
A Mechanism for Sharing

Accounts

Matt Bishop

March, 1987

Technical Report 87.10

Research Institute for Advanced Computer Science

A Mechanism for Sharing Accounts

Matt Bishop

Research Institute for Advanced Computer Science

NASA Ames Research Center

Moffett Field, CA 94035

ABSTRACT

A serious problem in account management is how to deter­
mine accountability when several people must share access to one
account . Further, password management for such an account is
extremely complex. This paper describes a mechanism to overcome
these problems, and an implementation of the mechanism under
UNIX.

Overview

The Numerical Aerodynamic Simulator project runs a variety of UNIXt

based operating system, on its computers (a Cray 2, 2 Amdahl 5840s, 4 VAX-"

11/780s and 25 IRIS 3500 workstations.) Users work on and off site, using a

variety of networks not all of which are under NASA's control. Off site installa­

tions can be as close as a different building on the base or as distant as ICASE

(on the East Coast.) In this environment, sharing accounts is very common; it

provides a very quick and easy way to enable many people to work together, and

allows many people to share responsibility for a particular task. For example,

the account nasops is used to maintain a database of users (among other func­

tions.) So, many people need access to that account. Unfortunately, this poses

some problems.

tUNIX is a Trademark of Bell Laboratories.

- 2 ­

First is the question of accountability. If someone logs in on the account

nasops and compromises the database, how can the offending user be traced?

Password management is the second problem; how can the site administrator

force 40 or so people to keep the password secret, particularly since these users

need at least two passwords (one for their own account and one for the nasops

account)? When someone changes nasops' password, how does he or she com­

municate that change to the other users in a timely manner?

A "group account" is an account meant to be shared. No-one can log into

a group account, but a program called lsu overlays the login identity with the

group identity (just as the UNIX program su overlays the login identity with a

new user's identity.) The user must type his own password when switching to the

group identity. Lsu checks an access file to ensure that the user can access the

group account at the given time and from the given terminal, and then checks

the password. If access is allowed and the user types his own password correctly,

the group identity is pushed over the user's identity; if access is denied or the

password is incorrect, lsu simply informs the user permission is denied.

Because of the sensitive nature of the program, several steps are taken to

prevent compromise. While it seems redundant to require the user to type his

password (didn't he type it to log in?), experience shows that people do leave

their terminals unattended, so checking the password provides some assurance

the user is the person running lsu. The password must always be typed, even

when lsu has already determined the used has no right to lsu to the group

account. The location of the access and log files are constructed in memory

when lsu runs, and are erased immediately after being used. Both files must 'be

owned by the most privileged account and must be unreadable and unwritable

by anyone else; if not, the lsu fails and mail is sent to the lsu administrators. Of

course, when access is denied, the user is not told why access is denied.

Another version of this program provides the same control for overlaying

user accounts. The program nsu functions like lsu but requires the new account's

password as well as meeting any conditions in the access file. (If the account is

not listed in the access file, anyone can nsu to it.) In the event the access file is

corrupt, nsu can only be used to access an account from which the access file can

be fixed.

Lsu and nsu use the startup file of the new (group or user) identity, not

that of the user running the program; this provides uniformity among users who

may have wildly different environments in their private accounts. A third pro­

gram, called su, uses the startup file of the user running the program, but uses

the nsu access file to check permission. This provides compatibility with older

versions of suo

Detailed Statement of the Problem

One of the nastiest problems in account management arises when a number

of people must share a single account. This is actually quite common; for exam­

ple, at a TOPS-20 site, several users must have access to the wheel account to

manage the system, or at a UNIX site, there are a number of such administrative

accounts that more than one user accesses on a daily basis. This poses a number

of management problems.

- 4 ­

The most obvious one is accountability. Who is using the account? If the

account has problems such as being over disk quota, or being used in an insecure

manner, it can be very difficult to track the individual responsible for the prob­

lems. Worse, if the account should be used at an unusual time, or to do some­

thing the users of the account do not normally do, the system administrator will

have to contact each user of the account in order to determine whether or not

another party has learned the password and thus been able to penetrate the sys­

tem.

The second problem is the computer system's version of a key management

problem. Suppose 40 people have the password to the account source, which is

used to edit and compile system programs. As any system administrator knows,

this means "at least" 40 people, because experience dictates they will share the

source account password with their colleagues who want it, whether or not those

colleagues are authorized to get the password. So, to prevent this, the system­

administrator decides to change the password every so often. Now 40 people

must be notified of the new password; their work will be delayed while they are

told of the new password; and undoubtedly some of them will tell their col­

leagues about the new password. All this gains is pain for the users as well as

the administrators.

One way around these administrative problems is to create group accounts.

