
ECS 289M Lecture 15

May 3, 2006

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 2

Policies Changing Over Time

• Problem: previous analysis assumes static
system
– In real life, ACM changes as system commands

issued

• Example: w ! C* leads to current state

– cando(w, s, z) holds if s can execute z in current
state

– Condition noninterference on cando

– If ¬cando(w, Lara, “write f”), Lara can’t interfere
with any other user by writing file f



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 3

Generalize Noninterference

• G " S group of subjects, A " Z set of

commands, p predicate over elements of C*

• cs = (c1, …, cn) ! C*

• #$$(%) = %

• #$$((c1, …, cn)) = (c1$, …, cn$)

– ci$ = % if p(c1$, …, ci–1$) and ci = (s, z) with s ! G

and z ! A

– ci$ = ci otherwise

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 4

Intuition

• #$$(cs) = cs

• But if p holds, and element of cs

involves both command in A and

subject in G, replace corresponding
element of cs with empty command %

– Just like deleting entries from cs as #A,G

does earlier



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 5

Noninterference

• G, G$ " S groups of subjects, A " Z set

of commands, p predicate over C*

• Users in G executing commands in A
are noninterfering with users in G$ under

condition p iff, for all cs ! C*, all s ! G$,

proj(s, cs, &i) = proj(s, p’’(cs), &i)

– Written A,G :| G$ if p

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 6

Example

• From earlier one, simple security policy
based on noninterference:

'(s ! S) '(z ! Z)

[ {z}, {s} :| S if ¬cando(w, s, z) ]

• If subject can’t execute command (the
¬cando part), subject can’t use that
command to interfere with another
subject



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 7

Another Example

• Consider system in which rights can be

passed

– pass(s, z) gives s right to execute z

– wn = v1, …, vn sequence of vi ! C*

– prev(wn) = wn–1; last(wn) = vn

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 8

Policy

• No subject s can use z to interfere if, in

previous state, s did not have right to z,

and no subject gave it to s

{ z }, { s } :| S if

[ ¬cando(prev(w), s, z) (

[ cando(prev(w), s$, pass(s, z)) )

¬last(w) = (s$, pass(s, z)) ] ]



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 9

Effect

• Suppose s1 ! S can execute pass(s2, z)

• For all w ! C*, cando(w, s1, pass(s2, z))
true

• Initially, cando(%, s2, z) false

• Let z$ ! Z be such that (s3, z$)
noninterfering with (s2, z)
– So for each wn with vn = (s3, z$),

cando(wn, s2, z) = cando(wn–1, s2, z)

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 10

Effect

• Then policy says for all s ! S

proj(s, ((s2, z), (s1, pass(s2, z)),

(s3, z$), (s2, z)), &i) =

proj(s, ((s1, pass(s2, z)), (s3, z$), (s2, z)), &i)

• So s2’s first execution of z does not

affect any subject’s observation of

system



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 11

Policy Composition I

• Assumed: Output function of input

– Means deterministic (else not function)

– Means uninterruptability (differences in

timings can cause differences in states,

hence in outputs)

• This result for deterministic,

noninterference-secure systems

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 12

Compose Systems

• Louie, Dewey LOW

• Hughie HIGH

• bL output buffer
– Anyone can read it

• bH input buffer
– From HIGH source

• Hughie reads from:
– bLH (Louie writes)

– bLDH (Louie, Dewey write)

– bDH (Dewey writes)

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 13

Systems Secure

• All noninterference-

secure

– Hughie has no output

• So inputs don’t interfere

with it

– Louie, Dewey have no

input

• So (nonexistent) inputs

don’t interfere with

outputs

bL bH

Louie

Dewey

Hughie

bLH

bDH

bLDH

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 14

Security of Composition

• Buffers finite, sends/receives blocking:
composition not secure!
– Example: assume bDH, bLH have capacity 1

• Algorithm:
1. Louie (Dewey) sends message to bLH (bDH)

