
MEG Literature Review

Anonymous

1 Introduction

Few people realize today that the vast majority of emails transmitted today are 
sent completely unencrypted. This allows anyone who has access to the routers 
these communications are being sent over to read and even modify the contents 
of these communications. Encryption is a technology that is used liberally on the 
internet today. HTTPS ensures that bank communications are kept secure. SSH 
supplanted telnet because other actors cannot view and modify what actions that 
administrators perform on remote machines. So why is email an outlier? The 
problem does not lie in the infeasibility of encrypting email but rather the 
practicality of it. Existing email encryption schemes are clunky and can only be 
performed by committed users. This leaves the vast majority of non-technical 
and less security conscious users completely naked to their emails being spied. 
The Mobile Encryption Gateway (MEG) aims to solve this. MEG aims to take 
the difficulty of encrypting email and perform it all in the background while 
allowing the user to have as much ease as possible in performing secure 
communications. This is combined with an aspect of security and data privacy 
that MEG provides where all communications remain encrypted on a users 
mobile device. As a result of this security and ease of use MEG offers ordinary 
people their best chance going forward to have a reasonable encryption solution 
for their emails.

2 Existing Encryption Schemes

2.1 For starters: PEM

Privacy Enhanced Mail (PEM) was the first encryption scheme to be released for 
email. PEM worked whereby users could publish their public keys and then these 
keys could be signed by the private key of a certifying authority. In PEM 
Certificate Authorities (CAs) worked by creating a hierarchical system of trust 
eventually terminating in a single trusted root authority, the Internet

1



Policy Registration Authority (IPRA) [11,15]. However PEM was never widely
implemented when the security concerns and potential liabilities of a single root
authority became evident [2, 17]. As a result of this S/MIME was created to
address the deficiencies of PEM.

2.2 S/MIME to the rescue?

After the abandonment of PEM S/MIME became the de-facto email encryp-
tion standard. The main difference between S/MIME and PEM is S/MIME
drops the necessity for a single root authority and acknowledges the existence
of multiple independent CAs [11]. It is for this reason that S/MIME has been
able to integrate itself into the web given that the major CAs today are well ac-
cepted. The problem with S/MIME is the issue of certificate creation. Creation
of X.509 certificates is a centralized process imposed by the CAs [12]. The CAs
charge expense for their services, anathema to many users used to the many
free services available online. In addition the process of obtaining a certificate
can take days if not weeks. Certificates are specific to an email address meaning
that each individual user must obtain their own personal certificate for their
mail account if they do not have a system administrator able to obtain it for
them. Even then, network effects must be taken into account and if the recipi-
ent of an encrypted email does not have an S/MIME certificate themselves then
the email cannot be sent in encrypted form. It is for these reasons that users
have found the process of obtaining S/MIME certificates onerous to the point
of infeasible [12].

The best attempt yet to alleviate these usability issues with S/MIME is
a solution created by Simson Garfinkel named Key Continuity Management
(KCM). KCM operates by directly creating a self signed X.509 key pair for a
user and then injecting that into Microsoft Outlook. Messages can then be
signed and encrypted. KCM manages this entire process in the background
making it seamless for an user to adopt. Because the keys are self signed trust
is given to the host from which the message was received instead of a CA [12].
This allows KCM to operate both instantaneously and for free in comparison to
a CA. Yet the abandonment of CAs leads to major flaws with this idea. The first
problem with this scheme arises in the self signing of certificates. By Garfinkel’s
own admission many mail clients discourage a user from accepting an email
that is self-signed [11]. In addition many mail clients do not even accept the use
of self-signed certificates, viewing them as insecure [14, 16]. Garfinkel tries to
argue that the use of self signed certificates would be more acceptable if the user
could determine whether to trust the host the message is coming from similar to
how SSH works [11]. However this does not constitute a feasible solution to the
problem. Garfinkel is essentially stating that since self signed certificates will
never be able to validate the identity of who is sending the communication [9] let
the user determine who to trust. But asking the user to understand their risk is
unreasonable. The vast majority of users do not understand the purpose of self
signed certificates [7]. When study participants were prompted with security
decisions in a study on HTTPS on whether or not to accept dubious certificates

2



users frequently chose to accept them [5]. In fact, according to Downs a likely
way to spoof identity would just be to impersonate a company the user does
business with [7]. Given how easy users are to fool we see why KCM would face
suspicion from regular email providers like Google and Microsoft. Furthermore
KCM adoption would place users at greater security risk given they will trade
in provider built-in phishing protection and spam filtering for encrypted mail.

To conclude our discussion of S/MIME we note that it is the current leading
standard for email encryption. But this does not mean that it constitutes the
best scalable solution. S/MIME has major usability and cost concerns associ-
ated with using CAs as a source of validating contact authenticity. Attempts
to remedy these concerns through KCM enable widespread encryption but take
a major step backwards on validating contact identity and user security. If one
wants to use S/MIME then using the CAs is the only way to correctly perform
encryption. Yet even if someone was able to automate usability concerns away
cost issues would still persist. Thus S/MIME cannot truly be held as a standard
for widespread email encryption going forward.