Access control listst determine whether or not a specific user can gain access to

such an account. However, the accounts are not accessible by just logging in; so,

t See [DENN821, section 4.4, for a discussion of access control lists.

- 5 ­

the user must log in as himself, and then run another program to "push" the

group identity on top of his own.

This paper discusses the implementation of such a scheme under UNIX. The

next section describes the environment in which the solution was developed; the

section after that describes the use of the relevant program, and the section after

that discusses the access control list used by the program. The final section

discusses some remaining problems and offers guidance on future work.

The UNIX Environment

UNIX provides a mechanism, called setuid, that allows one user to execute a

program with the privileges of another user. The program may be a command

interpreter called a shell (see [BOUR84] and [JOY84]), in which case any com­

mands issued from within that command interpreter run with the privileges of

the second user. This will be the basis for the notion of "pushing" the group

identity. Pushing corresponds to executing such a command interpreter; pop­

ping correspondingly means exiting the command interpreter and thereby return­

ing to the original environment.

UNIX does not ever store cleartext passwords; rather, the passwords are

encrypted using a variant of the DES, and the thirteen character result is saved

in a file called the password file. (See [MORR79] for a detailed discussion of how

and why this is done.) So, a program need not be privileged to compare a pass­

word to that of a specific user; it simply encrypts the typed password, and com­

pares the result to the one in the password file. (This provides an elegant

mechanism for preventing someone from logging into a group account; simply

- 6 ­

use a string not in the range of the encryption function as the encrypted pass­

word, and no one will be able to log in to that account. This is useful for system

maintenance accounts, such as the line printer spooler's account.) In addition,

the password file stores other information about each user; this information is

used to set up the environment for the user.

We discussed command interpreters called shells earlier. A UNIX shell is

actually more than a command interpreter; users can define variables within the

shell command language, and some of these variables are special. For example,

the shell variable USER contains the name of the user executing the shell; the

variable HOME contains the directory in which the user began his session; the

variable SHELL contains the name of the command interpreter; and the vari­

able PATH contains a list of the places to search for each command to be exe­

cuted by the shell (and the value of this variable is often referred to as the

"search path"). The last variable is vital, since if two programs have the same­

_name, the shell will decide which one to execute based on the value of the

PATH variable. Because of their effect on the way the shell works, these shell

variables are more commonly called environment variables.

A shell is invoked by passing the shell's name, followed by a list of argu­

ments and preset environment variables. Shells sometimes execute the com­

mands in a command file (called a startup file) when they begin executing.

There are two kinds of startup files, those executed when the shell is started, and

those executed when the user logs in. The shell decides if it was started when

the user logged in by checking the name with which it was invoked; if that argu­

ment begins with a hyphen ("-") the shell is a login shell.

- 7 ­

This is a rough description of points of UNIX that must be taken into co.n­

sideration in the design of the group account access program. The next section

describes how that program works.

The Program

The program used to push a new user identity onto the current one exists in

two forms. The first, [su, is a very restrictive program that is used to access

group accounts. The second, nsu, may be used to access any account with a

password.t The way these commands are used is basically the same; we shall use

lsu for demonstration, pointing out the difference between the two when

relevant.

To push the identity of the user grpact (for "group account"), use the com­

mand

lsu grpact

Lsu will prompt the user for his password. At this point, the user types a pass­

word. If the program is nsu, the password is that of grpact; if the program is lsu,

the password is that of the user's account and not that of the account grpact

(which may not even have a password.) After verifying the password is correct,

and after checking that the user is allowed to push the identity of account grpact

over his, lsu will respond by providing a shell with the privileges of the account

grpact. To return to his original environment, the user can pop the grpact

environment by exiting this shell. Should the password be incorrect or

tThere are two other versions of this program: 8U, which exists for compatibility reasons (it uses
all protection mechanisms of n8U but duplicates the environment of the UNIX command 8U, hence
the name) and C8U, which checks the syntax and format of the access file.

- 8 ­

permission not be given, [su responds with

lsu: permission denied

and does nothing.

If the user wants to execute only one command using the group account, he

may give additional arguments to the command; all after the group account

name are passed as command arguments to the shell. For example, suppose

there is a group account "source" that is used to recompile system sources, and

a user with access to that account wants to copy the file "aux.c" to "aux.c.old".

He can do this in one of two ways (in the following, what the computer types is

in boldface and what the user types is in normal type):

$ lsu source
Password: abx34yz
% cp aux.c aux.c.old
% exit
$

or

$lsu source -c "cp aux.c aux.c.old"
Password: abx34yz
%

The "-c" and double quotes around the copy command are necessary, because

the "source" account uses the C shell, and that requires commands which are

given on the command line to be surrounded by quotes. The actual command

[su will execute is

/bin/csh -c "cp aux.c aux.c.old"

(refer to csh(l) in [UPM84] for more information.)

