Policies Changing Over Time

- Problem: previous analysis assumes static system
 - In real life, ACM changes as system commands issued
- Example: $w \in C^*$ leads to current state
 - $cando(w, s, z)$ holds if s can execute z in current state
 - Condition noninterference on $cando$
 - If $\neg cando(w, Lara, \text{“write f”})$, Lara can’t interfere with any other user by writing file f
Generalize Noninterference

• $G \subseteq S$ group of subjects, $A \subseteq Z$ set of commands, p predicate over elements of C^*
• $c_s = (c_1, \ldots, c_n) \in C^*$
• $\pi''(\nu) = \nu$
• $\pi''((c_1, \ldots, c_n)) = (c_1', \ldots, c_n')$
 – $c_i' = \nu$ if $p(c_1', \ldots, c_{i-1}')$ and $c_i = (s, z)$ with $s \in G$ and $z \in A$
 – $c_i' = c_i$ otherwise

Intuition

• $\pi''(c_s) = c_s$
• But if p holds, and element of c_s involves both command in A and subject in G, replace corresponding element of c_s with empty command ν
 – Just like deleting entries from c_s as $\pi_{A,G}$ does earlier
Noninterference

- $G, G' \subseteq S$ groups of subjects, $A \subseteq Z$ set of commands, p predicate over C^*
- Users in G executing commands in A are noninterfering with users in G' under condition p iff, for all $c_s \in C^*$, all $s \in G'$, $\text{proj}(s, c_s, \sigma_i) = \text{proj}(s, p''(c_s), \sigma_i)$
 - Written $A,G :| G' \text{ if } p$

Example

- From earlier one, simple security policy based on noninterference:
 \[\forall (s \in S) \forall (z \in Z) \]
 \[
 [\{z\}, \{s\} :| S \text{ if } \neg \text{cando}(w, s, z)]
 \]
- If subject can’t execute command (the $\neg \text{cando}$ part), subject can’t use that command to interfere with another subject
Another Example

• Consider system in which rights can be passed
 – pass(s, z) gives s right to execute z
 – \(w_n = v_1, \ldots, v_n \) sequence of \(v_i \in C^* \)
 – prev\((w_n) = w_{n-1} \); last\((wn) = v_n \)

Policy

• No subject \(s \) can use \(z \) to interfere if, in previous state, \(s \) did not have right to \(z \), and no subject gave it to \(s \)

\[
\{ z \}, \{ s \} :: S \text{ if} \\
[\neg \text{cando}(\text{prev}(w), s, z) \land \\
[\text{cando}(\text{prev}(w), s', \text{pass}(s, z)) \Rightarrow \\
\neg \text{last}(w) = (s', \text{pass}(s, z))]]
\]
Effect

- Suppose \(s_1 \in S \) can execute \(\text{pass}(s_2, z) \)
- For all \(w \in C^* \), \(\text{cando}(w, s_1, \text{pass}(s_2, z)) \) true
- Initially, \(\text{cando}(v, s_2, z) \) false
- Let \(z' \in Z \) be such that \((s_3, z')\) noninterfering with \((s_2, z)\)
 - So for each \(w_n \) with \(v_n = (s_3, z') \),
 \[\text{cando}(w_n, s_2, z) = \text{cando}(w_{n-1}, s_2, z) \]

Effect

- Then policy says for all \(s \in S \)
 \[\text{proj}(s, ((s_2, z), (s_1, \text{pass}(s_2, z))), (s_3, z'), (s_2, z)), \sigma_i) = \]
 \[\text{proj}(s, ((s_1, \text{pass}(s_2, z)), (s_3, z'), (s_2, z)), \sigma_i) \]
- So \(s_2 \)'s first execution of \(z \) does not affect any subject's observation of system
Policy Composition I

• Assumed: Output function of input
 – Means deterministic (else not function)
 – Means uninterruptibility (differences in timings can cause differences in states, hence in outputs)
• This result for deterministic, noninterference-secure systems

Compose Systems

• Louie, Dewey LOW
• Hughie HIGH
• \(b_L \) output buffer
 – Anyone can read it
• \(b_H \) input buffer
 – From HIGH source
• Hughie reads from:
 – \(b_{LH} \) (Louie writes)
 – \(b_{LDH} \) (Louie, Dewey write)
 – \(b_{DH} \) (Dewey writes)
Systems Secure