2.3 PGP

The main alternative to S/MIME is PGP. In a perfect world users would just
be able to perform the service of encrypting and validating all mail for them-
selves solely using PGP. In contrast to S/MIME X.509 certificates PGP keys
are decentralized. Instead of a single certificate authority to vouch for the iden-
tity of a person PGP operates over a web of trust between other people. The
projects creator Phil Zimmermann claimed that eventually PGP ”will cause
the emergence of a decentralized fault-tolerant web of confidence for all public
keys.” [20] In practical terms the web of trust works through key signing. The
greater amounts of times a key has been signed, or certified, as trustworthy by
other users the more trustworthy that key is [10]. This means that with proper
use of the web of trust PGP is able to validate the authenticity of the person
one is communicating with [9]. This is a major improvement over self-signed
X.509 certificates.

In further contrast with S/MIME even an inexperienced user can generate
a PGP key in a matter of minutes on their own personal computer [19, 20].
PGP when properly used guarantees that communications will be completely
unreadable to parties not intended to receive a message [20]. With this known
academics decided to perform user studies on how well people were able to en-
crypt their emails when using PGP. In disappointment to security advocates a
seminal study named “Why Johnny can’t Encrypt” decisively found the major-
ity of users are incapable at encrypting messages using PGP even given ample
amounts of time to try to perform the task [19]. Even using the best GUI in-
terface for PGP at the time, PGP 5.0, the few who were able to encrypt their
communications often exposed their private key in plain text [19]. A follow-up
study conducted in 2006 on a more modern interface still found users could
not accomplish the task of encrypting and sending an email [18]. Results for
another study in 2016 will doubtfully be much different. And while dedicated

3



security and IT personnel will likely have little trouble in encrypting commu-
nications regular nontechnical persons cannot be expected to perform native
PGP encryption even using a GUI. In summary, while PGP offers the benefits
of decentralized encryption based on a web of trust it cannot natively offer a
scalable solution for email encryption.

2.4 Alternatives

As a result of difficulties with PGP and S/MIME alternative schemes for email
encryption have surfaced. A lightweight key distribution system [3] is one such
system devised. A proxy gateway that has knowledge of the user’s private key is
another system that can be adapted for email encryption [4]. The main problem
with these systems is that they will be implemented by the mail provider. We
now know post-Snowden that mail providers sometimes collaborate with the
government to release private user data. If provider and government are not
partners we saw in the case of Lavabit it is trivial for the government to obtain
a persons data even if the government does not have a warrant for that specific
user. A service merely has to be of suspicion and that will cause the release of
private information [1].

There are paid services that take the usability headaches of S/MIME and
PGP and automate that for individual users. Services like ciphermail have built
in CAs [6] so they can issue X.509 certificates instantly. Hushmail uses PGP to
perform encryption [13]. However paid services are still not necessarily secure
even if they provide encryption for mail in transit. For example Hushmail
only receives a score of 1 out of 7 from the Electronic Frontier Foundation
for its services [8]. This is due to the fact the service does not offer end to end
encryption, users cannot verify the identity of contacts, and past messages aren’t
secure if encryption keys are stolen among other things. Most importantly these
services all still suffer from the chicken and the egg problem of the network effect
that afflicts both S/MIME and PGP. If users are using a paid encrypted service
then their emails will undoubtedly be encrypted. But if people are not using a
paid service then there is small chance they will be enticed to spend their money
on one just to receive encrypted email. Indeed why bother spending money on
encryption when Gmail is free.

Services like Hushmail and ciphermail provide the easiest alternative for
users who want their emails encrypted in transit. Email services like Gmail
could conceivably add additional encryption techniques onto their service like
a proxy to allow encryption. Yet, these solutions are not perfect. Hushmail
has a less than stellar privacy rating. The fact that all paid clients do not
have open source code means we cannot validate the security of the services
provided. And using a proxy with a shared key is not guaranteed as a means
of protecting against government or criminal intrusion. A viable solution for
email encryption needs to ensure that the users private key stays private, that
a service maintains complete end to end encryption, and that the code be open
source or at the least be continuously validated in security audits.

4



3 MEG; and how it fixes things

MEG aims to address many of the problems that stem from using PGP, S/MIME,
and mail provider based encryption schemes. First and foremost MEG aims to
use PGP because it is free, decentralized, and can validate contact identity
using web of trust. MEG however aims to alleviate the usability headaches sur-
rounding PGP by automating the entire process of key generation, signing keys,
encryption, and decryption of messages for the user. This way the user gets to
enjoy encryption for their emails while not having to worry about the low level
details of how it works.

