Safety Result

• If the scheme is acyclic and attenuating, the safety question is decidable
Expressive Power

- How do the sets of systems that models can describe compare?
 - If HRU equivalent to SPM, SPM provides more specific answer to safety question
 - If HRU describes more systems, SPM applies only to the systems it can describe

HRU vs. SPM

- SPM more abstract
 - Analyses focus on limits of model, not details of representation
- HRU allows revocation
 - SPM has no equivalent to delete, destroy
- HRU allows multiparent creates
 - SPM cannot express multiparent creates easily, and not at all if the parents are of different types because can create allows for only one type of creator
Multiparent Create

• Solves mutual suspicion problem
 – Create proxy jointly, each gives it needed rights

• In HRU:
 command multicreate(\(s_0, s_1, \circ\))
 if \(r \in a[s_0, s_1] \text{ and } r \in a[s_1, s_0]\)
 then
 create object \(\circ\);
 enter \(r\) into \(a[s_0, \circ]\);
 enter \(r\) into \(a[s_1, \circ]\);
 end

SPM and Multiparent Create

• cc extended in obvious way
 – \(cc \subseteq TS \times \ldots \times TS \times T\)

• Symbols
 – \(X_1, \ldots, X_n\) parents, \(Y\) created
 – \(R_{1,i}, R_{2,i}, R_3, R_{4,i} \subseteq R\)

• Rules
 – \(cr_{p,i}(\tau(X_1), \ldots, \tau(X_n)) = Y / R_{1,1} \cup X_i / R_{2,i}\)
 – \(cr_{c}(\tau(X_1), \ldots, \tau(X_n)) = Y / R_3 \cup X_i / R_{4,1} \cup \ldots \cup X_n / R_{4,n}\)
Example

• Anna, Bill must do something cooperatively
 – But they don’t trust each other
• Jointly create a proxy
 – Each gives proxy only necessary rights
• In ESPM:
 – Anna, Bill type a; proxy type p; right $x \in R$
 – $cc(a, a) = p$
 – $cr_{Anna}(a, a, p) = cr_{Bill}(a, a, p) = \emptyset$
 – $cr_{proxy}(a, a, p) = \{ Anna/x, Bill//x \}$

2-Parent Joint Create Suffices

• Goal: emulate 3-parent joint create with 2-parent joint create
• Definition of 3-parent joint create (subjects P_1, P_2, P_3; child C):
 – $cc(\tau(P_1), \tau(P_2), \tau(P_3)) = Z \subseteq T$
 – $cr_{P1}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{1,1} \cup P_1/R_{2,1}$
 – $cr_{P2}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{2,1} \cup P_2/R_{2,2}$
 – $cr_{P3}(\tau(P_1), \tau(P_2), \tau(P_3)) = C/R_{3,1} \cup P_3/R_{2,3}$
General Approach

• Define agents for parents and child
 – Agents act as surrogates for parents
 – If create fails, parents have no extra rights
 – If create succeeds, parents, child have exactly same rights as in 3-parent creates
 • Only extra rights are to agents (which are never used again, and so these rights are irrelevant)

Entities and Types

• Parents P_1, P_2, P_3 have types p_1, p_2, p_3
• Child C of type c
• Parent agents A_1, A_2, A_3 of types a_1, a_2, a_3
• Child agent S of type s
• Type t is parentage
 – if $X/t \in \text{dom}(Y)$, X is Y’s parent
• Types t, a_1, a_2, a_3, s are new types
Can\textbullet Create

- Following added to can\textbullet create:
 - \(cc(p_1) = a_1\)
 - \(cc(p_2, a_1) = a_2\)
 - \(cc(p_3, a_2) = a_3\)
 - Parents creating their agents; note agents have maximum of 2 parents
 - \(cc(a_3) = s\)
 - Agent of all parents creates agent of child
 - \(cc(s) = c\)
 - Agent of child creates child

April 12, 2006 ECS 289M, Foundations of Computer and Information Security Slide 11