• All noninterference-secure
 – Hughie has no output
 • So inputs don’t interfere with it
 – Louie, Dewey have no input
 • So (nonexistent) inputs don’t interfere with outputs

Security of Composition

• Buffers finite, sends/receives blocking: composition not secure!
 – Example: assume b_{DH}, b_{LH} have capacity 1
• Algorithm:
 1. Louie (Dewey) sends message to b_{LH} (b_{DH})
 – Fills buffer
 2. Louie (Dewey) sends second message to b_{LH} (b_{DH})
 3. Louie (Dewey) sends a 0 (1) to b_L
 4. Louie (Dewey) sends message to b_{LDH}
 – Signals Hughie that Louie (Dewey) completed a cycle
Hughie

- Reads bit from b_H
 - If 0, receive message from b_{LH}
 - If 1, receive message from b_{DH}
- Receive on b_{LDH}
 - To wait for buffer to be filled

Example

- Hughie reads 0 from b_H
 - Reads message from b_{LH}
- Now Louie’s second message goes into b_{LH}
 - Louie completes step 2 and writes 0 into b_L
- Dewey blocked at step 1
 - Dewey cannot write to b_L
- Symmetric argument shows that Hughie reading 1 produces a 1 in b_L
- So, input from b_H copied to output b_L
Non-deducibility

• Noninterference: do state transitions caused by high level commands interfere with sequences of state transitions caused by low level commands?
• Really case about inputs and outputs:
 – Can low level subject deduce anything about high level outputs from a set of low level outputs?

Example: 2-Bit System

• High operations change only High bit
 – Similar for Low
• $s_0 = (0, 0)$
• Commands (Heidi, xor1), (Lara, xor0), (Lara, xor1), (Lara, xor0), (Heidi, xor1), (Lara, xor0)
 – Both bits output after each command
• Output is: 00101011110101
Security

• Not noninterference-secure w.r.t. Lara
 – Lara sees output as 0001111
 – Delete High and she sees 00111
• But Lara still cannot deduce the commands deleted
 – Don’t affect values; only lengths
• So it is deducibly secure
 – Lara can’t deduce the commands Heidi gave

Event System

• 4-tuple \((E, I, O, T)\)
 – \(E\) set of events
 – \(I \subseteq E\) set of input events
 – \(O \subseteq E\) set of output events
 – \(T\) set of all finite sequences of events legal within system
• \(E\) partitioned into \(H, L\)
 – \(H\) set of High events
 – \(L\) set of Low events
More Events …

- $H \cap I$ set of High inputs
- $H \cap O$ set of High outputs
- $L \cap I$ set of Low inputs
- $L \cap O$ set of Low outputs
- T_{Low} set of all possible sequences of Low events that are legal within system
- $\pi_L : T \rightarrow T_{Low}$ projection function deleting all High inputs from trace
 - Low observer should not be able to deduce anything about High inputs from trace $t_{Low} \in T_{Low}$

Deducibly Secure

- System deducibly secure if, for every trace $t_{Low} \in T_{Low}$, the corresponding set of high level traces contains every possible trace $t \in T$ for which $\pi_L(t) = t_{Low}$
 - Given any t_{Low}, the trace $t \in T$ producing that t_{Low} is equally likely to be any trace with $\pi_L(t) = t_{Low}$
Example

• Back to our 2-bit machine
 – Let xor0, xor1 apply to both bits
 – Both bits output after each command
• Initial state: (0, 1)
• Inputs: $1_H0_L1_L0_H1_L0_L$
• Outputs: 10 10 01 01 10 10
• Lara (at Low) sees: 001100
 – Does not know initial state, so does not know first input; but can deduce fourth input is 0
• Not deducibly secure

Example

• Now xor0, xor1 apply only to state bit with same level as user
• Inputs: $1_H0_L1_L0_H1_L0_L$
• Outputs: 1011111011
• Lara sees: 01101
• She cannot deduce anything about input
 – Could be $0_H0_L1_L0_H1_L0_L$ or $0_L1_H1_L0_H1_L0_L$ for example
• Deducibly secure
Security of Composition

- In general: deducibly secure systems not composable
- *Strong noninterference*: deducible security + requirement that no *High* output occurs unless caused by a *High* input
 - Systems meeting this property *are* composable

Example

- 2-bit machine done earlier does not exhibit strong noninterference
 - Because it puts out *High* bit even when there is no *High* input
- Modify machine to output only state bit at level of latest input
 - *Now* it exhibits strong noninterference
Problem

• Too restrictive; it bans some systems that are *obviously* secure

• Example: System *upgrade* reads *Low* inputs, outputs those bits at *High*
 – Clearly deducibly secure: low level user sees no outputs
 – Clearly does not exhibit strong noninterference, as no high level inputs!