MEG will ensure user data stays private. End to end encryption will be built
into MEG on any part where it is necessary. A users private key will stay on their
phone. This way no one except the owner of the phone will have the ability to
decrypt messages. The actual encryption of emails will be provided as a service
by a mobile phone with the MEG Android app on the mobile device serving as
the email gateway. MEG will then relay the emails over a secure channel to the
MEG client which can forward the email to its intended destination.

Web of trust is probably the key concept of PGP which separates it from
X.509. It will also be the hardest thing to get right in designing MEG. So we
are going to try to make the users life as painless as possible when navigating
the web of trust. Emails will be color coded depending on their trust level.
Green coding will be attached to email that we explicitly trust from a user.
Yellow will be coded for emails we cannot necessarily validate but rather ones
that are trusted through the web of trust. Red coding will be attached to emails
the are either untrusted or are not encrypted. This way a user can have a more
graphical representation on who to trust and who not to. In fact this scheme has
already been used by KCM and actually worked fairly successfully in usability
studies [12].

MEG has the benefit of being able to learn from its predecessors. We have
the ability to understand where previous schemes such as KCM failed. And we
also have the benefit of being able to use the ubiquity of smartphones to serve
as email gateways. Email encryption can be a reality for anyone who wants it.
It is just a matter of engineering the correct solution that people can use. We
believe that MEG is that solution.

References

[1] Lavabit. https://en.wikipedia.org/wiki/Lavabit. Accessed: 2016-02-12.

[2] Privacy-enhanced electronic mail. https://en.wikipedia.org/wiki/Privacy-
enhanced Electronic Mail. Accessed: 2016-02-12.

[3] Ben Adida, Susan Hohenberger, and Ronald L Rivest. Lightweight encryp-
tion for email. In SRUTI, 2005.

5



[4] Matt Blaze, Gerrit Bleumer, and Martin Strauss. Divertible protocols and
atomic proxy cryptography. In Advances in Cryptology—EUROCRYPT’98,
pages 127–144. Springer, 1998.

[5] Franco Callegati, Walter Cerroni, and Marco Ramilli. Man-in-the-middle
attack to the https protocol. IEEE Security and Privacy, 7(1):78–81, 2009.

[6] ciphermail. Email encryption gateway.
https://www.ciphermail.com/gateway.html. Accessed: 2016-02-17.

[7] Julie S Downs, Mandy B Holbrook, and Lorrie Faith Cranor. Decision
strategies and susceptibility to phishing. In Proceedings of the second sym-
posium on Usable privacy and security, pages 79–90. ACM, 2006.

[8] Electronic Frontier Foundation. Secure messaging scorecard.
https://www.eff.org/secure-messaging-scorecard. Accessed: 2016-02-
17.

[9] Steven M Furnell, Nathan Clarke, Cristian Thiago Moecke, and Melanie
Volkamer. Usable secure email communications: criteria and evaluation
of existing approaches. Information Management & Computer Security,
21(1):41–52, 2013.

[10] Simson Garfinkel. PGP: pretty good privacy. ” O’Reilly Media, Inc.”, 1995.

[11] Simson L Garfinkel, David Margrave, Jeffrey I Schiller, Erik Nordlander,
and Robert C Miller. How to make secure email easier to use. In Proceedings
of the SIGCHI conference on human factors in computing systems, pages
701–710. ACM, 2005.

[12] Simson L Garfinkel and Robert C Miller. Johnny 2: a user test of key
continuity management with s/mime and outlook express. In Proceedings
of the 2005 symposium on Usable privacy and security, pages 13–24. ACM,
2005.

[13] Hushmail. How hushmail works. https://www.hushmail.com/about/technology/how-
it-works/. Accessed: 2016-02-17.

[14] Lee Hutchinston. Taking e-mail back, part 2: Arming your server
with postfix and dovecot. http://arstechnica.com/information-
technology/2014/03/taking-e-mail-back-part-2-arming-your-server-with-
postfix-dovecot/. Accessed: 2016-02-17.

[15] S. Kent. Privacy enhancement for internet electronic mail: Part ii:
Certificate-based key management. https://www.ietf.org/rfc/rfc1422.txt.
Accessed: 2016-02-17.

[16] Howard Lightstone. How can i force use of self-signed ssl certificate.
https://productforums.google.com/forum/!topic/gmail/6gODk9n65ZU.
Accessed: 2016-02-17.

6



[17] Bryan D Payne and W Keith Edwards. A brief introduction to usable
security. Internet Computing, IEEE, 12(3):13–21, 2008.

[18] Steve Sheng, Levi Broderick, Colleen Alison Koranda, and Jeremy J Hy-
land. Why johnny still can’t encrypt: evaluating the usability of email
encryption software. In Symposium On Usable Privacy and Security, pages
3–4, 2006.

[19] Alma Whitten and J Doug Tygar. Why johnny can’t encrypt: A usability
evaluation of pgp 5.0. In Usenix Security, volume 1999, 1999.

[20] Philip R Zimmermann. The official PGP user’s guide. MIT press, 1995.

7


