
 ECS 289M Lecture 23

May 24, 2006

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 2

Measuring Capacity

• Intuitively, difference between

unmodulated, modulated channel

– Normal uncertainty in channel is 8 bits

– Attacker modulates channel to send

information, reducing uncertainty to 5 bits

– Covert channel capacity is 3 bits

• Modulation in effect fixes those bits

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 3

Formally

• Inputs:

– A input from Alice (sender)

– V input from everyone else

– X output of channel

• Capacity measures uncertainty in X given A

• In other terms: maximize

I(A; X) = H(X) – H(X | A)

with respect to A

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 4

Example (continued)

• If A, V independent, p=p(A=0), q=p(V=0):
– p(A=0,V=0) = pq

– p(A=1,V=0) = (1–p)q

– p(A=0,V=1) = p(1–q)

– p(A=1,V=1) = (1–p)(1–q)

• So
– p(X=0) = p(A=0,V=0)+p(A=1,V=1)

= pq + (1–p)(1–q)

– p(X=1) = p(A=0,V=1)+p(A=1,V=0)

= (1–p)q + p(1–q)

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 5

More Example

• Also:

– p(X=0|A=0) = q

– p(X=0|A=1) = 1–q

– p(X=1|A=0) = 1–q

– p(X=1|A=1) = q

• So you can compute:

– H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]

– H(X|A) = –q lg q – (1–q) lg (1–q)

– I(A;X) = H(X)–H(X|A)

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 6

I(A;X)

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –

[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +

q lg q + (1 – q) lg (1 – q)

• Maximum when p = 0.5; then
I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)

• So, if V constant, q = 0, and I(A;X) = 1

• Also, if q = p = 0.5, I(A;X) = 0

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 7

Analyzing Capacity

• Assume a noisy channel

• Examine covert channel in MLS

database that uses replication to ensure

availability

– 2-phase commit protocol ensures atomicity

– Coordinator process manages global

execution

– Participant processes do everything else

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 8

How It Works

• Coordinator sends message to each
participant asking whether to abort or commit
transaction
– If any says “abort”, coordinator stops

• Coordinator gathers replies
– If all say “commit”, sends commit messages back

to participants

– If any says “abort”, sends abort messages back to
participants

– Each participant that sent commit waits for reply;
on receipt, acts accordingly

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 9

Exceptions

• Protocol times out, causing party to act

as if transaction aborted, when:

– Coordinator doesn’t receive reply from

participant

– Participant who sends a commit doesn’t

receive reply from coordinator

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 10

Covert Channel Here

• Two types of components

– One at Low security level, other at High

• Low component begins 2-phase commit

– Both High, Low components must cooperate in the

2-phase commit protocol

• High sends information to Low by selectively

aborting transactions

– Can send abort messages

– Can just not do anything

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 11

Note

• If transaction always succeeded except

when High component sending

information, channel not noisy

– Capacity would be 1 bit per trial

– But channel noisy as transactions may

abort for reasons other than the sending of

information

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 12

Analysis

• X random variable: what High user wants to
send
– Assume abort is 1, commit is 0

– p = p(X=0) probability High sends 0

• A random variable: what Low receives
– For noiseless channel X = A

• n+2 users
– Sender, receiver, n others

– q probability of transaction aborting at any of these
n users

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 13

Basic Probabilities

• Probabilities of receiving given sending

– p(A=0|X=0) = (1–q)n

– p(A=1|X=0) = 1–(1–q)n

– p(A=0|X=1) = 0

– p(A=1|X=1) = 1

• So probabilities of receiving values:

– p(A=0) = p(1–q)n

– p(A=1) = 1–p(1–q)n

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 14

More Probabilities

• Given sending, what is receiving?

– p(X=0|A=0) = 1

– p(X=1|A=0) = 0

– p(X=0|A=1) = p[1–(1–q)n] / [1–p(1–q)n]

– p(X=1|A=1) = (1–p) / [1–p(1–q)n]

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 15

Entropies

• H(X) = –p lg p – (1–p) lg (1–p)

• H(X|A) = –p[1–(1–q)n] lg p

– p[1–(1–q)n] lg [1–(1–q)n]

+ [1–p(1–q)n] lg [1–p(1–q)n]

– (1–p) lg (1–p)

• I(A;X) = –p(1–q)n lg p

+ p[1–(1–q)n] lg [1–(1–q)n]

– [1–p(1–q)n] lg [1–p(1–q)n]

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 16

Capacity

• Maximize this with respect to p

(probability that High sends 0)

– Notation: m = (1–q)n, M = (1–m)(1–m)

– Maximum when p = M / (Mm+1)

• Capacity is:
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)

(Mm+1)

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 17

Mitigation of Covert Channels

• Problem: these work by varying use of shared
resources

• One solution
– Require processes to say what resources they

need before running

– Provide access to them in a way that no other
process can access them

• Cumbersome
– Includes running (CPU covert channel)

– Resources stay allocated for lifetime of process

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 18

Alternate Approach

• Obscure amount of resources being

used

– Receiver cannot distinguish between what

the sender is using and what is added

• How? Two ways:

– Devote uniform resources to each process

– Inject randomness into allocation, use of

resources

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 19

Uniformity

• Variation of isolation

– Process can’t tell if second process using
resource

• Example: KVM/370 covert channel via
CPU usage

– Give each VM a time slice of fixed duration

– Do not allow VM to surrender its CPU time
• Can no longer send 0 or 1 by modulating CPU

usage

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 20

Randomness

• Make noise dominate channel
– Does not close it, but makes it useless

• Example: MLS database
– Probability of transaction being aborted by user

other than sender, receiver approaches 1
• q ! 1

– I(A; X) ! 0

– How to do this: resolve conflicts by aborting
increases q, or have participants abort
transactions randomly

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 21

Problem: Loss of Efficiency

• Fixed allocation, constraining use

– Wastes resources

• Increasing probability of aborts

– Some transactions that will normally

commit now fail, requiring more retries

• Policy: is the inefficiency preferable to

the covert channel?

