Why Didn’t They Work?

• For compositions to work, machine must act same way regardless of what precedes low level input (high, low, nothing)

• *dog* does not meet this criterion
 – If first input is *stop_count*, *dog* emits 0
 – If high level input precedes *stop_count*, *dog* emits 0 or 1
State Machine Model

- 2-bit machine, levels *High*, *Low*, meeting 4 properties:
 1. For every input i_k, state σ_j, there is an element $c_m \in C^*$ such that $T^*(c_m, \sigma_j) = \sigma_n$, where $\sigma_n \neq \sigma_j$
 - T^* is total function, inputs and commands always move system to a different state

Property 2

- There is an equivalence relation \equiv such that:
 - If system in state σ_j and high level sequence of inputs causes transition from σ_i to σ_j, then $\sigma_i \equiv \sigma_j$
 - If $\sigma_i \equiv \sigma_j$ and low level sequence of inputs i_1, \ldots, i_n causes system in state σ_i to transition to σ_j', then there is a state σ_j' such that $\sigma_i' \equiv \sigma_j'$ and the inputs i_1, \ldots, i_n cause system in state σ_j to transition to σ_j'
- \equiv holds if low level projections of both states are same
Property 3

• Let $\sigma_i \equiv \sigma_j$. If high level sequence of outputs $\sigma_1, \ldots, \sigma_n$ indicate system in state σ_i transitioned to state σ_i', then for some state σ_j' with $\sigma_j' \equiv \sigma_i'$, high level sequence of outputs $\sigma_1', \ldots, \sigma_m'$ indicates system in σ_j transitioned to σ_j'
 – High level outputs do not indicate changes in low level projection of states

Property 4

• Let $\sigma_i \equiv \sigma_j$, let c, d be high level output sequences, e a low level output. If ced indicates system in state σ_i transitions to σ_i', then there are high level output sequences c' and d' and state σ_j' such that $c'ed'$ indicates system in state σ_j transitions to state σ_j'
 – Intermingled low level, high level outputs cause changes in low level state reflecting low level outputs only
Restrictiveness

- System is *restrictive* if it meets the preceding 4 properties

Composition

- Intuition: by 3 and 4, high level output followed by low level output has same effect as low level input, so composition of restrictive systems should be restrictive
Composite System

- System M_1’s outputs are M_2’s inputs
- μ_{1i}, μ_{2i} states of M_1, M_2
- States of composite system pairs of M_1, M_2 states (μ_{1i}, μ_{2i})
- e event causing transition
- e causes transition from state (μ_{1a}, μ_{2a}) to state (μ_{1b}, μ_{2b}) if any of 3 conditions hold

Conditions

1. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; e not an event for M_2; and $\mu_{2a} = \mu_{2b}$
2. M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e not an event for M_1; and $\mu_{1a} = \mu_{1b}$
3. M_1 in state μ_{1a} and e occurs, M_1 transitions to μ_{1b}; M_2 in state μ_{2a} and e occurs, M_2 transitions to μ_{2b}; e is input to one machine, and output from other
Intuition

- Event causing transition in composite system causes transition in at least 1 of the components
- If transition occurs in exactly one component, event must not cause transition in other component when not connected to the composite system

Equivalence for Composite

- Equivalence relation for composite system
 \((\sigma_a, \sigma_b) \equiv_c (\sigma_c, \sigma_d) \iff \sigma_a \equiv \sigma_c \text{ and } \sigma_b \equiv \sigma_d\)
- Corresponds to equivalence relation in property 2 for component system
Composition Theorem

• System resulting from composition of two restrictive systems is itself restrictive

Information Flow

• How does information flow around a system?
Detour: Entropy

- Random variables
- Joint probability
- Conditional probability
- Entropy (or uncertainty in bits)
- Joint entropy
- Conditional entropy
- Applying it to secrecy of ciphers

Random Variable

- Variable that represents outcome of an event
 - X represents value from roll of a fair die; probability for rolling n: $p(X = n) = 1/6$
 - If die is loaded so 2 appears twice as often as other numbers, $p(X = 2) = 2/7$ and, for $n \neq 2$, $p(X = n) = 1/7$
- Note: $p(X)$ means specific value for X doesn’t matter
 - Example: all values of X are equiprobable
Joint Probability

• Joint probability of X and Y, $p(X, Y)$, is probability that X and Y simultaneously assume particular values
 – If X, Y independent, $p(X, Y) = p(X)p(Y)$
• Roll die, toss coin
 – $p(X = 3, Y = \text{heads}) = p(X = 3)p(Y = \text{heads})$
 = $\frac{1}{6} \times \frac{1}{2} = \frac{1}{12}$

