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1. Introduction 

Although formal models have contributed to our understanding of 

capability-based protection systems, they have been properly criticized 

for concentrating on the movement of "authority" or "access privilege" 

within the system, rather than on the movement of the information. For 

example, the Take/Grant Model [1,2J describes the exact conditions under 

which a particular user can get the authority to access a file. If the 

conditions are satisfied, then the user can access the information. But 

if they are not satisfied, it does not follow that the user cannot get at 

the information. There may be some way to transfer the information with

out the user ever getting direct authority to access it. The Take/Grant 

Model gives no information and other models are similarly mute. 

In this paper we take a modest step towards elucidating the problem. 

Specifically, we distinguish between two types of information acquisition*: 

de jure (DJ) acquisition means a user acquires information by 


invoking direct authority within the capability system; 


de facto (DF) acquisition means a user acquires information, usually 

with the assistance of others, without necessarily acquiring 

the direct authority to access it within the capability system. 

Thus, de jure acquisition implies de facto acquisition, but not vice versa. 

This distinction can be illustrated diagramatically. In Figure la, 

the users have read and write capabilities (r,w) to their personal files. 

User Abel also has "take" authority over user Baker. This latter authority 

allows Abel to take the read access authority to File 2 from Baker -- an 

action that would result in the diagram shown in Figure lb. Abel can now 

*Our use of de jure, "rightful, by right" [5J and de facto "(existing) in 
fact, whether by right or not" [5J is intended to avoid the pejorative' 
connotations of the authorized/unauthorized distinction. 
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Figure 1: A de jure acquisition. 
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Figure 2: A de facto acquisition. 
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invoke this read authority resulting in a de jure acquisition. 

Figure 2 illustrates a situation when two users have "read" and 

"write" capabilities to their personal files as well as a common mail 

box file. Baker can request that user Charlie write the information from 

File 3 into the mail box. Assuming Charlie complies fully, Baker can then 

read the information from the mail box resulting in de facto acquisition. 

Baker never has the "read" capability to File 3 although he can read a 

copy of it. Having the capability to read a file and being capable of 

reading a copy of it are not the same thing because (a) the latter relies 

on the transmission of a complete and accurate copy and (b) any updates 

to File 3 are not automatically reflected in the copy. We use a dashed 

line to denote the de facto transmission. 

Obviously, more complex situations can arise. In the graph formed 

by combining Figures la and 2a, we can illustrate both types of transfer. 

In Figure 3, Abel takes the "read" capability to the mail box. Then, 

after Charlie writes File 3 into the mail box, perhaps in the belief that 

he is making it available only to Baker, Abel can make a de facto acquisition. 

Our objective in this paper is to characterize the use of de facto 

and de jure acquisition in a protection system. Since de jure acquisition 

is already well understood in the Take/Grant Model, we build on that under

standing to develop conditions under which information can be transferred 

by de facto transfers only or by a combination of de facto and de Jure 

transfers. 

We shall organize our presentation as follows. (Note that no previous 

knowledge of the Take/Grant System is presumed.) 
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Section 2: Definition of the model and the class of de facto rules, 

Section 3: Characterization of de facto acquisition, 

Section 4: De jure acquisition and previous results, 

Section 5: Characterization of combined de facto and de Jure 

acquisition. 

The final section is devoted to a summary and discussion. 



5. 


Charlie 
user.---------~t~------~~ user 
Abel 

r,w r,w r,w 

file 1 file 3 
file 1 mail 

box 

(a) 

(b) 

t 

, 
" 

, ,,r,w , r,w 
r 


,
, , , , , , 
r . 

--- _.... -- " 
,~ 

(c) 

Figure 3: 	 Combination of de jure and de facto 
transfers. 
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2. 	 De Fac to Infor>mation Transfers 

As suggested in the previous section, a capability-based protection 

system will be modeled by a finite directed graph called a protection 

graph. The vertices of the graph will be of two types: subjects (denoted 

bye) will represent "active" entities such as users, and objects (denoted 

by 0) will denote "passive" entities such as files. (There are ususally 

many other entities in a system, e.g. load modules, directories, etc., 

that are hard to categorize by such vague terms as "active" or "passive." 

One might argue that a load module is "active" in the sense that it could, 

when executed, cause information to move. Alternatively, if one knows that 

the module is "secure," Le. doesn't disseminate information, i.t might be 

called "passive." These and' 'other 'interpretations depend upon what system 

is being modeled, and' because of our general approach, they are beyond the 

scope of this study. We simply provide two classes of entities and depend 

on the user to make the appropriate classification for his system.) 

