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Policies Changing Over Time

• Problem: previous analysis assumes static
system
– In real life, ACM changes as system commands

issued

• Example: w ! C* leads to current state

– cando(w, s, z) holds if s can execute z in current
state

– Condition noninterference on cando

– If ¬cando(w, Lara, “write f”), Lara can’t interfere
with any other user by writing file f
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Generalize Noninterference

• G " S group of subjects, A " Z set of

commands, p predicate over elements of C*

• cs = (c1, …, cn) ! C*

• #$$(%) = %

• #$$((c1, …, cn)) = (c1$, …, cn$)

– ci$ = % if p(c1$, …, ci–1$) and ci = (s, z) with s ! G

and z ! A

– ci$ = ci otherwise
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Intuition

• #$$(cs) = cs

• But if p holds, and element of cs

involves both command in A and

subject in G, replace corresponding
element of cs with empty command %

– Just like deleting entries from cs as #A,G

does earlier
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Noninterference

• G, G$ " S groups of subjects, A " Z set

of commands, p predicate over C*

• Users in G executing commands in A
are noninterfering with users in G$ under

condition p iff, for all cs ! C*, all s ! G$,

proj(s, cs, &i) = proj(s, p’’(cs), &i)

– Written A,G :| G$ if p
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Example

• From earlier one, simple security policy
based on noninterference:

'(s ! S) '(z ! Z)

[ {z}, {s} :| S if ¬cando(w, s, z) ]

• If subject can’t execute command (the
¬cando part), subject can’t use that
command to interfere with another
subject
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Another Example

• Consider system in which rights can be

passed

– pass(s, z) gives s right to execute z

– wn = v1, …, vn sequence of vi ! C*

– prev(wn) = wn–1; last(wn) = vn
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Policy

• No subject s can use z to interfere if, in

previous state, s did not have right to z,

and no subject gave it to s

{ z }, { s } :| S if

[ ¬cando(prev(w), s, z) (

[ cando(prev(w), s$, pass(s, z)) )

¬last(w) = (s$, pass(s, z)) ] ]
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Effect

• Suppose s1 ! S can execute pass(s2, z)

• For all w ! C*, cando(w, s1, pass(s2, z))
true

• Initially, cando(%, s2, z) false

• Let z$ ! Z be such that (s3, z$)
noninterfering with (s2, z)
– So for each wn with vn = (s3, z$),

cando(wn, s2, z) = cando(wn–1, s2, z)
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Effect

• Then policy says for all s ! S

proj(s, ((s2, z), (s1, pass(s2, z)),

(s3, z$), (s2, z)), &i) =

proj(s, ((s1, pass(s2, z)), (s3, z$), (s2, z)), &i)

• So s2’s first execution of z does not

affect any subject’s observation of

system
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Policy Composition I

• Assumed: Output function of input

– Means deterministic (else not function)

– Means uninterruptability (differences in

timings can cause differences in states,

hence in outputs)

• This result for deterministic,

noninterference-secure systems
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Compose Systems

• Louie, Dewey LOW

• Hughie HIGH

• bL output buffer
– Anyone can read it

• bH input buffer
– From HIGH source

• Hughie reads from:
– bLH (Louie writes)

– bLDH (Louie, Dewey write)

– bDH (Dewey writes)

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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Systems Secure

• All noninterference-

secure

– Hughie has no output

• So inputs don’t interfere

with it

– Louie, Dewey have no

input

• So (nonexistent) inputs

don’t interfere with

outputs

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH
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Security of Composition

• Buffers finite, sends/receives blocking:
composition not secure!
– Example: assume bDH, bLH have capacity 1

• Algorithm:
1. Louie (Dewey) sends message to bLH (bDH)

– Fills buffer

2. Louie (Dewey) sends second message to bLH (bDH)

3. Louie (Dewey) sends a 0 (1) to bL

4. Louie (Dewey) sends message to bLDH

– Signals Hughie that Louie (Dewey) completed a cycle
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Hughie

