can\textbullet steal Predicate

Definition:

\textbullet can\textbullet steal(r, x, y, G_0) if, and only if, there is no edge from x to y labeled r in G_0, and the following hold simultaneously:

-- There is edge from x to y labeled r in G_n
-- There is a sequence of rule applications \(\rho_1, \ldots, \rho_n \) such that \(G_{i-1} \vdash G_i \) using \(\rho_i \)
-- For all vertices v, w in \(G_{i-1} \), if there is an edge from v to y in \(G_0 \) labeled r, then \(\rho_i \) is not of the form “v grants (r to y) to w”
Example

- *can-steal(α, s, w, G₀)*:
 1. u grants (t to v) to s
 2. s takes (t to u) from v
 3. s takes (α to w) from u

(can-steal) Theorem

- *can-steal(r, x, y, G₀)* if, and only if, the following hold simultaneously:
 a) There is no edge from x to y labeled r in G₀
 b) There exists a subject x' such that x' = x or x' initially spans to x
 c) There exists a vertex s with an edge labelled α to y in G₀
 d) *can-share(t, x', s, G₀)* holds
Outline of Proof

\Rightarrow: Assume conditions hold

- x subject
 - x gets t rights to s, then takes α to y from s

- x object
 - $can\cdot share(t, x', s, G_0)$ holds
 - If x' has no α edge to y in G_0, x' takes (α to y) from s and grants it to x
 - If x' has a edge to y in G_0, x' creates surrogate x'', gives it (t to s) and (g to x''); then x'' takes (α to y) and grants it to x

Outline of Proof

\Leftarrow: Assume $can\cdot steal(\alpha, x, y, G_0)$ holds

- First two conditions immediate from definition of $can\cdot steal$, $can\cdot share$
- Third condition immediate from theorem of conditions for $can\cdot share$
- Fourth condition: ρ minimal length sequence of rule applications deriving G_n from G_0; i smallest index such that $G_{i-1} \models G_i$ by rule ρ_i and adding α from some p to y in G_i;
 - What is ρ_i?
Outline of Proof

- Not remove or create rule
 - y exists already
- Not grant rule
 - G, first graph in which edge labeled α to y is added, so by definition of can•share, cannot be grant
- take rule: so can•share(t, p, s, G_0) holds
 - So is subject s' such that s' = s or terminally spans to s
 - Sequence of islands with x' ∈ l_i and s' ∈ l_n
- Derive witness to can•share(t, x', s, G_0) that does not use “s grants (α to y) to” anyone

Conspiracy

- Minimum number of actors to generate a witness for can•share(α, x, y, G_0)
- Access set describes the “reach” of a subject
- Deletion set is set of vertices that cannot be involved in a transfer of rights
- Build conspiracy graph to capture how rights flow, and derive actors from it
Example

Access Set

- *Access set $A(y)$ with focus y*: set of vertices:
 - $\{ y \}$
 - $\{ x | y$ initially spans to $x \}$
 - $\{ x' | y$ terminally spans to $x \}$
- Idea is that focus can give rights to, or acquire rights from, a vertex in this set
Example

- $A(x) = \{ x, a \}$
- $A(b) = \{ b, a \}$
- $A(c) = \{ c, b, d \}$
- $A(d) = \{ d \}$
- $A(e) = \{ e, d, i, j \}$
- $A(y) = \{ y \}$
- $A(f) = \{ f, y \}$
- $A(h) = \{ h, f, i \}$

Deletion Set

- Deletion set $\delta(y, y')$: contains those vertices in $A(y) \cap A(y')$ such that:
 - y initially spans to z and y' terminally spans to z;
 - y terminally spans to z and y' initially spans to z;
 - $z = y$
 - $z = y'$
- Idea is that rights can be transferred between y and y' if this set non-empty
Example

\[(x, b) = \{ a \} \]
\[(d, e) = \{ d \} \]
\[(b, c) = \{ b \} \]
\[(y, f) = \{ y \} \]
\[(c, d) = \{ d \} \]
\[(h, f) = \{ f \} \]
\[(c, e) = \{ d \} \]

Conspiracy Graph

- Abstracted graph \(H \) from \(G_0 \):
 - Each subject \(x \in G_0 \) corresponds to a vertex \(h(x) \in H \)
 - If \(\delta(x, y) \neq \emptyset \), there is an edge between \(h(x) \) and \(h(y) \) in \(H \)
- Idea is that if \(h(x), h(y) \) are connected in \(H \), then rights can be transferred between \(x \) and \(y \) in \(G_0 \)
Example

Results

- \(l(x) \): \(h(x) \), all vertices \(h(y) \) such that \(y \) initially spans to \(x \)
- \(T(x) \): \(h(x) \), all vertices \(h(y) \) such that \(y \) terminally spans to \(x \)
- Theorem: \textit{can\-share}(\(\alpha, x, y, G_0 \)) iff there exists a path from some \(h(p) \) in \(l(x) \) to some \(h(q) \) in \(T(y) \)
- Theorem: \(l \) vertices on shortest path between \(h(p) \), \(h(q) \) in above theorem; \(l \) conspirators necessary and sufficient to witness
Example: Conspirators

- \(I(x) = \{ h(x) \} \), \(T(z) = \{ h(e) \} \)
- Path between \(h(x) \), \(h(e) \) so can share \(r, x, z, G_0 \)
- Shortest path between \(h(x) \), \(h(e) \) has 4 vertices
 \(\Rightarrow \) Conspirators are \(e, c, b, x \)

Example: Witness

- \(e \) grants \(r \) to \(z \) to \(d \)
- \(c \) takes \(r \) to \(z \) from \(d \)
- \(c \) grants \(r \) to \(z \) to \(b \)
- \(b \) grants \(r \) to \(z \) to \(a \)
- \(x \) takes \(r \) to \(z \) from \(a \)
Key Question

- Characterize class of models for which safety is decidable
 - Existence: Take-Grant Protection Model is a member of such a class
 - Universality: In general, question undecidable, so for some models it is not decidable
- What is the dividing line?

