Overview

- Safety Question
- HRU Model
- Take-Grant Protection Model
What Is “Secure”?

• Adding a generic right r where there was not one is “leaking”
• If a system S, beginning in initial state s_0, cannot leak right r, it is safe with respect to the right r.

Safety Question

• Does there exist an algorithm for determining whether a protection system S with initial state s_0 is safe with respect to a generic right r?
 – Here, “safe” = “secure” for an abstract model
Mono-Operational Commands

• Answer: yes
• Sketch of proof:
 Consider minimal sequence of commands c_1, …, c_k to leak the right.
 – Can omit delete, destroy
 – Can merge all creates into one
Worst case: insert every right into every entry; with s subjects and o objects initially, and n rights, upper bound is $k \leq n(s+1)(o+1)$

General Case

• Answer: no
• Sketch of proof:
 Reduce halting problem to safety problem
 Turing Machine review:
 – Infinite tape in one direction
 – States K, symbols M; distinguished blank b
 – Transition function $\delta(k, m) = (k', m', L)$ means in state k, symbol m on tape location replaced by symbol m', head moves to left one square, and enters state k'
 – Halting state is q_f; TM halts when it enters this state
After $\delta(k, C) = (k_1, X, R)$ where k is the current state and k_1 the next state.
Command Mapping

\(\delta(k, C) = (k_1, X, R) \) at intermediate becomes

command \(c_{k,C}(s_3, s_4) \)

if own in \(A[s_3, s_4] \) and \(k \) in \(A[s_3, s_3] \) and \(C \) in \(A[s_3, s_3] \)

then

delete \(k \) from \(A[s_3, s_3] \);
delete \(C \) from \(A[s_3, s_3] \);
enter \(X \) into \(A[s_3, s_3] \);
enter \(k_1 \) into \(A[s_4, s_4] \);
end

Mapping

1 2 3 4 5
A B X Y b

After \(\delta(k_1, D) = (k_2, Y, R) \) where \(k_1 \) is the current state and \(k_2 \) the next state

<table>
<thead>
<tr>
<th>(s_1)</th>
<th>(s_2)</th>
<th>(s_3)</th>
<th>(s_4)</th>
<th>(s_5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_1)</td>
<td>(A)</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_2)</td>
<td>(B)</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_3)</td>
<td>X</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_4)</td>
<td>Y</td>
<td>own</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(s_5)</td>
<td></td>
<td></td>
<td>b k_2 end</td>
<td></td>
</tr>
</tbody>
</table>
Rest of Proof

• Protection system exactly simulates a TM
 – Exactly 1 end right in ACM
 – 1 right in entries corresponds to state
 – Thus, at most 1 applicable command

• If TM enters state q_f, then right has leaked

• If safety question decidable, then represent TM as above and determine if q_f leaks
 – Implies halting problem decidable

• Conclusion: safety question undecidable
Other Results

- Set of unsafe systems is recursively enumerable
- Delete create primitive; then safety question is complete in P-SPACE
- Delete destroy, delete primitives; then safety question is undecidable
 - Systems are monotonic
- Safety question for monoconditional, monotonic protection systems is decidable
- Safety question for monoconditional protection systems with create, enter, delete (and no destroy) is decidable.

Take-Grant Protection Model

- A specific (not generic) system
 - Set of rules for state transitions
- Safety decidable, and in time linear with the size of the system
- Goal: find conditions under which rights can be transferred from one entity to another in the system
System

- objects (files, …)
- subjects (users, processes, …)
- don’t care (either a subject or an object)

\[G \rightarrow_{x} G' \quad \text{apply a rewriting rule } x \text{ (witness) to } \]

\[G \rightarrow^{*} G' \quad \text{apply a sequence of rewriting rules} \]

\[(\text{witness}) \text{ to } G \text{ to get } G' \]

\[R = \{ t, g, r, w, \ldots \} \quad \text{set of rights} \]

Rules

- take

\[t \quad \alpha \]

\[\rightarrow \]

\[\alpha \]

\[t \quad \alpha \]

- grant

\[g \quad \alpha \]

\[\rightarrow \]

\[\alpha \]

\[g \quad \alpha \]
More Rules

create

\[
\begin{align*}
&\bullet &\rightarrow &\alpha &\rightarrow
\end{align*}
\]

remove

\[
\begin{align*}
&\alpha &\rightarrow &\oslash &\rightarrow
\end{align*}
\]

These four rules are called the \textit{de jure} rules

Symmetry

\[
\begin{align*}
1. & \ x \text{ creates (tg to new) } v \\
2. & \ z \text{ takes (g to v) from x} \\
3. & \ z \text{ grants (} \alpha \text{ to y) to v} \\
4. & \ x \text{ takes (} \alpha \text{ to y) from v}
\end{align*}
\]