Two Dependent Events

• $X =$ roll of red die, $Y =$ sum of red, blue die rolls
 $p(Y=2) = \frac{1}{36}$ $p(Y=3) = \frac{2}{36}$ $p(Y=4) = \frac{3}{36}$ $p(Y=5) = \frac{4}{36}$
 $p(Y=6) = \frac{5}{36}$ $p(Y=7) = \frac{6}{36}$ $p(Y=8) = \frac{5}{36}$ $p(Y=9) = \frac{4}{36}$
 $p(Y=10) = \frac{3}{36}$ $p(Y=11) = \frac{2}{36}$ $p(Y=12) = \frac{1}{36}$
• Formula if events independent:
 $p(X=1, Y=11) = p(X=1)p(Y=11) = \left(\frac{1}{6}\right)\left(\frac{2}{36}\right) = \frac{1}{108}$
• But in reality, $Y = 11$ is possible only when $X = 5$ and blue die is 6, so:
 $p(X=1, Y=11) = 0$
Conditional Probability

• Conditional probability of X given Y, $p(X|Y)$, is probability that X takes on a particular value given Y has a particular value.

• Continuing example ...
 - $p(Y=7|X=1) = 1/6$
 - $p(Y=7|X=3) = 1/6$

Relationship

• $p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)$

• Example:
 - $p(X=3, Y=8) = p(X=3|Y=8) p(Y=8) = (1/5)(5/36) = 1/36$

• Note: if X, Y independent:
 - $p(X|Y) = p(X)$
Entropy

- Uncertainty of a value, as measured in bits
- Example: X value of fair coin toss; X could be heads or tails, so 1 bit of uncertainty
 - Therefore entropy of X is $H(X) = 1$
- Formal definition: random variable X, values x_1, \ldots, x_n; so $\sum_i p(X = x_i) = 1$
 $$H(X) = -\sum_i p(X = x_i) \log p(X = x_i)$$

Heads or Tails?

- $H(X) = -p(X=\text{heads}) \log p(X=\text{heads})$
 - $p(X=\text{tails}) \log p(X=\text{tails})$
 $$= - (1/2) \log (1/2) - (1/2) \log (1/2)$$
 $$= - (1/2) (-1) - (1/2) (-1) = 1$$
- Confirms previous intuitive result
n-Sided Fair Die

\[H(X) = - \sum_i p(X = x_i) \log p(X = x_i) \]

As \(p(X = x_i) = 1/n \), this becomes

\[H(X) = - \sum_i (1/n) \log (1/n) = -n(1/n) (-\log n) \]

so

\[H(X) = \log n \]

which is the number of bits in \(n \), as expected.

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul

\(W \) represents the winner. What is its entropy?

- \(w_1 = Ann, w_2 = Pam, w_3 = Paul \)
- \(p(W = w_1) = p(W = w_2) = 2/5, p(W = w_3) = 1/5 \)

- So \(H(W) = - \sum_i p(W = w_i) \log p(W = w_i) \)

 \[= -(2/5) \log (2/5) - (2/5) \log (2/5) - (1/5) \log (1/5) \]

 \[= \log 5 - (4/5) \log 2 = \log 5 - (4/5) \approx 1.52 \]

- If all equally likely to win, \(H(W) = \log 3 = 1.58 \)
Joint Entropy

• X takes values from $\{ x_1, \ldots, x_n \}$
 $- \sum_i p(X=x_i) = 1$

• Y takes values from $\{ y_1, \ldots, y_m \}$
 $- \sum_i p(Y=y_i) = 1$

• Joint entropy of X, Y is:
 $- H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$

Example

X: roll of fair die, Y: flip of coin

• $p(X=1, Y=\text{heads}) = p(X=1)p(Y=\text{heads}) = 1/12$
 $- \text{As } X \text{ and } Y \text{ are independent}$

• $H(X, Y) = -\sum_j \sum_i p(X=x_i, Y=y_j) \lg p(X=x_i, Y=y_j)$
 $= -2 \left[6 \left[(1/12) \lg (1/12) \right] \right] = \lg 12$
Conditional Entropy

- X takes values from $\{x_1, \ldots, x_n\}$
 - $\Sigma_i p(X=x_i) = 1$
- Y takes values from $\{y_1, \ldots, y_m\}$
 - $\Sigma_i p(Y=y_i) = 1$
- Conditional entropy of X given $Y=y_j$ is:
 - $H(X \mid Y=y_j) = -\Sigma_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$
- Conditional entropy of X given Y is:
 - $H(X \mid Y) = -\Sigma_j p(Y=y_j) \Sigma_i p(X=x_i \mid Y=y_j) \log p(X=x_i \mid Y=y_j)$