Schematic Protection Model

- Type-based model
 - Protection type: entity label determining how control rights affect the entity
 - Set at creation and cannot be changed
 - Ticket: description of a single right over an entity
 - Entity has sets of tickets (called a domain)
 - Ticket is X/r, where X is entity and r right
 - Functions determine rights transfer
 - Link: are source, target "connected"?
 - Filter: is transfer of ticket authorized?
Link Predicate

- Idea: $link_i(X, Y)$ if X can assert some control right over Y
- Conjunction of disjunction of:
 - $X/z \in dom(X)$
 - $X/z \in dom(Y)$
 - $Y/z \in dom(X)$
 - $Y/z \in dom(Y)$
 - true

Examples

- Take-Grant:
 \[link(X, Y) = Y/g \in dom(X) \lor X/t \in dom(Y) \]
- Broadcast:
 \[link(X, Y) = X/b \in dom(X) \]
- Pull:
 \[link(X, Y) = Y/p \in dom(Y) \]
Filter Function

- Range is set of copyable tickets
 - Entity type, right
- Domain is subject pairs
- Copy a ticket $\mathbf{X}/r.c$ from $\text{dom} \mathbf{Y}$ to $\text{dom} \mathbf{Z}$
 - $\mathbf{X}/r.c \in \text{dom} \mathbf{Y}$
 - $\text{link} \mathbf{Y}, \mathbf{Z}$
 - $\tau(\mathbf{Y})/r.c \in f_\tau(\tau(\mathbf{Y}), \tau(\mathbf{Z}))$
- One filter function per link function

Example

- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times R$
 - Any ticket can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = T \times RI$
 - Only tickets with inert rights can be transferred (if other conditions met)
- $f(\tau(\mathbf{Y}), \tau(\mathbf{Z})) = \emptyset$
 - No tickets can be transferred
Example

- Take-Grant Protection Model
 - $TS = \{ \text{subjects} \}$, $TO = \{ \text{objects} \}$
 - $RC = \{ tc, gc \}$, $RI = \{ rc, wc \}$
 - $link(p, q) = p/t \in dom(q) \lor q/g \in dom(p)$
 - $f(subject, subject) = \{ subject, object \} \times \{ tc, gc, rc, wc \}$

Create Operation

- Must handle type, tickets of new entity
- Relation $cc(a, b)$ [cc for can-create]
 - Subject of type a can create entity of type b
- Rule of acyclic creates:
Types

- \(cr(a, b) \): tickets created when subject of type \(a \) creates entity of type \(b \) [\(cr \) for \(create \)-\(rule \)]
- \(B \) object: \(cr(a, b) \subseteq \{ b/r.c \in R | \} \)
 - \(A \) gets \(B/r.c \) iff \(b/r.c \in cr(a, b) \)
- \(B \) subject: \(cr(a, b) \) has two subsets
 - \(cr_P(a, b) \) added to \(A \), \(cr_C(a, b) \) added to \(B \)
 - \(A \) gets \(B/r.c \) if \(b/r.c \in cr_P(a, b) \)
 - \(B \) gets \(A/r.c \) if \(a/r.c \in cr_C(a, b) \)

Non-Distinct Types

\(cr(a, a) \): who gets what?

- \(self/r.c \) are tickets for creator
- \(a/r.c \) tickets for created

\(cr(a, a) = \{ a/r.c, self/r.c | r.c \in R | \} \)
Attenuating Create Rule

\(cr(a, b) \) attenuating if:
1. \(cr_C(a, b) \subseteq cr_P(a, b) \) and
2. \(a/r: c \in cr_P(a, b) \Rightarrow self/r: c \in cr_P(a, b) \)

Example: Owner-Based Policy

- Users can create files, creator can give itself any inert rights over file
 - \(cc = \{ (\text{user}, \text{file}) \} \)
 - \(cr(\text{user}, \text{file}) = \{ \text{file}/r: c \mid r \in RI \} \)
- Attenuating, as graph is acyclic, loop free
Example: Take-Grant

- Say subjects create subjects (type s), objects (type o), but get only inert rights over latter
 - $cc = \{(s, s), (s, o)\}$
 - $cr_c(a, b) = \emptyset$
 - $cr_P(s, s) = \{s/tc, s/gc, s/rc, s/wc\}$
 - $cr_P(s, o) = \{s/rc, s/wc\}$

- Not attenuating, as no self tickets provided; subject creates subject

Safety Analysis

- Goal: identify types of policies with tractable safety analyses
- Approach: derive a state in which additional entries, rights do not affect the analysis; then analyze this state
 - Called a maximal state