– Fills buffer

2. Louie (Dewey) sends second message to bLH (bDH)

3. Louie (Dewey) sends a 0 (1) to bL

4. Louie (Dewey) sends message to bLDH

– Signals Hughie that Louie (Dewey) completed a cycle



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 15

Hughie

• Reads bit from bH

– If 0, receive message from bLH

– If 1, receive message from bDH

• Receive on bLDH

– To wait for buffer to be filled

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 16

Example

• Hughie reads 0 from bH

– Reads message from bLH

• Now Louie’s second message goes into bLH

– Louie completes setp 2 and writes 0 into bL

• Dewey blocked at step 1
– Dewey cannot write to bL

• Symmetric argument shows that Hughie
reading 1 produces a 1 in bL

• So, input from bH copied to output bL



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 17

Nondeducibility

• Noninterference: do state transitions
caused by high level commands
interfere with sequences of state
transitions caused by low level
commands?

• Really case about inputs and outputs:

– Can low level subject deduce anything
about high level outputs from a set of low
level outputs?

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 18

Example: 2-Bit System

• High operations change only High bit

– Similar for Low

• s0 = (0, 0)

• Commands (Heidi, xor1), (Lara, xor0),
(Lara, xor1), (Lara, xor0), (Heidi, xor1),
(Lara, xor0)

– Both bits output after each command

• Output is: 00101011110101



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 19

Security

• Not noninterference-secure w.r.t. Lara

– Lara sees output as 0001111

– Delete High and she sees 00111

• But Lara still cannot deduce the commands

deleted

– Don’t affect values; only lengths

• So it is deducibly secure

– Lara can’t deduce the commands Heidi gave

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 20

Event System

• 4-tuple (E, I, O, T)

– E set of events

– I " E set of input events

– O " E set of output events

– T set of all finite sequences of events legal within

system

• E partitioned into H, L

– H set of High events

– L set of Low events



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 21

More Events …

• H*I set of High inputs

• H*O set of High outputs

• L*I set of Low inputs

• L*O set of Low outputs

• TLow set of all possible sequences of Low
events that are legal within system

• #L:T+TLow projection function deleting all
High inputs from trace
‒  Low observer should not be able to deduce

anything about High inputs from trace tLow ! Tlow

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 22

Deducibly Secure

• System deducibly secure if, for every
trace tLow ! TLow, the corresponding set

of high level traces contains every
possible trace t ! T for which #L(t) = tLow

– Given any tLow, the trace t ! T producing

that tLow is equally likely to be any trace
with #L(t) = tLow



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example

• Back to our 2-bit machine
– Let xor0, xor1 apply to both bits

– Both bits output after each command

• Initial state: (0, 1)

• Inputs: 1H0L1L0H1L0L

• Outputs: 10 10 01 01 10 10

• Lara (at Low) sees: 001100
– Does not know initial state, so does not know first

input; but can deduce fourth input is 0

• Not deducibly secure

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 24

Example

• Now xor0, xor1 apply only to state bit with
same level as user

• Inputs: 1H0L1L0H1L0L

• Outputs: 1011111011

• Lara sees: 01101

• She cannot deduce anything about input
– Could be 0H0L1L0H1L0L or 0L1H1L0H1L0L for

example

• Deducibly secure



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 25

Security of Composition

• In general: deducibly secure systems

not composable

• Strong noninterference: deducible

security + requirement that no High

output occurs unless caused by a High

input

– Systems meeting this property are

composable

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 26

Example

• 2-bit machine done earlier does not

exhibit strong noninterference

– Because it puts out High bit even when

there is no High input

• Modify machine to output only state bit

at level of latest input

– Now it exhibits strong noninterference



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 27

Problem

• Too restrictive; it bans some systems

that are obviously secure

• Example: System upgrade reads Low

inputs, outputs those bits at High

– Clearly deducibly secure: low level user

sees no outputs

– Clearly does not exhibit strong

noninterference, as no high level inputs!