The edges between the vertices are labeled with elements from a finite set 

R of rights. For specificity, we use R = {r,w,t,g}, mnemonic for read, write, 

take and grant. (Other rights could be included, but we regard this as a 

minimal set.) The edge from vertex a to vertex b 

e ){?
a 

labeled by some a ~ R indicates that within the protection system, a has 

the a rights to b. This edge is called an explicit edge. 

In addition to these solid edges, we will use dashed edges (labeled by 

an r) to represent de facto acquisitions. These edges are called implicit 

edges. They are not actually part of the protection graph since they 



-------

7. 

represent information that is not part of the protection system. But we 

add them to the protection graph for pedogogical reasons to specify the 

existence of a potential de facto transfer. 

In the Introduction we illustrated how information might be trans- . 

ferred in a system by means of a mail box construction, but may be other 

means as well. We identify four distinct methods of de facto acquisition 

and formulate them as rewriting rules on protection graphs. (Note, in the 

following definitions "edge" refers to either an explicit or implicit 

edge. In the diagrams, 0 denotes a vertex that can be either a subject 

or object, edge labels may contain additional rights, set braces are elided.) 

Post: Let x, y and z be distinct vertices of a protection 

graph G such that x and z are subjects. Let there be 

an edge from x to y labeled ex, r E ex, and an edge from z 

to y labeled B, wEB. Then post defines a new graph G' 


. with an implicit edge from x to z labeled r. Graphically, 

r 

• • • Y 

-, 
r w r w , 

)0E => )0E -~ 
X Y z x z 

Pass: Let x, y and z be distinct vertices in a protection 

graph G such that y is a subject. Let there be an edge 

from y to x labeled by ex, w E ex, and an edge from y to 

z labeled by B, rEB. Then pass defines a new graph 

G' with an implicit edge from x to z labeled r. 

Graphically, . 


.... ------- r 
w r , w r",~ 

0~(------~.a-----~10 ~ • f'!9 
x y z X Y z 

Spy: Let x, y and z be distinct vertices in a protection 

graph G such that x and yare subjects. Let there be an 

edge from x to y labeled ex, r E ex, · and an edge from y to z 

labeled B, rEB. Then the spy rule defines a new graph 

G' with an implicit edge from x to z labeled r. 

Graphically, we write 


r.,..------ ... 
, ~, " ,r r r r .~I • 10 => 

X• •x 
I. 

zY z Y 
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Find: Let x, y and z be distinct vertices in a protection 

graph G such that y and z are subjects. Let there be 

an edge from y to x lab.eled a, w E a, and an edge from 

z to y labeled 8, w E 8. Then find defines a new graph G' 

with an implicit edge from x to z labeled r. Graphically, 


---- --, r 
w w /; ;;;"

(j!f(- .( .,.. •0+(------~••(~~---e. = x y z X Y z 
.' 

We will refer to these rules, collectively, as the DF rules. 

The rules are inteQded to abstract possible ways in which information 

can be read in a system by the cooperative effort of one or more subjects. 

The subjects invoke authority that" they own within the system (de jure 

acquisition) in order to effect de facto transfer. This transfer, or 

more accurately, the potential for this transfer, is summarized by the 

implicit edge from x to z, labeled r. We can then apply these rules to a 

protection graph (see example below) t~summarize the de facto transfer 

in the entire system. 

Clearly, the Post rule abstracts the operation described in the Intro

duction. In the Pass rule y acts as a conduit through which data travels 

from z to x. The Spy rule abstracts the case where y reads data from z 

and x "watches" y read the data. More often, however, it is used to 

"compose" transfers (see graph ' G in the example below). The Find rule
S 

abstracts the case where z deposits data in y and y in turn passes it 

along to x. 

We regard these four rules as a representative sample of the potential 

de facto transfers that might arise in ' a protection system. In some actual 

systems only a subset of these transfers might be possible while in other 

systems there may be transfers not captured by these rules. In either 

case the development that follows may have to be modified. Our purpose is 
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to illustrate how the Take/Grant Model can be used to assess the potential 

de facto transfers of a protection system. 

Finally, note that we have concerned ourselves only with the trans

fer of information to x via read. We might also have considered trans

mission of information from x by the addition of rules that add edges 

labeled with a "w." We shall discuss this apparent limitation in Section 6. 

The rewriting rules enable us to illustrate the potential de facto 

transfers by augmenting a given protection graph G with new implicit edges. 