Creation Rules

- Following added to create rule:
 - \(cr_P(p_1, a_1) = \emptyset\)
 - \(cr_C(p_1, a_1) = p_1/Rtc\)
 - Agent’s parent set to creating parent; agent has all rights over parent
 - \(cr_{P\text{first}}(p_2, a_1, a_2) = \emptyset\)
 - \(cr_{P\text{second}}(p_2, a_1, a_2) = \emptyset\)
 - \(cr_C(p_2, a_1, a_2) = p_2/Rtc \cup a_1/tc\)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
Creation Rules

- \(cr_{P_{\text{first}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_{P_{\text{second}}}(p_3, a_2, a_3) = \emptyset \)
- \(cr_C(p_3, a_2, a_3) = p_3/Rtc \cup a_2/tc \)
 - Agent’s parent set to creating parent and agent; agent has all rights over parent (but not over agent)
- \(cr_F(a_3, s) = \emptyset \)
- \(cr_C(a_3, s) = a_3/tc \)
 - Child’s agent has third agent as parent \(cr_F(a_3, s) = \emptyset \)
- \(cr_F(s, c) = s/Rtc \)
- \(cr_C(s, c) = c/R_3t \)
 - Child’s agent gets full rights over child; child gets \(R_3 \) rights over agent

Link Predicates

- Idea: no tickets to parents until child created
 - Done by requiring each agent to have its own parent rights
- \(link_1(A_1, A_2) = A_1/t \in dom(A_2) \land A_2/t \in dom(A_2) \)
- \(link_1(A_2, A_3) = A_2/t \in dom(A_3) \land A_3/t \in dom(A_3) \)
- \(link_2(S, A_3) = A_3/t \in dom(S) \land C/t \in dom(C) \)
- \(link_3(A_1, C) = C/t \in dom(A_1) \)
- \(link_3(A_2, C) = C/t \in dom(A_2) \)
- \(link_3(A_3, C) = C/t \in dom(A_3) \)
- \(link_4(A_1, P_1) = P_1/t \in dom(A_1) \land A_1/t \in dom(A_1) \)
- \(link_4(A_2, P_2) = P_2/t \in dom(A_2) \land A_2/t \in dom(A_2) \)
- \(link_4(A_3, P_3) = P_3/t \in dom(A_3) \land A_3/t \in dom(A_3) \)
Filter Functions

- $f_1(a_2, a_1) = a_1/t \cup c/Rtc$
- $f_1(a_3, a_2) = a_2/t \cup c/Rtc$
- $f_2(s, a_3) = a_3/t \cup c/Rtc$
- $f_3(a_1, c) = p_1/R_{4,1}$
- $f_3(a_2, c) = p_2/R_{4,2}$
- $f_3(a_3, c) = p_3/R_{4,3}$
- $f_4(a_1, p_1) = c/R_{1,1} \cup p_1/R_{2,1}$
- $f_4(a_2, p_2) = c/R_{1,2} \cup p_2/R_{2,2}$
- $f_4(a_3, p_3) = c/R_{1,3} \cup p_3/R_{2,3}$

Construction

Create A_1, A_2, A_3, S, C; then
- P_1 has no relevant tickets
- P_2 has no relevant tickets
- P_3 has no relevant tickets
- A_1 has P_1/Rtc
- A_2 has $P_2/Rtc \cup A_1/tc$
- A_3 has $P_3/Rtc \cup A_2/tc$
- S has $A_3/tc \cup C/Rtc$
- C has C/R_3
Construction

• Only $link_2(S, A_3)$ true \Rightarrow apply f_2
 – A_3 has $P_3/Rtc \cup A_2/t \cup A_3/t \cup C/Rtc$

• Now $link_1(A_3, A_2)$ true \Rightarrow apply f_1
 – A_2 has $P_2/Rtc \cup A_1/tc \cup A_2/t \cup C/Rtc$

• Now $link_1(A_2, A_1)$ true \Rightarrow apply f_1
 – A_1 has $P_2/Rtc \cup A_1/tc \cup A_1/t \cup C/Rtc$

• Now all $link_3$s true \Rightarrow apply f_3
 – C has $C/R_3 \cup P_1/R_{4,1} \cup P_2/R_{4,2} \cup P_3/R_{4,3}$

Finish Construction

• Now $link_4$ is true \Rightarrow apply f_4
 – P_1 has $C/R_{1,1} \cup P_1/R_{2,1}$
 – P_2 has $C/R_{1,2} \cup P_2/R_{2,2}$
 – P_3 has $C/R_{1,3} \cup P_3/R_{2,3}$

• 3-parent joint create gives same rights to P_1, P_2, P_3, C

• If create of C fails, $link_2$ fails, so construction fails
Theorem

• The two-parent joint creation operation can implement an \(n \)-parent joint creation operation with a fixed number of additional types and rights, and augmentations to the link predicates and filter functions.

