Unwinding Theorem

• Links security of sequences of state transition commands to security of individual state transition commands
• Allows you to show a system design is ML secure by showing it matches specs from which certain lemmata derived
 – Says *nothing* about security of system, because of implementation, operation, *etc.* issues
Locally Respects

- r is a policy
- System X locally respects r if $\text{dom}(c)$ being noninterfering with $d \in D$ implies $\sigma_a \sim^d T(c, \sigma_a)$
- Intuition: applying c under policy r to system X has no effect on domain d when X locally respects r

Transition-Consistent

- r policy, $d \in D$
- If $\sigma_a \sim^d \sigma_b$ implies $T(c, \sigma_a) \sim^d T(c, \sigma_b)$, system X transition-consistent under r
- Intuition: command c does not affect equivalence of states under policy r
Lemma

- \(c_1, c_2 \in C, d \in D \)
- For policy \(r \), \(\text{dom}(c_1)rd \) and \(\text{dom}(c_2)rd \)
- Then
 \[T^*(c_1c_2,\sigma) = T(c_1, T(c_2,\sigma)) = T(c_2, T(c_1,\sigma)) \]
- Intuition: if info can flow from domains of commands into \(d \), then order doesn’t affect result of applying commands

Theorem

- \(r \) policy, \(X \) system that is output consistent, transition consistent, locally respects \(r \)
- \(X \) noninterference-secure with respect to policy \(r \)
- Significance: basis for analyzing systems claiming to enforce noninterference policy
 - Establish conditions of theorem for particular set of commands, states with respect to some policy, set of protection domains
 - Noninterference security with respect to \(r \) follows
Proof

• Must show $\sigma_a \sim_d \sigma_b$ implies
 $T^*(c_s, \sigma_a) \sim_d T^*(\pi'_d(c_s), \sigma_b)$
• Induct on length of c_s
 • Basis: $c_s = \nu$, so $T^*(c_s, \sigma) = \sigma$; $\pi'_d(\nu) = \nu$; claim holds
 • Hypothesis: $c_s = c_1 \ldots c_n$; then claim holds

Induction Step

• Consider $c_s c_{n+1}$. Assume $\sigma_a \sim_d \sigma_b$ and look at $T^*(\pi'_d(c_s c_{n+1}), \sigma_b)$
 • 2 cases:
 – $dom(c_{n+1})rd$ holds
 – $dom(c_{n+1})rd$ does not hold
\[\text{dom}(c_{n+1}) \text{rd} \text{ Holds} \]

\[T^*(\pi'_d(c_sc_{n+1}), \sigma_b) = T^*(\pi'_d(c_sc_{n+1}), \sigma_b) \]
\[= T(c_{n+1}, T^*(\pi'_d(c_sc_{n+1}), \sigma_b)) \]
– by definition of \(T^* \) and \(\pi'_d \)

• \(T(c_{n+1}, \sigma_a) \sim^d T(c_{n+1}, \sigma_b) \)
 – as \(X \) transition-consistent and \(\sigma_a \sim^d \sigma_b \)

• \(T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_sc_{n+1}), \sigma_b)) \)
 – by transition-consistency and IH

\[\text{dom}(c_{n+1}) \text{rd} \text{ Holds} \]

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_sc_{n+1}), \sigma_b)) \]
– by substitution from earlier equality

\[T(c_{n+1}, T^*(c_s, \sigma_a)) \sim^d T(c_{n+1}, T^*(\pi'_d(c_sc_{n+1}), \sigma_b)) \]
– by definition of \(T^* \)

• proving hypothesis
Finishing Proof

- Take $\sigma_a = \sigma_b = \sigma_0$, so from claim proved by induction,
 $$T^*(c_s, \sigma_0) \sim_d T^*(\pi'_d(c_s), \sigma_0)$$
- By previous lemma, as X (and so \sim_d) output consistent, then X is noninterference-secure with respect to policy r
Access Control Matrix

- Example of interpretation
- Given: access control information
- Question: are given conditions enough to provide noninterference security?
- Assume: system in a particular state
 - Encapsulates values in ACM

ACM Model

- Objects $L = \{ l_1, \ldots, l_m \}$
 - Locations in memory
- Values $V = \{ v_1, \ldots, v_n \}$
 - Values that L can assume
- Set of states $\Sigma = \{ \sigma_1, \ldots, \sigma_k \}$
- Set of protection domains $D = \{ d_1, \ldots, d_j \}$
Functions

- **value**: $L \times \Sigma \rightarrow V$
 - returns value v stored in location l when system in state σ
- **read**: $D \rightarrow 2^V$
 - returns set of objects observable from domain d
- **write**: $D \rightarrow 2^V$
 - returns set of objects observable from domain d

Interpretation of ACM

- Functions represent ACM
 - Subject s in domain d, object o
 - $r \in A[s, o]$ if $o \in \text{read}(d)$
 - $w \in A[s, o]$ if $o \in \text{write}(d)$
 - Equivalence relation:
 $$[\sigma_a \sim_{dom(c)} \sigma_b] \iff [\forall l_i \in \text{read}(d)\left[\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b)\right]]$$
 - You can read the exactly the same locations in both states
Enforcing Policy r

- 5 requirements
 - 3 general ones describing dependence of commands on rights over input and output
 - Hold for all ACMs and policies
 - 2 that are specific to some security policies
 - Hold for most policies

Enforcing Policy r: First

- Output of command c executed in domain $\text{dom}(c)$ depends only on values for which subjects in $\text{dom}(c)$ have read access

$$\sigma_a \sim_{\text{dom}(c)} \sigma_b \Rightarrow P(c, \sigma_a) = P(c, \sigma_b)$$
Enforcing Policy r: Second