Let GO be the protection graph 

and consider whether or not p can read q. We note that the Post transfer 

rule matches so it can be applied where the variables of the rule defini

tion (x,y,z,a' and /3) match p,s,t,{r} and {w}, respectively. Thus, we 

summarize the potential for this transfer by adding an implicit edge from p to t 

labeled r. The result is G •I 

r 
w , .:. : ·> ____ qr -+0 r 

Usually, we denote such a rule application by G ~ G' .o post I 

The sequence of rule applications that illustrate that p could 

acquire the contents of q are illustrated below. 
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r r 
------ ... ----

v rwr'>'----+0 q:.: ":- :~: ~-.~/: .~, 
w G

w x 
2 

r r 

r 

~~ 
~~ 

r r,.:.: --:--~::--:--'~':::---.::'-: -"5--:::~"'~ q 

r 

--. '-, 

// r ,. 

:.:"- ':' :~: 
w 

w 

So we conclude that there is a potential for de facto transfer to p. 

Note that all of these added edges are implicit -- .they do not represent 

added authority, only potential de facto access. 

Tortuous though the exampl~ may be, it illustrates that rather complex 

transfers can be ,realized. It is just as important (perhaps more important) 

to know what de facto transf.ers cannot be realized. For example, it is 

not possible for p' to read q by a transfer along the "lower" path in GO. 
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This is because of the two consecutive objects which form a "barrier" to 

indirect transfer. (See Theorem 3.1.) 

To illustrate another subtlety, note that t plays a pivotal role 

in the transfer. We might have tried to skip past t by applying the 

Find rule to GO' 

r 
- -- - -. - - -- .. 

But s is an object, and our rule definitions do not permit the 

application of a Spy to define a read edge from p to u. One might argue 

that a Spy should be allowed here because the s-to-u read edge is implicit 

and thus s receives the information passively. Subjecthood appears restric

tive. Our decision to force the second vertex in a Spy rule to be a 

suhject guarantees the existence of an agent when needed. It will be 

clear from our results that this limitation is not serious. 

Finally, we must make one cautionary remark concerning the interpre

tation of protection graphs. This is a general study that will be applica

ble (we hope) to a wide class of protection systems. As such we must 

consider all protection graphs even if they do not have a sensible interpre

tation in the context of a particular protection system. For example, .we ... 
rallow constructs such as O~~--~IO in our protection graphs. If one 

x y 

., 	 thinks of objects as files, this may be meaningless. But if objects 

include "secure" processes, then this is more reasonable. We cannot limit 

a priori the class of interpretations, so we allow for any protection graph 

consistent with our original definitions. 
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3. The Conditions of De Facto Transfer 

Having abstracted potential de facto transfers as a set of four rewriting 

rules and having illustrated that these rules compose in complex ways, we 

now formulate an exact statement of what it means for a potential de facto 

transfer to exist within the model. This will be done by defining a predicate 

canoknowof(p.q.G) of three parameters. The predicate is true if vertex 

p of G can acquire the information from vertex q of G by some sequence of 

rule applications. Then. we define conditions on G that determine when 

the predicate is true. 

Define for a protection graph Go and arbitrary distinct vertices 

p and q of GO 

canoknowof(p.q.G) to be true if and only if there exists a 

sequence of graphs Gl •.•. ,G (n ~ 0) such that G + follows 
n i l 

from G. by one of the DF rulesUl~i<n)and in G there is a 
1 n 

p-to-q edge labeled r. 

Thus. the predicate canoknowof(p.q,Go) is true if and only if de jure 

authority exists or an implicit edge from p-to-q can be added by means of 

the four DF rules. 

Now. we formulate conditions under which canoknow o; holds. To aid 

in this endeavor. define an rw-path in a protection graph G as a sequence 

of distinct vertices vO.vl •.•.• v (k > 1) such that vi is connected to
k 

v + by an edge (in either direction) labeled with r or w (or both) for
i l 

all i. O~i<k. We say that the rw-path is between Vo and vk . For example. 

in the graph 

r r,w w•__------H�o~C--~--~•.-----~IO 


StU v 


the sequence s,t.u,v is an rw-path. 
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Not all rw-paths will permit de facto transfer of information. 

(For example, s,t,u,v above does not!) So we limit our attention to a 

certain subset of them. To do this, we associate with each rw-path one 

+ -+ + -+ 
or more words over the alphabet {r, r, w, w} in the obvious way; for example, 

+++ +++
the sequence s,t,u,v given above has associated words, namelyrrw and rww. 

Define an rw-path vO,vl, ..• ,v (k > 1) to be an admissibZe Y'UJ-path if and
k 


only if 


(i) it has an associated word a •.. ~ in the regulara1 2 
. + -+ * language (r u w) and . 

' + -+(if) if a = r then v _ is a subject and if a w then Vii i l i 
is a subject. 

There are two immediate consequences of this definition. First, since 

k > 1, there are always at least two letters in the word associated with 

any admissible path. Second, there cannot be two consecutive objects on 

any admissible path. 