• **Proof:** by construction, as above
 – Difference is that the two systems need not start at the same initial state

Theorems

• Monotonic ESPM and the monotonic HRU model are equivalent.

• Safety question in ESPM also decidable if acyclic attenuating scheme
 – Proof similar to that for SPM
Expressiveness

- Graph-based representation to compare models
- Graph
 - Vertex: represents entity, has static type
 - Edge: represents right, has static type
- Graph rewriting rules:
 - Initial state operations create graph in a particular state
 - Node creation operations add nodes, incoming edges
 - Edge adding operations add new edges between existing vertices

Example: 3-Parent Joint Creation

- Simulate with 2-parent
 - Nodes P_1, P_2, P_3 parents
 - Create node C with type c with edges of type e
 - Add node A_1 of type a and edge from P_1 to A_1 of type e'
Next Step

- A_1, P_2 create A_2; A_2, P_3 create A_3
- Type of nodes, edges are a and e'

Next Step

- A_3 creates S, of type a
- S creates C, of type c
Last Step

- Edge adding operations:
 - $P_1 \rightarrow A_1 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_1 to C edge type e
 - $P_2 \rightarrow A_2 \rightarrow A_3 \rightarrow S \rightarrow C$: P_2 to C edge type e
 - $P_3 \rightarrow A_3 \rightarrow S \rightarrow C$: P_3 to C edge type e

Definitions

- **Scheme**: graph representation as above
- **Model**: set of schemes
- Schemes A, B correspond if graph for both is identical when all nodes with types not in A and edges with types in A are deleted
Example

- Above 2-parent joint creation simulation in scheme-two
- Equivalent to 3-parent joint creation scheme-three in which \(P_1, P_2, P_3, C \) are of same type as in two, and edges from \(P_1, P_2, P_3 \) to \(C \) are of type \(e \), and no types \(a \) and \(e' \) exist in two

Simulation

Scheme \(A \) simulates scheme \(B \) iff
- every state \(B \) can reach has a corresponding state in \(A \) that \(A \) can reach; and
- every state that \(A \) can reach either corresponds to a state \(B \) can reach, or has a successor state that corresponds to a state \(B \) can reach
 - The last means that \(A \) can have intermediate states not corresponding to states in \(B \), like the intermediate ones in two in the simulation of three
Expressive Power

• If scheme in MA no scheme in MB can simulate, MB less expressive than MA
• If every scheme in MA can be simulated by a scheme in MB, MB as expressive as MA
• If MA as expressive as MB and vice versa, MA and MB equivalent

Example

• Scheme A in model M
 – Nodes X_1, X_2, X_3
 – 2-parent joint create
 – 1 node type, 1 edge type
 – No edge adding operations
 – Initial state: X_1, X_2, X_3, no edges
• Scheme B in model N
 – All same as A except no 2-parent joint create
 – 1-parent create
• Which is more expressive?
Can A Simulate B?

• Scheme A simulates 1-parent create:
 have both parents be same node
 – Model M as expressive as model N

Can B Simulate A?

• Suppose X_1, X_2 jointly create Y in A
 – Edges from X_1, X_2 to Y, no edge from X_3 to Y
• Can B simulate this?
 – Without loss of generality, X_1 creates Y
 – Must have edge adding operation to add edge from X_2 to Y
 – One type of node, one type of edge, so operation can add edge between any 2 nodes
No

- All nodes in A have even number of incoming edges
 - 2-parent create adds 2 incoming edges
- Edge adding operation in B that can edge from X_2 to C can add one from X_3 to C
 - A cannot enter this state
 - B cannot transition to a state in which Y has even number of incoming edges
 - No remove rule
- So B cannot simulate A; N less expressive than M