• Reads bit from bH

– If 0, receive message from bLH

– If 1, receive message from bDH

• Receive on bLDH

– To wait for buffer to be filled
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Example

• Hughie reads 0 from bH

– Reads message from bLH

• Now Louie’s second message goes into bLH

– Louie completes setp 2 and writes 0 into bL

• Dewey blocked at step 1
– Dewey cannot write to bL

• Symmetric argument shows that Hughie
reading 1 produces a 1 in bL

• So, input from bH copied to output bL
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Nondeducibility

• Noninterference: do state transitions
caused by high level commands
interfere with sequences of state
transitions caused by low level
commands?

• Really case about inputs and outputs:

– Can low level subject deduce anything
about high level outputs from a set of low
level outputs?
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Example: 2-Bit System

• High operations change only High bit

– Similar for Low

• s0 = (0, 0)

• Commands (Heidi, xor1), (Lara, xor0),
(Lara, xor1), (Lara, xor0), (Heidi, xor1),
(Lara, xor0)

– Both bits output after each command

• Output is: 00101011110101



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 19

Security

• Not noninterference-secure w.r.t. Lara

– Lara sees output as 0001111

– Delete High and she sees 00111

• But Lara still cannot deduce the commands

deleted

– Don’t affect values; only lengths

• So it is deducibly secure

– Lara can’t deduce the commands Heidi gave
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Event System

• 4-tuple (E, I, O, T)

– E set of events

– I " E set of input events

– O " E set of output events

– T set of all finite sequences of events legal within

system

• E partitioned into H, L

– H set of High events

– L set of Low events
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More Events …

• H*I set of High inputs

• H*O set of High outputs

• L*I set of Low inputs

• L*O set of Low outputs

• TLow set of all possible sequences of Low
events that are legal within system

• #L:T+TLow projection function deleting all
High inputs from trace
‒  Low observer should not be able to deduce

anything about High inputs from trace tLow ! Tlow
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Deducibly Secure

• System deducibly secure if, for every
trace tLow ! TLow, the corresponding set

of high level traces contains every
possible trace t ! T for which #L(t) = tLow

– Given any tLow, the trace t ! T producing

that tLow is equally likely to be any trace
with #L(t) = tLow
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Example

• Back to our 2-bit machine
– Let xor0, xor1 apply to both bits

– Both bits output after each command

• Initial state: (0, 1)

• Inputs: 1H0L1L0H1L0L

• Outputs: 10 10 01 01 10 10

• Lara (at Low) sees: 001100
– Does not know initial state, so does not know first

input; but can deduce fourth input is 0

• Not deducibly secure
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Example

• Now xor0, xor1 apply only to state bit with
same level as user

• Inputs: 1H0L1L0H1L0L

• Outputs: 1011111011

• Lara sees: 01101

• She cannot deduce anything about input
– Could be 0H0L1L0H1L0L or 0L1H1L0H1L0L for

example

• Deducibly secure
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Security of Composition

• In general: deducibly secure systems

not composable

• Strong noninterference: deducible

security + requirement that no High

output occurs unless caused by a High

input

– Systems meeting this property are

composable
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Example

• 2-bit machine done earlier does not

exhibit strong noninterference

– Because it puts out High bit even when

there is no High input

• Modify machine to output only state bit

at level of latest input

– Now it exhibits strong noninterference
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Problem

• Too restrictive; it bans some systems

that are obviously secure

• Example: System upgrade reads Low

inputs, outputs those bits at High

– Clearly deducibly secure: low level user

sees no outputs

– Clearly does not exhibit strong

noninterference, as no high level inputs!
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Remove Determinism

• Previous assumption

– Input, output synchronous

– Output depends only on commands
triggered by input

• Sometimes absorbed into commands …

– Input processed one datum at a time

• Not realistic

– In real systems, lots of asynchronous
events
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Generalized Noninterference