The first result concerning de facto transfers can now be stated. 

Theorem 3.1: Let p and q be vertices in a protection graph 

G. Then can·know·f(p,q,G) is true if and only if there 

is a p-to-q edge labeled r or there is an admissible rw

path between p and q. 

Proof: (<=) By induction on the length Q, (Le. number ' of edges) of the 

admissible rw-path. 

(Basis): Clearly, when Q, = 2 (the shortest non-trivial length) there are". 
four distinct rw-paths and each of these is handled by a separate rule. 


(Induction): Let the hypothesis be that for each Q" 2~Q, ~k, if 


p = vO,vl, ... ,vQ, = q is an admissible rw-path then can-know-f(p,q,G) is true. 


Observe that for every admissible rw-path of length Q,> 2 either it is an 
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~ .
extension by r of an admissible rw-path terminating in a subject or it 

terminates in a subject and is the extension by 
+ 
w of an admissible rw-path. 

Let p = vO, ... ,vk,v = q be an admissible rw-path. By hypothesisk+l 

canoknow~f(p,vk,G) is true and hence a p-to-v edge labeled; can be
k 

constructed. By the observation either a Spy or Post rule can be applied 

to give a p-to-q edge labeled 
~ 

rand canoknowof(p,q,G) is true, extending 

the induction. 

(~) By induction on the number 2 of times any of the four rules are applied 

to produce a witness to can know of.0 

(Basis): By inspection of the rule schemata, if only one rule is applied 

then the path between the vertices is an admissible rw-path. 

(Induction): Suppose that all witnesses to canoknowof requiring 2 > I 

or fewer rule applications have admissible rw-paths, and let a witness to 

+canoknowof(p,q,G) require 2+1 rule applications. Since edges labeled with w 

st . 
cannot be introduced" the 2+1 rule could not have been the Find rule. If 

the 2+l
st 

rule was a Pass or Post r~le then the edge of the rule schema 

+ ~ 

labeled w is explicit and the edge labeled r was constructed between, say, 

x and y with 2 rule applications. Then can-know-f(x,y,G) is true and by 

hypothesis there is an admissible rw-path between x and y. The extension 

of this path by w leads, by inspection, to an admissible path. Finally, 

if the 2+lst rule was a Spy then there are edges labeled ~ between some x 

and y, and y and z. If one of these is explicit, say the x-to-y edge, then 

can-knowof(y,z,G) is true and the edge found in 2 rule applications. By 

hypothesis there is an admissible rw-path between y and z and by inspection 

the extension is an admissible rw-path between x and z. If both the x-to-y 

and y-to-z edges are implicit then by analogous reasoning they are admissible. 

Since the concatenation of admissible paths is admissible, the induction 
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is extended. 0 

We emphasize that this .condition is necessary and sufficient (i.e. 

if and only if); it exactly characterizes the way DF rules can cause 

de facto transfers. It is also clear that using standard breadth-first 

graph traversal techniques, this condition is easy to test, for any 

given pair of vertices. 

CoroZZary 3.2: For vertices p and q of a protection graph G, 

there is a linear-time (in the size of the graph), algorithm 

for testing can-knowof(p,q,G). 

The reader is encouraged to return to the graph GO in Section 2 

to verify our claim that there can be no transfer along the "lower" path; 

that is, canoknowof(p',q,GO) is falseo 
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4. Review of De Jure 

Up to this point we have concentrated on the four rules that imple

ment de facto transfers. Although these rules specify the addition of an 

edge in the graph, we have agreed that these are only impZied edges 

no new access authority has been created. Now, we review the way in 

which de jure acquisition takes place in the Take/Grant Model. 

Recall that in addition to rand w, there are two other . rights: 

t and g. In [l,X] the following rules were introduced for changing 

access authority. All edges referred to in these rules are explicit. 

Take: Let x, y and z be three distinct vertices in a 
protection graph G such that x is a subject. Let there 
be an edge from x to y labeled y such that t E y, an 
edge from y to z labeled /3 and a ~ /3. Then the take 
rule defines a new graph G' by adding an edge to the 
protection graph from xto z labele~ a. Graphically, 

a 

••~__t __~)®__~/3__-+)® 
x Y z 

= ~ 
x y z 

The rule can be read: "x takes (a to z) from y." 