Example

- Roll of red die, Y sum of red, blue roll
- Note $p(X=1 \mid Y=2) = 1$, $p(X=i \mid Y=2) = 0$ for $i \neq 1$
 - If the sum of the rolls is 2, both dice were 1
- $H(X \mid Y=2) = -\Sigma_i p(X=x_i \mid Y=2) \log p(X=x_i \mid Y=2) = 0$
- Note $p(X=i, Y=7) = 1/6$
 - If the sum of the rolls is 7, the red die can be any of 1, ..., 6 and the blue die must be 7—roll of red die
- $H(X \mid Y=7) = -\Sigma_i p(X=x_i \mid Y=7) \log p(X=x_i \mid Y=7)$
 - $= -6 \left(\frac{1}{6} \right) \log \left(\frac{1}{6} \right) = \log 6$
Perfect Secrecy

- Cryptography: knowing the ciphertext does not decrease the uncertainty of the plaintext
- $M = \{m_1, \ldots, m_n\}$ set of messages
- $C = \{c_1, \ldots, c_n\}$ set of ciphers
- Cipher $c_i = E(m_i)$ achieves perfect secrecy if $H(M \mid C) = H(M)$

Basics

- Bell-LaPadula Model embodies information flow policy
 - Given compartments A, B, info can flow from A to B iff $B \text{ dom } A$
- Variables x, y assigned compartments x, y as well as values
 - If $x = A$ and $y = B$, and $A \text{ dom } B$, then $y := x$ allowed but not $x := y$
Entropy and Information Flow

• Idea: info flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c

• Formally:
 – s time before execution of c, t time after
 – \(H(x_s | y_t) < H(x_s | y_s) \)
 – If no y at time s, then \(H(x_s | y_t) < H(x_s) \)

Example 1

• Command is \(x := y + z \); where:
 – \(0 \leq y \leq 7 \), equal probability
 – \(z = 1 \) with prob. 1/2, \(z = 2 \) or \(z = 3 \) with prob. 1/4 each

• s state before command executed; t, after; so
 – \(H(y_s) = H(y_t) = -8(1/8) \log_2 (1/8) = 3 \)
 – \(H(z_s) = H(z_t) = -(1/2) \log_2 (1/2) -2(1/4) \log_2 (1/4) = 1.5 \)

• If you know \(x_t \), \(y_s \) can have at most 3 values, so \(H(y_s | x_t) = -3(1/3) \log_2 (1/3) = \log_3 3 \)
Example 2

- Command is
 - if \(x = 1 \) then \(y := 0 \) else \(y := 1 \);

where:
 - \(x, y \) equally likely to be either 0 or 1
- \(H(x_s) = 1 \) as \(x \) can be either 0 or 1 with equal probability
- \(H(x_s \mid y_t) = 0 \) as if \(y_t = 1 \) then \(x_s = 0 \) and vice versa
 - Thus, \(H(x_s \mid y_t) = 0 < 1 = H(x_s) \)
- So information flowed from \(x \) to \(y \)

Implicit Flow of Information

- Information flows from \(x \) to \(y \) without an explicit assignment of the form \(y := f(x) \)
 - \(f(x) \) an arithmetic expression with variable \(x \)
- Example from previous slide:
 - if \(x = 1 \) then \(y := 0 \)
 else \(y := 1 \);
- So must look for implicit flows of information to analyze program
Notation

• \(x \) means class of \(x \)
 – In Bell-LaPadula based system, same as “label of security compartment to which \(x \) belongs”
• \(x \leq y \) means “information can flow from an element in class of \(x \) to an element in class of \(y \)
 – Or, “information with a label placing it in class \(x \) can flow into class \(y \)”

Information Flow Policies

Information flow policies are usually:

• reflexive
 – So information can flow freely among members of a single class

• transitive
 – So if information can flow from class 1 to class 2, and from class 2 to class 3, then information can flow from class 1 to class 3
Non-Transitive Policies

- Betty is a confidant of Anne
- Cathy is a confidant of Betty
 - With transitivity, information flows from Anne to Betty to Cathy
- Anne confides to Betty she is having an affair with Cathy’s spouse
 - Transitivity undesirable in this case, probably

Non-Lattice Transitive Policies

- 2 faculty members co-PIs on a grant
 - Equal authority; neither can overrule the other
- Grad students report to faculty members
- Undergrads report to grad students
- Information flow relation is:
 - Reflexive and transitive
- But some elements (people) have no “least upper bound” element
 - What is it for the faculty members?
Confidentiality Policy Model

- Lattice model fails in previous 2 cases
- Generalize: policy \(I = (SC_I, \leq_I, \text{join}_I) \):
 - \(SC_I \) set of security classes
 - \(\leq_I \) ordering relation on elements of \(SC_I \)
 - \(\text{join}_I \) function to combine two elements of \(SC_I \)
- Example: Bell-LaPadula Model
 - \(SC_I \) set of security compartments
 - \(\leq_I \) ordering relation \(\text{dom} \)
 - \(\text{join}_I \) function \(\text{lub} \)