- Usually done once, on first action
 - UNIX: access checked on open, not checked thereafter
- If permissions change after, may get unauthorized access

Open Design

- Security should not depend on secrecy of design or implementation
 - Popularly misunderstood to mean that source code should be public
 - “Security through obscurity”
 - Does not apply to information such as passwords or cryptographic keys
Separation of Privilege

• Require multiple conditions to grant privilege
 – Separation of duty
 – Defense in depth

Least Common Mechanism

• Mechanisms should not be shared
 – Information can flow along shared channels
 – Covert channels
• Isolation
 – Virtual machines
 – Sandboxes
Psychological Acceptability

• Security mechanisms should not add to difficulty of accessing resource
 – Hide complexity introduced by security mechanisms
 – Ease of installation, configuration, use
 – Human factors critical here

Key Points

• Principles of secure design underlie all security-related mechanisms
• Require:
 – Good understanding of goal of mechanism and environment in which it is to be used
 – Careful analysis and design
 – Careful implementation