Theorem

- Monotonic single-parent models are less expressive than monotonic multiparent models
- Proof by contradiction
 - Scheme A is multiparent model
 - Scheme B is single parent create
 - Claim: B can simulate A, without assumption that they start in the same initial state
 - Note: example assumed same initial state
Outline of Proof

• X_1, X_2 nodes in A
 – They create Y_1, Y_2, Y_3 using multiparent create rule
 – Y_1, Y_2 create Z, again using multiparent create rule
 – *Note:* no edge from Y_3 to Z can be added, as A has no edge-adding operation

Outline of Proof

• W, X_1, X_2 nodes in B
 – W creates Y_1, Y_2, Y_3 using single parent create rule, and adds edges for X_1, X_2 to all
 using edge adding rule
 – Y_1 creates Z, again using single parent create rule; now must add edge from X_2 to Z to
 simulate A
 – Use same edge adding rule to add edge from Y_3 to Z: cannot duplicate this in scheme A!
Meaning

- Scheme B cannot simulate scheme A, contradicting hypothesis
- ESPM more expressive than SPM
 - ESPM multiparent and monotonic
 - SPM monotonic but single parent

Typed Access Matrix Model

- Like ACM, but with set of types T
 - All subjects, objects have types
 - Set of types for subjects TS
- Protection state is (S, O, τ, A)
 - $\tau:O \rightarrow T$ specifies type of each object
 - If X subject, $\tau(X)$ in TS
 - If X object, $\tau(X)$ in $T - TS$
Create Rules

• Subject creation
 – create subject s of type ts
 – s must not exist as subject or object when operation executed
 – ts \in TS

• Object creation
 – create object o of type to
 – o must not exist as subject or object when operation executed
 – to \in T - TS

Create Subject

• Precondition: s \notin S
• Primitive command: create subject s of type t
• Postconditions:
 – S' = S \cup \{ s \}, O' = O \cup \{ s \}
 – (\forall y \in O)[\tau'(y) = \tau(y)], \tau'(s) = t
 – (\forall y \in O')[a'[s, y] = \emptyset], (\forall x \in S')[a'[x, s] = \emptyset]
 – (\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]
Create Object

- Precondition: $o \notin O$
- Primitive command: **create object** o **of type** t
- Postconditions:
 - $S' = S$, $O' = O \cup \{ o \}$
 - $(\forall y \in O)[\tau'(y) = \tau(y)]$, $\tau'(o) = t$
 - $(\forall x \in S')[a'[x, o] = \emptyset]$
 - $(\forall x \in S)(\forall y \in O)[a'[x, y] = a[x, y]]$

Definitions

- MTAM Model: TAM model without **delete**, **destroy**
 - MTAM is Monotonic TAM
- $\alpha(x_1:t_1, \ldots, x_n:t_n)$ create command
 - t_i child type in α if any of **create subject** x_i **of type** t_i or **create object** x_i **of type** t_i occur in α
 - t_i parent type otherwise
Cyclic Creates

command havoc(s₁ : u, s₂ : u, o₁ : v, o₂ : v, o₃ : w, o₄ : w)
create subject s₁ of type u;
create object o₁ of type v;
create object o₃ of type w;
enter r into a[s₂, s₁];
enter r into a[s₂, o₂];
enter r into a[s₂, o₄]
end

Creation Graph

- u, v, w child types
- u, v, w also parent types
- Graph: lines from parent types to child types
- This one has cycles
Acyclic Creates

command havoc(s₁ : u, s₂ : u, o₁ : v, o₃ : w)
 create object o₁ of type v;
 create object o₃ of type w;
 enter r into a[s₂, s₁];
 enter r into a[s₂, o₁];
 enter r into a[s₂, o₃]
end

Creation Graph

- v, w child types
- u parent type
- Graph: lines from parent types to child types
- This one has no cycles
Theorems

• Safety decidable for systems with acyclic MTAM schemes
 – In fact, it’s \(NP\)-hard
• Safety for acyclic ternary MATM decidable in time polynomial in the size of initial ACM
 – “Ternary” means commands have no more than 3 parameters
 – Equivalent in expressive power to MTAM