Normally, when a new environment is pushed onto an existing one, certain

parts of the old environment are not changed. These attributes are the ones

associated with logging in; remember, some environment variables are set when

you log in and others whenever the shell is invoked. Sometimes a user switching

to the identity of a group account will want the shell to set the environment

variables associated with logging in as well as those associated with the invoca­

tion of the shell. To have lsu do this, give the first argument as "-". So, in the

first example above, if you wanted to set the environment as though you had

logged in as "source", say

lsu - source

rather than

lsu source

In the subshell started by [su, some variables In the environment are

changed. USER is set to the login name of the new identity, SHELL is set to

the pathname of the shell being used, and HOME is set to the home directory

of the new account. If the new account is that of the most privileged user, rOQt

(often called the superuser) , the value of the environment variable PATH is

changed to exclude all but a small number of specific system directories. This is

done because many systems have directories containing programs not necessarily

written and installed by system programmer; allowing root to execute programs

in them would create interesting possibilities for Trojan horse attacks.

The use of these commands is controlled by an access file set up by the

superuser root. Basically, this access file controls who can push what identity,

when, and from where. If lsu is being used, the user must have permission expli­

citly granted by this file. If nsu is being used, any new account listed in the

access file becomes restricted in the sense that no user can nsu to such an

- 10 ­

account unless the access file explicitly allows him to. However, anyone knowing

the proper password can nsu to any account that is not restricted in this sense.

In the next section, we will discuss the format of this access file.

Access File

The access file is set up by the superuser and controls who may push new

identities. It is readable and writable by only the superuser. Each entry is one

line, and consists of four fields separated by one or more tab characters (ASCII

HT, octal 011, hex Ox09):

user identities- he- can- push terminals time

The first field names the user attempting the push. The second is a

comma-separated list of user names the identities of which the user named in the

first field may push. The third field lists constraints on the devices the user may

lsu or nsu from; the last field constrains the times during which the user may

push a new identity. Some sample entries are:

nancy bin ! " tty p . * " weekdays 9am- 5pm
mab Any console Mar ch 1985
rib s t a f f Any Any
gba news >=9600 June 21 - Sept 21

An entry is said to be satisfied if that entry allows the current user to push

the desired identity from the current terminal and at the current time; that is, if

the entry alone would allow access for the user to substitute the new identity

(assuming the correct password were supplied.) A user may be entered in the file

more than once. The file is searched in order; if any entry for that user/identity

pair is satisfied, the access permission is granted. . Note that if there are two

enbtries for the same user/identity pair, access permission is granted if either

- 11 ­

entry is satisfied.

The terminals field may constrain the device from which lsu or nsu is run by

name or by terminal speed. To constrain by name, simply type the name of the

terminal; for example, if the field were

/ dev / console

then the user could substitute any of the identities on that line only if he exe­

cuted lsu or nsu from the system console. (If the file name is not a full path

name, the prefix "/dev/" is assumed.) If the program should only be run from

the console and some other terminal, say "ttyi9", the above line could read

console,ttyi9

Sometimes it is more convenient to specify terminal names by patterns, as (for

example) to prevent use of lsu and nsu from pseudo-ttys, the names of which

begin with "ttyp" or "ttyq'" one could give the line

!"ttyp.*" ,"ttyq. *"
where the "!" means "not" and the double quotes mean that the string they sur­

round is to be used as a pattern. The pattern matcher used is the same as for

the editor ed(l) (see [UPM84j) so the precise syntax differs between Berkeley

UNIX and System V UNIX. Finally, there are times when systems need to con­

strain users based on terminal speed. For example, a site somewhat conscious of

security might not want users to overlay certain identities from terminals not

located within the building; for these sites, giving a relationship followed by a

baud rate will allow the user to push an identity only if the speed of the terminal

satisfies the relationship with the given baud rate. Thus, if the third field were

- 12

>=9600

the user would not be permitted to push any identities on that line unless he

were working on a terminal which ran at at least 9600 baud. Allowed relation­

ships are "@" and "=" (both meaning equal), "<" (less than), "<=" (less than

or equal to), ">" (greater than), ">=" (greater than or equal to), and "!=",

"<>", and "><" (all meaning not equal to.) Note that if permission is condi­

tioned on speed and the program is run in the background or with the standard

input, output, and error all associated with files, permission will always be

denied. A complete syntax is given in Appendix 1.

As examples, go back to the sample access control file at the beginning of

this section. The first line says that the user "nancy" can lsu to the group

account bin only when she does so from a terminal the name of which does not

begin with "ttyp" (on many implementations of UNIX, this prevents her from

doing so when she is logged in over a network.) The next line says that user _

"mab" can lsu to any other account on the system from the console, but from no

other terminal. The third line means that the user "rIb" can lsu to the group

account staff from any terminal, and the last line says that user "gba" can push

the identity of the group account news from any terminal running at 9600 baud

or greater; in practise, this means that he cannot do so when logged in over a

telephone line.