• Nondeterministic systems meeting

noninterference property meet

generalized noninterference-secure

property

– More robust than nondeducible security

because minor changes in assumptions

affect whether system is nondeducibly

secure
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Example

• System with High Holly, Low lucy, text file at High

– File fixed size, symbol b marks empty space

– Holly can edit file, Lucy can run this program:

while true do begin
n := read_integer_from_user;
if n > file_length or char_in_file[n] = b then

print random_character;
else

print char_in_file[n];
end;
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Security of System

• Not noninterference-secure
– High level inputs—Holly’s changes—affect low

level outputs

• May be deducibly secure
– Can Lucy deduce contents of file from program?

– If output meaningful (“This is right”) or close (“Thes
is riqht”), yes

– Otherwise, no

• So deducibly secure depends on which
inferences are allowed
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Composition of Systems

• Does composing systems meeting

generalized noninterference-secure

property give you a system that also

meets this property?

• Define two systems (cat, dog)

• Compose them
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First System: cat

• Inputs, outputs can

go left or right

• After some number

of inputs, cat sends

two outputs

– First stop_count

– Second parity of

High inputs, outputs

HIGH HIGH

LOW

stop_count0 or 1

cat
LOW
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Noninterference-Secure?

• If even number of High inputs, output could
be:
– 0 (even number of outputs)

– 1 (odd number of outputs)

• If odd number of High inputs, output could be:
– 0 (odd number of outputs)

– 1 (even number of outputs)

• High level inputs do not affect output
– So noninterference-secure
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Second System: dog

• High outputs to left

• Low outputs of 0 or

1 to right

• stop_count input

from the left

– When it arrives, dog

emits 0 or 1

HIGH

HIGH LOW

0 or 1

dog

stop_count
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Noninterference-Secure?

• When stop_count arrives:
– May or may not be inputs for which there are no

corresponding outputs

– Parity of High inputs, outputs can be odd or even

– Hence dog emits 0 or 1

• High level inputs do not affect low level
outputs
– So noninterference-secure
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Compose Them

• Once sent, message arrives
– But stop_count may arrive before all inputs have generated

corresponding outputs

– If so, even number of High inputs and outputs on cat, but
odd number on dog

• Four cases arise

HIGH HIGH

LOW

stop_count0 or 1

cat LOW

0 or 1

dog
LOW

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 38

The Cases

• cat, odd number of inputs, outputs; dog, even

number of inputs, odd number of outputs

– Input message from cat not arrived at dog,

contradicting assumption

• cat, even number of inputs, outputs; dog, odd

number of inputs, even number of outputs

– Input message from dog not arrived at cat,

contradicting assumption
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The Cases

• cat, odd number of inputs, outputs; dog, odd

number of inputs, even number of outputs

– dog sent even number of outputs to cat, so cat has

had at least one input from left

• cat, even number of inputs, outputs; dog,

even number of inputs, odd number of

outputs

– dog sent odd number of outputs to cat, so cat has

had at least one input from left
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The Conclusion

• Composite system catdog emits 0 to left, 1 to

right (or 1 to left, 0 to right)

– Must have received at least one input from left

• Composite system catdog emits 0 to left, 0 to

right (or 1 to left, 1 to right)

– Could not have received any from left

• So, High inputs affect Low outputs

– Not noninterference-secure
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Feedback-Free Systems

• System has n distinct components

• Components ci, cj connected if any output of

ci is input to cj

• System is feedback-free if for all ci connected

to cj, cj not connected to any ci

– Intuition: once information flows from one

component to another, no information flows back

from the second to the first
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Feedback-Free Security

• Theorem: A feedback-free system

composed of noninterference-secure

systems is itself noninterference-secure
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Some Feedback

• Lemma: A noninterference-secure system

can feed a high level output o to a high level

input i if the arrival of o at the input of the next

component is delayed until after the next low

level input or output

• Theorem: A system with feedback as

described in the above lemma and composed

of noninterference-secure systems is itself

noninterference-secure