Remove Determinism

• Previous assumption
 – Input, output synchronous
 – Output depends only on commands triggered by input
 • Sometimes absorbed into commands …
 – Input processed one datum at a time

• Not realistic
 – In real systems, lots of asynchronous events
Generalized Noninterference

- Nondeterministic systems meeting noninterference property meet *generalized noninterference-secure property*
 - More robust than nondeducible security because minor changes in assumptions affect whether system is nondeducibly secure

Example

- System with *High* Holly, *Low* lucy, text file at *High*
 - File fixed size, symbol 'b' marks empty space
 - Holly can edit file, Lucy can run this program:

```plaintext
while true do begin
    n := read_integer_from_user;
    if n > file_length or char_in_file[n] = b then
        print random_character;
    else
        print char_in_file[n];
end;
```
Security of System

- Not noninterference-secure
 - High level inputs—Holly’s changes—affect low level outputs
- *May* be deducibly secure
 - Can Lucy deduce contents of file from program?
 - If output meaningful (“This is right”) or close (“This is right”), yes
 - Otherwise, no
- So deducibly secure depends on which inferences are allowed

Composition of Systems

- Does composing systems meeting generalized noninterference-secure property give you a system that also meets this property?
- Define two systems (*cat, dog*)
- Compose them
First System: cat

• Inputs, outputs can go left or right
• After some number of inputs, cat sends two outputs
 – First stop_count
 – Second parity of High inputs, outputs

Noninterference-Secure?

• If even number of High inputs, output could be:
 – 0 (even number of outputs)
 – 1 (odd number of outputs)
• If odd number of High inputs, output could be:
 – 0 (odd number of outputs)
 – 1 (even number of outputs)
• High level inputs do not affect output
 – So noninterference-secure
Second System: *dog*

- High outputs to left
- Low outputs of 0 or 1 to right
- `stop_count` input from the left
 - When it arrives, *dog* emits 0 or 1

Noninterference-Secure?

- When `stop_count` arrives:
 - May or may not be inputs for which there are no corresponding outputs
 - Parity of *High* inputs, outputs can be odd or even
 - Hence *dog* emits 0 or 1
- High level inputs do not affect low level outputs
 - So noninterference-secure
Compose Them

• Once sent, message arrives
 – But stop_count may arrive before all inputs have generated corresponding outputs
 – If so, even number of High inputs and outputs on cat, but odd number on dog

• Four cases arise

The Cases

• cat, odd number of inputs, outputs; dog, even number of inputs, odd number of outputs
 – Input message from cat not arrived at dog, contradicting assumption

• cat, even number of inputs, outputs; dog, odd number of inputs, even number of outputs
 – Input message from dog not arrived at cat, contradicting assumption
The Cases

- cat, odd number of inputs, outputs; dog, odd number of inputs, even number of outputs
 - dog sent even number of outputs to cat, so cat has had at least one input from left
- cat, even number of inputs, outputs; dog, even number of inputs, odd number of outputs
 - dog sent odd number of outputs to cat, so cat has had at least one input from left

The Conclusion

- Composite system catdog emits 0 to left, 1 to right (or 1 to left, 0 to right)
 - Must have received at least one input from left
- Composite system catdog emits 0 to left, 0 to right (or 1 to left, 1 to right)
 - Could not have received any from left
- So, High inputs affect Low outputs
 - Not noninterference-secure
Feedback-Free Systems

- System has n distinct components
- Components c_i, c_j connected if any output of c_i is input to c_j
- System is *feedback-free* if for all c_i connected to c_j, c_j not connected to any c_i
 - Intuition: once information flows from one component to another, no information flows back from the second to the first

Feedback-Free Security

- *Theorem*: A feedback-free system composed of noninterference-secure systems is itself noninterference-secure
Some Feedback

• *Lemma:* A noninterference-secure system can feed a high level output o to a high level input i if the arrival of o at the input of the next component is delayed until *after* the next low level input or output.

• *Theorem:* A system with feedback as described in the above lemma and composed of noninterference-secure systems is itself noninterference-secure.