Similar result for grant
Islands

• *tg*-path: path of distinct vertices connected by edges labeled *t* or *g*
 – Call them “*tg*-connected”
• *island*: maximal *tg*-connected subject-only subgraph
 – Any right one vertex has can be shared with any other vertex

Initial, Terminal Spans

• *initial span* from *x* to *y*
 – *x* subject
 – *tg*-path between *x*, *y* with word in \{ *t*^*g* \} \cup \{ *v* \}
 – Means *x* can give rights it has to *y*
• *terminal span* from *x* to *y*
 – *x* subject
 – *tg*-path between *x*, *y* with word in \{ *t*^* \} \cup \{ *v* \}
 – Means *x* can acquire any rights *y* has
Bridges

• bridge: \(tg\)-path between subjects \(x, y\), with associated word in
 \[\{t^*, t*, t^g t^*, t^g t^*\}\]
 – rights can be transferred between the two endpoints
 – not an island as intermediate vertices are objects

Example

• islands \(\{p, u\} \{w\} \{y, s'\}\)
• bridges \(u, v, w; w, x, y\)
• initial span \(p\) (associated word \(v\))
• terminal span \(s's\) (associated word \(t\))
can•share Predicate

Definition:
• $can\cdot share(r, x, y, G_0)$ if, and only if, there is a sequence of protection graphs G_0, \ldots, G_n such that $G_0 \vdash^* G_n$ using only de jure rules and in G_n there is an edge from x to y labeled r.

can•share Theorem

• $can\cdot share(r, x, y, G_0)$ if, and only if, there is an edge from x to y labeled r in G_0, or the following hold simultaneously:
 – There is an s in G_0 with an s-to-y edge labeled r
 – There is a subject $x' = x$ or initially spans to x
 – There is a subject $s' = s$ or terminally spans to s
 – There are islands I_1, \ldots, I_k connected by bridges, and x' in I_1 and s' in I_k
Outline of Proof

• s has r rights over y
• s' acquires r rights over y from s
 – Definition of terminal span
• x' acquires r rights over y from s'
 – Repeated application of sharing among vertices in islands, passing rights along bridges
• x' gives r rights over y to x
 – Definition of initial span

Example Interpretation

• ACM is generic
 – Can be applied in any situation
• Take-Grant has specific rules, rights
 – Can be applied in situations matching rules, rights
• Question: what states can evolve from a system that is modeled using the Take-Grant Model?
Take-Grant Generated Systems

• Theorem: \(G_0 \) protection graph with 1 vertex, no edges; \(R \) set of rights. Then \(G_0 \vdash* G \) iff:
 – \(G \) finite directed graph consisting of subjects, objects, edges
 – Edges labeled from nonempty subsets of \(R \)
 – At least one vertex in \(G \) has no incoming edges

Outline of Proof

\(\Rightarrow \): By construction; \(G \) final graph in theorem
 – Let \(x_1, \ldots, x_n \) be subjects in \(G \)
 – Let \(x_i \) have no incoming edges
• Now construct \(G' \) as follows:
 1. Do “\(x_i \) creates \((\alpha \cup \{ g \})\) to new subject \(x_j'\)”
 2. For all \((x_i, x_j)\) where \(x_i \) has a rights over \(x_j \), do “\(x_i \) grants \((\alpha \text{ to } x_j)\) to \(x_j'\)”
 3. Let \(\beta \) be rights \(x_i \) has over \(x_j \) in \(G \). Do “\(x_i \) removes \(((\alpha \cup \{ g \}) - \beta \text{ to } x_j)\)”
• Now \(G' \) is desired \(G \)
Outline of Proof

\(\Leftarrow: \) Let \(v \) be initial subject, and \(G_0 \vdash^* G \)

- Inspection of rules gives:
 - \(G \) is finite
 - \(G \) is a directed graph
 - Subjects and objects only
 - All edges labeled with nonempty subsets of \(R \)

- Limits of rules:
 - None allow vertices to be deleted so \(v \) in \(G \)
 - None add incoming edges to vertices without incoming edges, so \(v \) has no incoming edges

Example: Shared Buffer

- Goal: \(p, q \) to communicate through shared buffer \(b \) controlled by trusted entity \(s \)
 1. \(s \) creates \((\{r, w\}\) to new object) \(b \)
 2. \(s \) grants \((\{r, w\}\) to \(b \) to \(p \)
 3. \(s \) grants \((\{r, w\}\) to \(b \) to \(q \)