- If c changes l_i, then c can only use values of objects in $\text{read}(\text{dom}(c))$ to determine new value

$$[\sigma_a \sim^{\text{dom}(c)} \sigma_b \text{ and }$$

$$\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \text{ or } \text{value}(l_i, T(c, \sigma_b)) \neq \text{value}(l_i, \sigma_b)] \Rightarrow$$

$$\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))$$

Enforcing Policy r: Third

- If c changes l_i, then $\text{dom}(c)$ provides subject executing c with write access to l_i

$$\text{value}(l_i, T(c, \sigma_a)) \neq \text{value}(l_i, \sigma_a) \Rightarrow$$

$$l_i \in \text{write}(\text{dom}(c))$$
Enforcing Policies r: Fourth

• If domain u can interfere with domain v, then every object that can be read in u can also be read in v

• So if object o cannot be read in u, but can be read in v; and object o' in u can be read in v, then info flows from o to o', then to v

Let $u, v \in D$; then $urv \Rightarrow read(u) \subseteq read(v)$

Enforcing Policies r: Fifth

• Subject s can read object o in v, subject s' can read o in u, then domain v can interfere with domain u

$$l_i \in read(u) \text{ and } l_i \in write(v) \Rightarrow vru$$
Theorem

- Let X be a system satisfying the five conditions. The X is noninterference-secure with respect to r
- Proof: must show X output-consistent, locally respects r, transition-consistent
 - Then by unwinding theorem, theorem holds

Output-Consistent

- Take equivalence relation to be \sim^d, first condition is definition of output-consistent
Locally Respects \(r \)

- Proof by contradiction: assume \((\text{dom}(c),d) \notin r\) but \(\sigma_a \sim^d T(c, \sigma_a)\) does not hold
- Some object has value changed by \(c\):
 \[\exists l_i \in \text{read}(d) \ [\text{value}(l_i, \sigma_a) \neq \text{value}(l_i, T(c, \sigma_a))] \]
- Condition 3: \(l_i \in \text{write}(d)\)
- Condition 5: \(\text{dom}(c) \cap d\), contradiction
- So \(\sigma_a \sim^d T(c, \sigma_a)\) holds, meaning \(X\) locally respects \(r\)

Transition Consistency

- Assume \(\sigma_a \sim^d \sigma_b\)
- Must show \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, T(c, \sigma_b))\) for \(l_i \in \text{read}(d)\)
- 3 cases dealing with change that \(c\) makes in \(l_i\) in states \(\sigma_a, \sigma_b\)
Case 1

- \(value(l_i, T(c, \sigma_a)) \neq value(l_i, \sigma_a) \)
- Condition 3: \(l_i \in write(dom(c)) \)
- As \(l_i \in read(d) \), condition 5 says \(dom(c)rd \)
- Condition 4 says \(read(dom(c)) \subseteq read(d) \)
- As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{dom(c)} \sigma_b \)
- Condition 2:
 - \(value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b)) \)
 - So \(T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b) \), as desired

Case 2

- \(value(l_i, T(c, \sigma_b)) \neq value(l_i, \sigma_b) \)
- Condition 3: \(l_i \in write(dom(c)) \)
- As \(l_i \in read(d) \), condition 5 says \(dom(c)rd \)
- Condition 4 says \(read(dom(c)) \subseteq read(d) \)
- As \(\sigma_a \sim^d \sigma_b \), \(\sigma_a \sim^{dom(c)} \sigma_b \)
- Condition 2:
 - \(value(l_i, T(c, \sigma_a)) = value(l_i, T(c, \sigma_b)) \)
 - So \(T(c, \sigma_a) \sim^{dom(c)} T(c, \sigma_b) \), as desired
Case 3

• Neither of the previous two
 – \(\text{value}(l_i, T(c, \sigma_a)) = \text{value}(l_i, \sigma_a) \)
 – \(\text{value}(l_i, T(c, \sigma_b)) = \text{value}(l_i, \sigma_b) \)
• Interpretation of \(\sigma_a \sim^d \sigma_b \) is:
 for \(l_i \in \text{read}(d) \), \(\text{value}(l_i, \sigma_a) = \text{value}(l_i, \sigma_b) \)
• So \(T(c, \sigma_a) \sim^d T(c, \sigma_b) \), as desired
• In all 3 cases, \(X \) transition-consistent

Policies Changing Over Time

• Problem: previous analysis assumes static system
 – In real life, ACM changes as system commands issued
• Example: \(w \in C^* \) leads to current state
 – \(\text{cando}(w, s, z) \) holds if \(s \) can execute \(z \) in current state
 – Condition noninterference on \(\text{cando} \)
 – If \(\neg \text{cando}(w, \text{Lara}, \text{"write } f\text{"}) \), Lara can’t interfere with any other user by writing file \(f \)
Generalize Noninterference

- $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
- $c_s = (c_1, \ldots, c_n) \in C^*$
- $\pi''(\nu) = \nu$
- $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 - $c_i' = \nu$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 - $c_i' = c_i$ otherwise

Intuition

- $\pi''(c_s) = c_s$
- But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 - Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$, all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, \pi''(c_s), \sigma_i)$
 - Written $A, G :| G' \text{ if } p$

Example

- From earlier one, simple security policy based on noninterference:
 $\forall(s \in S) \forall(z \in Z)$
 $[\{z\}, \{s\} :| S \text{ if } \neg cando(w, s, z)]$
- If subject can’t execute command (the $\neg cando$ part), subject can’t use that command to interfere with another subject