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 28

Remove Determinism

• Previous assumption

– Input, output synchronous

– Output depends only on commands
triggered by input

• Sometimes absorbed into commands …

– Input processed one datum at a time

• Not realistic

– In real systems, lots of asynchronous
events



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 29

Generalized Noninterference

• Nondeterministic systems meeting

noninterference property meet

generalized noninterference-secure

property

– More robust than nondeducible security

because minor changes in assumptions

affect whether system is nondeducibly

secure

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 30

Example

• System with High Holly, Low lucy, text file at High

– File fixed size, symbol b marks empty space

– Holly can edit file, Lucy can run this program:

while true do begin
n := read_integer_from_user;
if n > file_length or char_in_file[n] = b then

print random_character;
else

print char_in_file[n];
end;



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 31

Security of System

• Not noninterference-secure
– High level inputs—Holly’s changes—affect low

level outputs

• May be deducibly secure
– Can Lucy deduce contents of file from program?

– If output meaningful (“This is right”) or close (“Thes
is riqht”), yes

– Otherwise, no

• So deducibly secure depends on which
inferences are allowed

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 32

Composition of Systems

• Does composing systems meeting

generalized noninterference-secure

property give you a system that also

meets this property?

• Define two systems (cat, dog)

• Compose them



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 33

First System: cat

• Inputs, outputs can

go left or right

• After some number

of inputs, cat sends

two outputs

– First stop_count

– Second parity of

High inputs, outputs

HIGH HIGH

LOW

stop_count0 or 1

cat
LOW

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 34

Noninterference-Secure?

• If even number of High inputs, output could
be:
– 0 (even number of outputs)

– 1 (odd number of outputs)

• If odd number of High inputs, output could be:
– 0 (odd number of outputs)

– 1 (even number of outputs)

• High level inputs do not affect output
– So noninterference-secure



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 35

Second System: dog

• High outputs to left

• Low outputs of 0 or

1 to right

• stop_count input

from the left

– When it arrives, dog

emits 0 or 1

HIGH

HIGH LOW

0 or 1

dog

stop_count

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 36

Noninterference-Secure?

• When stop_count arrives:
– May or may not be inputs for which there are no

corresponding outputs

– Parity of High inputs, outputs can be odd or even

– Hence dog emits 0 or 1

• High level inputs do not affect low level
outputs
– So noninterference-secure



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 37

Compose Them

• Once sent, message arrives
– But stop_count may arrive before all inputs have generated

corresponding outputs

– If so, even number of High inputs and outputs on cat, but
odd number on dog

• Four cases arise

HIGH HIGH

LOW

stop_count0 or 1

cat LOW

0 or 1

dog
LOW

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 38

The Cases

• cat, odd number of inputs, outputs; dog, even

number of inputs, odd number of outputs

– Input message from cat not arrived at dog,

contradicting assumption

• cat, even number of inputs, outputs; dog, odd

number of inputs, even number of outputs

– Input message from dog not arrived at cat,

contradicting assumption



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 39

The Cases

• cat, odd number of inputs, outputs; dog, odd

number of inputs, even number of outputs

– dog sent even number of outputs to cat, so cat has

had at least one input from left

• cat, even number of inputs, outputs; dog,

even number of inputs, odd number of

outputs

– dog sent odd number of outputs to cat, so cat has

had at least one input from left

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 40

The Conclusion

• Composite system catdog emits 0 to left, 1 to

right (or 1 to left, 0 to right)

– Must have received at least one input from left

• Composite system catdog emits 0 to left, 0 to

right (or 1 to left, 1 to right)

– Could not have received any from left

• So, High inputs affect Low outputs

– Not noninterference-secure



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 41

Feedback-Free Systems

• System has n distinct components

• Components ci, cj connected if any output of

ci is input to cj

• System is feedback-free if for all ci connected

to cj, cj not connected to any ci

– Intuition: once information flows from one

component to another, no information flows back

from the second to the first

May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 42

Feedback-Free Security

• Theorem: A feedback-free system

composed of noninterference-secure

systems is itself noninterference-secure



May 3, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 43

Some Feedback

• Lemma: A noninterference-secure system

can feed a high level output o to a high level

input i if the arrival of o at the input of the next

component is delayed until after the next low

level input or output

• Theorem: A system with feedback as

described in the above lemma and composed

of noninterference-secure systems is itself

noninterference-secure