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 22

Example

• Goal: limit covert timing channels on
VAX/VMM

• “Fuzzy time” reduces accuracy of system
clocks by generating random clock ticks
– Random interrupts take any desired distribution

– System clock updates only after each timer
interrupt

– Kernel rounds time to nearest 0.1 sec before
giving it to VM

• Means it cannot be more accurate than timing of
interrupts

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example

• I/O operations have random delays

• Kernel distinguishes 2 kinds of time:
– Event time (when I/O event occurs)

– Notification time (when VM told I/O event
occurred)

• Random delay between these prevents VM from figuring
out when event actually occurred)

• Delay can be randomly distributed as desired (in security
kernel, it’s 1–19ms)

– Added enough noise to make covert timing
channels hard to exploit

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 24

Improvement

• Modify scheduler to run processes in

increasing order of security level

– Now we’re worried about “reads up”, so …

• Countermeasures needed only when

transition from dominating VM to

dominated VM

– Add random intervals between quanta for

these transitions

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 25

The Pump

• Tool for controlling communications path

between High and Low

communications buffer

Low process High process

High
buffer

Low
buffer

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 26

Details

• Communications buffer of length n
– Means it can hold up to n messages

• Messages numbered

• Pump ACKs each message as it is moved
from High (Low) buffer to communications
buffer

• If pump crashes, communications buffer
preserves messages
– Processes using pump can recover from crash

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 27

Covert Channel

• Low fills communications buffer
– Send messages to pump until no ACK

– If High wants to send 1, it accepts 1 message from
pump; if High wants to send 0, it does not

– If Low gets ACK, message moved from Low buffer
to communications buffer " High sent 1

– If Low doesn’t get ACK, no message moved "
High sent 0

• Meaning: if High can control rate at which
pump passes messages to it, a covert timing
channel

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 28

Performance vs. Capacity

• Assume Low process, pump can
process messages more quickly than
High process

• Li random variable: time from Low
sending message to pump to Low
receiving ACK

• Hi random variable: average time for
High to ACK each of last n messages

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 29

Case1: E(Li) > Hi

• High can process messages more quickly
than Low can get ACKs

• Contradicts above assumption
– Pump must be delaying ACKs

– Low waits for ACK whether or not communications
buffer is full

• Covert channel closed

• Not optimal
– Process may wait to send message even when

there is room

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 30

Case 2: E(Li) < Hi

• Low sending messages faster than High

can remove them

• Covert channel open

• Optimal performance

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 31

Case 3: E(Li) = Hi

• Pump, processes handle messages at

same rate

• Covert channel open

– Bandwidth decreased from optimal case

(can’t send messages over covert channel

as fast)

• Performance not optimal

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 32

Adding Noise

• Shown: adding noise to approximate case 3

– Covert channel capacity reduced to 1/nr where r

time from Low sending message to pump to Low

receiving ACK when communications buffer not

full

– Conclusion: use of pump substantially reduces

capacity of covert channel between High, Low

processes when compared to direct connection

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 33

Trojan Horse

• Program with an overt purpose (known
to user) and a covert purpose (unknown
to user)

– Often called a Trojan

– Named by Dan Edwards in Anderson
Report

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 34

Example

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy

chmod u+s,o+x /tmp/.xyzzy

rm ./ls

ls $*

• Place in program called “ls” and trick

someone into executing it

• You now have a setuid-to-them shell!

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 35

Example: NetBus

• Designed for Windows NT system

• Victim uploads and installs this
– Usually disguised as a game program, or in one

• Acts as a server, accepting and executing
commands for remote administrator
– This includes intercepting keystrokes and mouse

motions and sending them to attacker

– Also allows attacker to upload, download files

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 36

Replicating Trojan Horse

• Trojan horse that makes copies of itself

– Also called propagating Trojan horse

– Early version of animal game used this to delete copies of

itself

• Hard to detect

– 1976: Karger and Schell suggested modifying compiler to

include Trojan horse that copied itself into specific programs

including later version of the compiler

– 1980s: Thompson implements this

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 37

Thompson's Compiler

• Modify the compiler so that when it compiles login ,
login accepts the user's correct password or a fixed
password (the same one for all users)

• Then modify the compiler again, so when it compiles
a new version of the compiler, the extra code to do
the first step is automatically inserted

• Recompile the compiler

• Delete the source containing the modification and put
the undoctored source back

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 38

login source correct compiler login executable

user password

login source doctored compiler login executable

magic password

user password or

logged in

logged in

The Login Program

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 39

compiler source correct compiler compiler executable

login source

compiler source doctored compiler compiler executable

correct login executable

login source

rigged login executable

The Compiler

May 24, 2006 ECS 289M, Foundations of Computer

and Information Security

Slide 40

Comments

• Great pains taken to ensure second version of

compiler never released

– Finally deleted when a new compiler executable from a

different system overwrote the doctored compiler

• The point: no amount of source-level verification or

scrutiny will protect you from using untrusted code

– Also: having source code helps, but does not ensure you’re

safe