Grant: Let x, y and z be three distinct vertices in a 
protection graph G such that x is a subject. Let there 
be an edge from x to y labeled. y such that g E y, 
an edge from x to z labeled /3, and a ~ /3. The grant 
rule defines a new graph G' by adding an edge from 
y to z labeled a. Graphically, 

/3 /3 

~ 
x y z = ~ x y z 

The rule can be read: "x grants (a to z) to y." .. 
Create: Let x be any subject vertex in a protection graph G 

and let a be a subset of R. Create defines a new 
graph G' by adding a new vertex n to the graph and an 
edge from x to n labeled a. Graphically, 
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• ••__a.,..-+~~ • 
x x n 

The rule can be read: "x creates 

Remove: Let x and y be any distinct vertices in a protection 
graph G such that x is a subject. Let there be an edge 
from x to y labeled S, and let a be any subset of rights. 
Then remove defines a new graph G' by deleting the a 
labels from S. If S becomes empty as a result, the edge 
itself is deleted. Graphically, 

S-a._S~ => .e---'----T@. 
x y x Y 

The rule can be read: "x removes (a to) y." 

We refer to these four rules collectively as the DJ rules. 

The edges added by these rules represent explicit changes in the 


access authority. Thus, when "x takes (r to z) from.y," x only acquires 


the read rights to the information. It must invoke the right to read the 


information. In addition to adding edges, Create allows the addition 


* ' 
of new vertices. As Figure 4 illustrates, Create adds an important 


dimension to the model since without Create one cannot add g to the 


a-to-b edge in this example. 


In order to report on previous results [1,2] we define tg-path 

d1;'+''' ':'+


(analogous to an rw-path) as a nonempty sequence vO, ... ,v of/vertices such
k 

that for all i, O~i <k, vi is connected to v + by an edge (in either direction)
i l 


with a label cqntaining a t ot g (or both). Vertices are tg-connected if 


there is a tg-path between them and we call any maximal, tg-connected 


subject-only subgraph an island. 


-+ +-++
Associate with tg-paths words over the alphabet {t,t,g,g} analogous 

to the words associated with rw-paths. (If k=l in the tg-path, then the 
------------------------------------------------~-----------------------
*Note, even though there is only one directed edge from any vertex a to 
any vertex b, we occasionally draw two to emphasize changes in labelling. 
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/1°

a~g 

9 C 

a g 

tg g c 

d g6J
b 

a 

tg 

d 

tg 

d 

Figure 4: Vertex a acquIres g rights to h, i.e., g is added to the 
label on the a-to-b edge. The rule applic.ations may be read: 

a creates (tg to) new object d, 

a grants (g to d) to c, 

c grants (g to b) to d, 

a takes (g to b) from d. 
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associated word in c.) A tg-path vO, •.. ,v
k 

with Vo being a subject is an 

-+*-+
initial span if it has an associated word in the language {t g} U {E}; 

it is a termina l span if it has an associated word in {t
-+* 

}; and it is a 

bridge if v is a subject and it has an associated word ink 

-+* +* -+~-++* -+*++*


{t , t , t . g t , t g t }. Note that initial and terminal spans have orienta

tion, i.e. Vo is the source of the spans. We say Vo initially or terminally 

spans to v
k 

. 

Restricting our attention only to Take, Grant, Create and Remove, we 

define for a right a and distinct vertices p and q of a protection graph GO' 

the predicate 

can·share(a,p,q,Gj ~ there are protection graphs Gl, .•. ,G
n 

such that GO ~ * G using only DJ rules and in G there 
n n 

isaP-to-q edge labeled a. 

Note 	that a can be any right in R = {r,w,t,g}. 

We may now state when the can·share predicate is true. Let p and q 

be arbitrary, distinct vertices in protection graph GO and let a E R. 

Theorem 4.1 [2J: The predicate can·share (a,p,q,G ) is true if 
----___ -----------.:~, e I +I<. -e '" +he r e I '> C! V) . 

and only if . the following hold simultaneously: I f V) -h~~ Lbe}.lLM <><,
e-C!.3-e. 

yv\ 

r U\'"0 	 

(i) 	 there is a vertex S E GO with an s-to-q 1"1 C-() OV-

edge labeled a, 

(ii) there exist subject vertices 	p' and s' such that 

(a) 	 p' initially spans to p, 

(b) 	 s' terminally spans to s, 

(iii) 	 there exis t islands II' ... ' I and. there is a 
v I I cp'cJ s'c-Iv'

bridge from I to I + (l::;j <v)" W I I- h P c- .l.
j j l 

Figure 5 illustrates the conditions of the theorem. Although these condi

tions appear to be complicated, we can test a protection graph in linear 

time to see if it satisfies the conditions. 
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Clearly, if one is restricted to the DJ rules, then p can get de jure 

access to q in GO if and only if can.share(r,p,q,G ) is true. The crucial
O

question is: how do theDJ and DF rules interact? We describe that in 

the next section. 

t s r 
t s' -r..-g--=----t<)o--'--+Oq 

y 

GO 

Islands: 11 = {p,u}, 12 = {w}, 13 {y,s' }. 


