Security Policy

• Policy partitions system states into:
 – Authorized (secure)
 • These are states the system can enter
 – Unauthorized (nonsecure)
 • If the system enters any of these states, it’s a security violation

• Secure system
 – Starts in authorized state
 – Never enters unauthorized state
Policies and Mechanisms

• Policy says what is, and is not, allowed
 – This defines “security” for the site/system/etc.
• Mechanisms enforce policies
• Composition of policies
 – If policies conflict, discrepancies may create security vulnerabilities

Types of Mechanisms

- Secure
- Precise

set of reachable states
set of secure states
Secure, Precise Mechanisms

- Can one devise a procedure for developing a mechanism that is both secure and precise?
 - Consider confidentiality policies only here
 - Integrity policies produce same result

- Program a function with multiple inputs and one output
 - Let \(p \) be a function \(p: I_1 \times \ldots \times I_n \rightarrow R \). Then \(p \) is a program with \(n \) inputs \(i_k \in I_k \), \(1 \leq k \leq n \), and one output \(r \in R \)

Programs and Postulates

- Observability Postulate: the output of a function encodes all available information about its inputs
 - Covert channels considered part of the output

- Example: authentication function
 - Inputs name, password; output Good or Bad
 - If name invalid, immediately print Bad; else access database
 - Problem: time output of Bad, can determine if name valid
 - This means timing is part of output
Protection Mechanism

• Let p be a function $p: I_1 \times \ldots \times I_n \rightarrow R$. A protection mechanism m is a function $m: I_1 \times \ldots \times I_n \rightarrow R \cup E$ for which, when $i_k \in I_k$, $1 \leq k \leq n$, either
 – $m(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$ or
 – $m(i_1, \ldots, i_n) \in E$.

• E is set of error outputs
 – In above example, $E = \{ \text{"Password Database Missing"}, \text{"Password Database Locked"} \}$

Confidentiality Policy

• Confidentiality policy for program p says which inputs can be revealed
 – Formally, for $p: I_1 \times \ldots \times I_n \rightarrow R$, it is a function $c: I_1 \times \ldots \times I_n \rightarrow A$, where $A \subseteq I_1 \times \ldots \times I_n$
 – A is set of inputs available to observer

• Security mechanism is function $m: I_1 \times \ldots \times I_n \rightarrow R \cup E$
 – m secure iff $\exists m': A \rightarrow R \cup E$ such that, for all $i_k \in I_k$, $1 \leq k \leq n$, $m(i_1, \ldots, i_n) = m'(c(i_1, \ldots, i_n))$
 – m returns values consistent with c
Examples

- $c(i_1, \ldots, i_n) = C$, a constant
 - Deny observer any information (output does not vary with inputs)
- $c(i_1, \ldots, i_n) = (i_1, \ldots, i_n)$, and $m' = m$
 - Allow observer full access to information
- $c(i_1, \ldots, i_n) = i_1$
 - Allow observer information about first input but no information about other inputs.

Precision

- Security policy may be over-restrictive
 - Precision measures how over-restrictive
- m_1, m_2 distinct protection mechanisms for program p under policy c
 - m_1 as precise as m_2 ($m_1 \simeq m_2$) if, for all inputs i_1, \ldots, i_n
 $m_2(i_1, \ldots, i_n) = p(i_1, \ldots, i_n) \Rightarrow m_1(i_1, \ldots, i_n) = p(i_1, \ldots, i_n)$
 - m_1 more precise than m_2 ($m_1 \prec m_2$) if there is an input (i_1', \ldots, i_n') such that $m_1(i_1', \ldots, i_n') = p(i_1', \ldots, i_n')$ and $m_2(i_1', \ldots, i_n') \neq p(i_1', \ldots, i_n')$.

Combining Mechanisms

- m_1, m_2 protection mechanisms
- $m_3 = m_1 \cup m_2$
 - For inputs on which m_1 returns same value as p, or m_2 returns same value as p, m_3 does also; otherwise, m_3 returns same value as m_1
- Theorem: if m_1, m_2 secure, then m_3 secure
 - Also, $m_3 \approx m_1$ and $m_3 \approx m_2$
 - Follows from definitions of secure, precise, and m_3

Existence Theorem

- For any program p and security policy c, there exists a precise, secure mechanism m^* such that, for all secure mechanisms m associated with p and c, $m^* \approx m$
 - Maximally precise mechanism
 - Ensures security
 - Minimizes number of denials of legitimate actions
Lack of Effective Procedure

• There is no effective procedure that determines a maximally precise, secure mechanism for any policy and program.
 – Sketch of proof: let c be constant function, and p compute function T(x). Assume T(x) = 0. Consider program q, where

```p;
if z = 0 then y := 1 else y := 2;
halt;
```

Rest of Sketch

• m associated with q, y value of m, z output of p corresponding to T(x)
• \(\forall x[T(x) = 0] \rightarrow m(x) = 1\)
• \(\exists x' [T(x') \neq 0] \rightarrow m(x) = 2 \text{ or } m(x)\uparrow\)
• If you can determine m, you can determine whether T(x) = 0 for all x
• This is not possible
• Therefore no such procedure exists
Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- Multi-level security models are best-known examples
 - Bell-LaPadula Model basis for many, or most, of these