Bridges: u,v,w and w,x,y. 


Initial span: p; associate word: E. 


Terminal span: s' ,s; associated word: 
-+ 
t. 


Can·share(r,p,q,Go) is true as the following rules attest. 

1. s' takes (r to q) from s. 

2. s' grants (r to q) to y. 

3. y takes (g to w) from x. 

4. u takes (g to w) from v. 

5. u grants (g to p) to w. 

6. y grants (r to q) to w. 

7. w grants (r to q) to p. 

The resulting graph appears as follows: 

g g 

t 

Figure 5: Illustration of the conditions of 
can·share. 
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5. Combined transfers 

We begin by illustrating a simple case where both de jure and 

de facto transfers are needed to share information. Consider the pro

tection graph G 

r 

w SI---:-~Oq 
G 

r 
~O( 

Y 

and notice that can-share(r.p.q.G) is false since s (the only owner of the 

read right to q) is not tg-connected to p. Also. can-know-f(p.g.G) is 

false since there is no admissible rw-path between p and q. Furthermore. 

by our Theorem 4.1. no matter what changes we make to G using Take. Grant. 

Create and Remove. can-share(r.p.q.G) remains false. and by our Theorem 

3.1 no matter what changes we make· to G using Spy. Post. Pass and Find. 

can-know-f(p.q.G) remains false. But. it is possible using DJ and DF 

rules to construct a graph G' in which can-know-f(p.q.G) is true. 

In fact. there are two ways to change the graph that are conceptually 

different. First. x can grant(r to y) to p and z can take (r to q) from 

s. This results in the graph G' 

r 
s_--~-oq 

r 
r G' 

-. 
which now contains an admissible rw-path. Alternatively. in G x and scan 

create r.w rights to new. objects and "read" rights to these objects can 

be acquired by p and z to "straddle" the t and g edges. The result is G" 
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r,w 

g t . G' , 

rr w W
x y z 

which contains an admiss.ible rw-path. Thus, we can ei ther transmit 


existing rights or create new rights to build an rw-path. 


We refer to the use of any combination of the DJ and DF rules as 


combineq transfer. (Recall that the DJ rules can only match explicit 


edges while the DF rules can match explicit or implicit edges.) 


Following our paradigm, we define a predicate that introduces a 


read edge by any of the combined transfers. Let p and q be arbitrary, 


distinct vertices in a protection graph GO' then 


can.know(p,q,Go) is true if and only if there is a sequence 

* of protection graphs Gl, ... ,G such that GO~--- G 
n n 

and in G there is a p-to-q edge labeled r. 
n 

Note that the p-to-q edge can be either implicit or explicit. 

Define rwtg-path in the obvious way and associate words over the 

++++++++ 
alphabet {t,t,g.g,r,r.w.w} as usual. We define a second class of spans. 

Let vO' ••.• v
k 

(k > 0) be an rwtg-path where Vo is a subject. This path is 

an rw-initial span if its associated word is in the regular language {t 
+*+ 

w} 

. . +*+ 
and it is an rw-terminal span if its associated word is in {t r}. Again we 

observe that spans have orientation and we say that Vo rw-initially (or 

rw-terminally) spans to v .
k 

Define the regular langu~ges~ 

+* +* +*++* +*++* 
Bridges: {t u t u t gt u t gt }, 


+*+ ++* +*+++* 

Connections: C {t r u wt u t rwt }. 

Note that the bridges language is the same set defined in Section 4. 
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We can now characterize the can·know predicate. Letp and q be 

arbitrary, distinct vertices in a protection graph G. 

Theorem 5.1: can·know(p,q,G) is true if and only if 

(i) 	 canoshare(r,p,q,G) is true or, 

(ii) there exists a sequence of subjects ul, •.• ,u
n 

such that the following conditions hold: 

(a) 	 p = u or u rw-initially spans to p,l l 
Cb) q = u or u rw- terminally spans to q, and 

n n 
(c) 	 for all i, I Si<n there is an rwtg-path between 

u and u + with associated word in B u C.i i l 

Proof: (~) If canoknow(p,q,G) is .true and a witness can be found by 

application of DJ rules only then obviously can·share(r,p,q,G) is true. 

So suppose that at least one application of a DF rule is required to 

construct a witness G . for can·know(p,q,G). Because DJ rules do not 
w 

manipulate implicit edges, we can without loss of generality, arrange the 

rule applications so that all DJ ' rules are performed before any DF 

rules are applied. Let G. denote the protection graph resulting from the
J ' 

application of only DJ rules. Further, note that among the DJ rules, all 

Creates can be performed before any of the Take, Grant or Remove* rules. 

Let G denote the result of applying all Creates to G. Clearly, the 
c 

following relations hold among the graphs. 

* * 	 *G 	 G •
GICreate c Iother Ionly w 


only DJ DF 

. rules rules 


Next, notice that each of the newly created vertices in G is in a 
c 

created subgraph that is connected to the G subgraph of G via exactly
c 

one original subject vertex. If v is a created vertex, call this subject 
------------------------------------------------------------------~------

*Clearly, Remove rule applications are never useful in this context since 
additional edges are not harmful. 
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vertex the father of v. (Of course. the father need not have actually 

created v. but it must hav~ treated one of ihe vertices in the created 

subgraph in which v resides.) 

Since only DF rules are applied after the creation of G.• it 
J 

follows by Theorem 3.1 that there exists in G. an admissible rw-path
J 

p = vO.vl •...• v = q between p and q. We shall reason about how thisk 

path was constructed by means of the DJ rules. 

The following three facts. derived from Theorem 4.1. will be 

helpful in the argument. Suppose for arbitrary. distinct vertices x and 

y in 	a protection graph G' can-share(r.x.y.G') (resp. can·share(w.x.y.G') 

is true. 

Fact 	1: Either there is an x-to-y edge in G' labeled r (resp. w) 

or there is a subject s in G' and 'an rwtg-path in G' from s 
+*+ +*+ 

to y 	with associated word in {t r} (resp. {t w}). 

2: If a witness can be found using islands Il •.•.• I thenl:'act 	 t 
canoshare(r.z.y.G') (resp. can·share(w.z.y.G'» is true for 

any subject z E I .• l~j~t. 
J 

Fact 3: If there is no x-to-y edge labeled r (resp. w) then there 

is a 	 sequence of subjects x = wO.wl •...•w = s such that Wjm 

is connected to w + by a bridge.


j l 

Proceeding with the analysis of the admissible rw-path. let v.and 
1 

v +	 be consecutive vertices along the path. Suppose vi and v are both
i l i +l 

in G then canoshare(r.vi,vi+l.G) (resp. can.share(w,vi+l.vi.G» is true. 

Then 	Fact 1 assures that they are connected by an edge in C or there is 

an s 	 connecting to v + (resp. vi) by an rwtg-path in C. If vi andi l v i +l 

are both subjects. and s = vi (resp. s = v + ) then vi and vi + qualify as
i l l 

subjects u and u + for some j. If vi and v + are subjects but s # vi
j j l 	 i l 
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(resp. v i + ) then Fact 3 guarantees the ex~stence of bridge connectedl 

subjects vi = wO,···,w = s which qualify as uj, .•• ,uj+m for some j and m. m 

By admissibility, only vi + (resp. vi) can be an object. If v + q
l i l 

(resp. Vi = p) then Fact 1 guarantees an rw-terminal span (resp. rw-initial 

span) from s to q (resp. p). Then s qualifies as subject un (resp. u ).
l 

Assume v 1 q (resp. vi 1 p) is an object and let s be defined byi +l 

Fact 1. By admissibility, the next vertex v + (resp. vi_I) must be a
i 2 

subject. Suppose this next vertex is in G. Then can·ohare(w,vi +2 ,v + ,G)
i I 

(resp. can·share(r,v. 1,v.,G) is true and by Fact 1, s' exists connecting
1- 1 

to v. 1 (resp. v.) by a word in C. Now sand s' qualify as u. and u. 1 
1+ 1 J J+ 

(resp. u. and u. 1) for some j since they are connected by a word in 
J J

-+*-+++*

{t rwt }. Moreover, by Fact 3 if vi + 1 S' (resp. vi_l 1 S') there are2 

subjects S' = wO,.·.,w = v i + (resp. v _ = wO, ..• ,w = S') which are m 2 i l m 

bridge connected and thus qualify as uj+l, .•. ,uj+m+l (resp. Uj_m_l, ... ,Uj_I)' 

Now suppose that one or more vertices vi_l,vi,vi+l' or v i +2 mentioned 

in the preceding paragraphs are not in G. Then the preceding argument 

applies without modifications in G. In the application of the can·share 
c 

predicate in that argument, the fathers of the new vertices must be in 

islands witnessing the sharing since these new vertices are connected to 

the G subgraph via the father. Thus, for example, if vi is a new vertex 

and v i + is an existing vertex and canoshare(r,vi,vi+I,Gc) is true, then
l 

by Fact 2, can·share(r,father(vi),vi+I,G) is true. Thus the father(vi ) 

acts as a surrogate for vi' In particular, the bridges that were shown to 

exist for vi in the original argument, must exist for the father of vi' If 

v + is also a new vertex, both fathers are surrogates and they are connected
i l 

by bridges over 0 or more islands. The details are left to the reader. 