Bell-LaPadula Model, Step 1

- Security levels arranged in linear ordering
 - Top Secret: highest
 - Secret
 - Confidential
 - Unclassified: lowest
- Levels consist of security clearance \(L(s) \)
 - Objects have security classification \(L(o) \)
Example

<table>
<thead>
<tr>
<th>security level</th>
<th>subject</th>
<th>object</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top Secret</td>
<td>Tamara</td>
<td>Personnel Files</td>
</tr>
<tr>
<td>Secret</td>
<td>Samuel</td>
<td>E-Mail Files</td>
</tr>
<tr>
<td>Confidential</td>
<td>Claire</td>
<td>Activity Logs</td>
</tr>
<tr>
<td>Unclassified</td>
<td>Ulaley</td>
<td>Telephone Lists</td>
</tr>
</tbody>
</table>

- Tamara can read all files
- Claire cannot read Personnel or E-Mail Files
- Ulaley can only read Telephone Lists

Reading Information

- Information flows up, not down
 - “Reads up” disallowed, “reads down” allowed
- Simple Security Condition (Step 1)
 - Subject s can read object o iff, $L(o) \leq L(s)$ and s has permission to read o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called “no reads up” rule
Writing Information

- Information flows up, not down
 - “Writes up” allowed, “writes down” disallowed
- *-Property (Step 1)
 - Subject s can write object o iff $L(s) \leq L(o)$ and s has permission to write o
 - Note: combines mandatory control (relationship of security levels) and discretionary control (the required permission)
 - Sometimes called “no writes down” rule

Basic Security Theorem

Step 1

- If a system is initially in a secure state, and every transition of the system satisfies the simple security condition, step 1, and the *-property, step 1, then every state of the system is secure
 - Proof: induct on the number of transitions
Bell-LaPadula Model, Step 2

• Expand notion of security level to include categories
• Security level is *(clearance, category set)*
• Examples
 – (Top Secret, {NUC, EUR, ASI})
 – (Confidential, {EUR, ASI})
 – (Secret, {NUC, ASI})

Lattices

• S set, R: S × S relation
 – If a, b ∈ S, and (a, b) ∈ R, write aRb
• Example
 – I = {1, 2, 3}; R is ≤
 – R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}
 – So we write 1 ≤ 2 and 3 ≤ 3 but not 3 ≤ 2
Relation Properties

• Reflexive
 – For all \(a \in S \), \(aRa \)
 – On \(I \), \(\leq \) is reflexive as \(1 \leq 1 \), \(2 \leq 2 \), \(3 \leq 3 \)

• Antisymmetric
 – For all \(a, b \in S \), \(aRb \land bRa \Rightarrow a = b \)
 – On \(I \), \(\leq \) is antisymmetric

• Transitive
 – For all \(a, b, c \in S \), \(aRb \land bRc \Rightarrow aRc \)
 – On \(I \), \(\leq \) is transitive as \(1 \leq 2 \) and \(2 \leq 3 \) means \(1 \leq 3 \)

Bigger Example

• \(C \) set of complex numbers
• \(a \in C \Rightarrow a = a_R + a_i \), \(a_R, a_i \) integers
• \(a \leq_C b \) if, and only if, \(a_R \leq b_R \) and \(a_i \leq b_i \)
• \(a \leq_C b \) is reflexive, antisymmetric, transitive
 – As \(\leq \) is over integers, and \(a_R, a_i \) are integers
Partial Ordering

• Relation R orders some members of set S
 – If all ordered, it’s total ordering
• Example
 – \leq on integers is total ordering
 – \leq_C is partial ordering on C (because neither $3+5i \leq_C 4+2i$ nor $4+2i \leq_C 3+5i$ holds)

Upper Bounds

• For $a, b \in S$, if u in S with aRu, bRu exists, then u is upper bound
 – Least upper if there is no $t \in S$ such that $aRt, bRt, \text{ and } tRu$
• Example
 – For $1 + 5i, 2 + 4i \in C$, upper bounds include $2 + 5i, 3 + 8i, \text{ and } 9 + 100i$
 – Least upper bound of those is $2 + 5i$
Lower Bounds

• For \(a, b \in S \), if \(l \in S \) with \(lRa, lRb \) exists, then \(l \) is lower bound
 – Greatest lower if there is no \(t \in S \) such that \(tRa, tRb, \) and \(lRt \)

• Example
 – For \(1 + 5i, 2 + 4i \in C \), lower bounds include \(0, -1 + 2i, 1 + 1i, \) and \(1+4i \)
 – Greatest lower bound of those is \(1 + 4i \)

Lattices

• Set \(S \), relation \(R \)
 – \(R \) is reflexive, antisymmetric, transitive on elements of \(S \)
 – For every \(s, t \in S \), there exists a greatest lower bound under \(R \)
 – For every \(s, t \in S \), there exists a least upper bound under \(R \)
Example

• $S = \{ 0, 1, 2 \}; R = \leq$ is a lattice
 – R is clearly reflexive, antisymmetric, transitive on elements of S
 – Least upper bound of any two elements of S is the greater
 – Greatest lower bound of any two elements of S is the lesser