26. 

Finally. we observe that for each pair of consecutive vertices. 

we established the existence of subjects u .•...• u.+m for some j and m. 
] ] 

Since adjacent pairs will have subject sequences with a common element. 

the existence of the entire sequence has been established. 

~) If can·share(r.p.q.G) is true. can.know(p.q.G) is trivially 

true. So suppose it is false and ' let ul •...• u be the subjects required
n 

in condition (ii) of the Theorem. It is sufficient to convert this to 

an admissible rw-path and then invoke Theorem 3.1. If u and u + are
i i l 

connected by a word in C or conditions (a) or (b) apply. then use the 

Take rule in the obvious way until no further applications are possible. 

An r or w connecting edge results. Otherwise u and u + are connected
i i l 

by a bridge . Apply Take in the obvious way until no further applications 

are possible. Then u and u + are connected by an edge with word
i i l 

+ ~ + ~ 

in {t.t.g.g}. Now one of the vertices can Create (rw to) a new object 

and the other can acquire the appropriate right so that u and ui + arei l 
+~

connected by a path with a word in {'rw}. The result is an admissible , 

rw-path. and Theorem 3.1 can be applied. 0 

Corollary: For arbitrary. distinct vertices p and q in a 


protection graph G. the predicate can·know(p.q.G) can be 


tested in linear time in the size of the graph. 


Although the proof is quite involved. the conditions are quite 

straight-forward. The reader is encouraged to return to the graph pre

sented at the beginning of the section to verify that they do apply. ; 
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6. Concluding Remarks 

Two issues remain to be discussed: "two-way" de facto transfers and 

the "worst-case" assumption. 

In the foregoing se~tions we have concerned ourselves with de facto 

transfers in which p can read the contents of q -- a one-way transfer of 

information. Suppose p would like to communicate back to q, i.e. establish 

two-way communication. Must we repeat this entire development for the 

write right? Not at all! 

Observe that by interchanging the r and w labels on our DF rule 

schemata we obtain the following: 
------ ... 

, w 'w w w 
spy-w • )~ = .- ~ ~'. 

w 

w.. ----- .....  , 
w r wpost-w • )~ • = .. , ~~~ 

,------- ... w 
.-' rr w w• • "~ pass-w :g+- )0 = ~ 

w--r r r r ....find-w 0+- .( • .= ~ .( 

These new DF-w rules reflect the symmetry of read and write and are 

* intuitively consistent. Moreover, the directionality of the ei;lges and 

the subject/object distinctions are all preserved. Thus, by interchanging 

rand w in the foregoing section, all substantive aspects of the arguments 

are preserved! 

To emphasize this symmetry, define for arbitrary, distinct vertices 

p and q of a protection graph G 

*The names are not at all suggestive, however. 
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canotell(p,q,G) to be true if and only if there is a sequence 

of protection graphs GI, ... ,G such that G. I follows from 
n 1.+ 

G. by application of one of these new rules or the DJ rules 
1. 

(O~i<n) and in G there is a p to q edge labeled w. 
n 

Then we have from Theorem 5.1. 

Corollary 6.1: canotell(p,q,G) is true if and only if 

(i) canoshare(w,p,q,G)" is true or, 

(ii) there exists a sequence of subjects ul, ... ,u such 
n 

that the following conditions hold: 

(a) p u
l 

or u
l 
wr~initially spans to p, 

(b) q u 
n 

or u 
n 

wr-terminally spans to q, and 

(c) for all i, lS;i<n there is an rwtg-path between 

u. 
J 

and uj +l with associated word in B u C' , 

where wr-initial or wr-terminal spans are defined by interchanging rand w 

in the definitions bf rw-initial andrw-terminal spans respectively and 

+*+ ++* +*+++*c' { t W U rt u t wrt }. Of course, canotellof(p,q,G) can be 

similarly defined. 

The second issue is our ·"worst-case" assumption. We have assumed perfect 

cooperation throughout this paper. It may be a prudent assumption but perhaps it 

is not very realistic. This assumption can be relaxed at the cost of 

further analysis in a way analogous to the way canoshare was relaxed to 

canosteal in [3,4J. There, the owners of the information are assumed not 

to cooperate while .all other subjects do. Alternatively, the number of 

cooperating subjects required for a transfer, called conspirators in [3J, 

could be counted . This number could then be used as a measure of the proba

bility that the transfer would actually be effected since a large number of 

collaborators are likely to be more difficult to enlist then a small number. 

The problem requries further study. 
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