The time field constrains when the user can push the new identity. Times

may be constrained by days of the week, times of day, or days of the year. For

example, if a contractor is doing kernel work, he might be supposed to access the

appropriate group account only during working hours. Times are expressed as a

- 13 ­

day of the year, followed by a day of the week, followed by a time of day; any of

these three parts may be omitted, but if more than one is present, all must be

true for lsu or nsu to allow the pushing.

The format for each of these is quite liberal; for the day of the year, any of

the following forms will be recognized:

July 4, 1986
July 4
July, 1986
July
7/4/86
7/4

The first and fifth give permission only for July 4, 1986; the second and sixth,

for July 4 of any year; the third, for any day within July, 1986; and the fourth,

for any day in July of any year. Days of the week may be expressed by naming

the day; only as much to identify one day is needed (for example, any of "Sun­

day", "Sun", and "Su" will be read as "Sunday"; but "s" will be rejected as

ambiguous, since it could refer to "Saturday".) Times of day may be given in

any of these forms:

8:12:16 PM
8:12:16
8:12 PM
8:12
8PM
8
noon
midnight

If an "AM" or "PM" is given, time is based on a 12-hour clock. Otherwise, it is

based on a 24-hour clock. So, the first time would give permission at 8:12:16 in

the evening, the second at 8:12:16 in the morning, and so forth. Note that say­

ing "8" gives permission for the entire hour of 8 o'clock in the morning; thus, 8

- 14 ­

and 8:00:00 are not the same.

Times may also be expressed as an interval. For example, to prevent some­

one from running lsu on weekends, the time field could be set to "Mon-Fri". To

restrict use of lsu to working hours during the summer months, the field "June­

Sept Mon-Fri 8am-5pm" suffices.

A complete syntax is given in Appendix II.

Refer back to the sample file at the beginning of this section . The first line

means user "nancy" can lsu to the group account bin only during the weekdays

from 9 AM to 5 PMj the second line says that user "mab" can lsu to any

account on the system during March 1985. The third line indicates that user

"rIb" can substitute the identity of the group account staff at any time, and the

final line allows "gba" to lsu to news only during summers.

Fields are separated by one or more tab characters. If either of the last two

fields are omitted, they are held to be satisfied. It is recommended this not be

done (and this feature may disappear in the next version.) Note the terminal

field must be present if the time field is present.

The program csu will check for, and report, syntax errors in the access file .

Since it will print the syntactically incorrect lines, it can only be run by the

superuser.

Lsu and nsu use the permission file a bit differently. With lsu, if a user is

not explicitly listed in the file as being able to lsu to the new identity, permission

is denied; and the default new identity is the first name in the identities-he-can­

push field of the permission file that is satisfied. With nsu, if a user attempts to

- 15 ­

nsu to some other account, and provides a proper password, the nsu succeeds

unless the account being pushed is named in any identities-he-can-push field of

the access file. If so, the access file must allow the user running nsu to do the

pushing. The default new identity for nsu is root.

Log File

Every time lsu or nsu is executed, an entry is made in a log file indicating

the success or failure of the attempt. This log is readable and writable only by

the superuser. Some sample entries:

SU 02/18 11:20 + tty i 9 mab-spool [09941] - became spool (UID 2, GID 1)

SU 02/18 11 : 21 tty i 9 spool- [09942] bad tty (lin e 11)

SU 02/18 11 : 21 tty i 9 spool-root [09942] invalid password

SU 02/18 11 : 21 - tty i 9 spool-root [09942] - permission denied

SU 02/18 11 : 21 tty i 9 mab-nancy [09944] - nancy not newuser (lin e 9)

SU 02/18 11 : 21 - tty i 9 mab-nancy [09944] - permission denied

nu 02/18 11:26 + tty i 9 mab-root [09980] - became root (UID 0, GID 0)

nu 02/18 11 : 42 tty i 9 mab-root [10088] invalid password

nu 02/18 11 : 42 tty i 9 mab-root [100881 - permission denied

su 02/18 11 : 55 tty i 9 mab- [10236] root not newuser (lin e 1)

su 02/18 11:55 tty i 9 mab- [10236] bad tty (1 in e 3)

su 02/18 11 : 55 - tty i 9 mab-root [10236] - permiSSIon den i ed,

su 02/18 11 : 56 tty i 9 mab- [10243] root not newuser (lin e 1)

su 02/18 11:56 + tty i 9 mab-root [10243] be came root (UID 0, GID 0)

cu 02/18 11:59 v tty i 9 roo t - [1027 0 1 checking syntax of XXX

cu 02/18 12:04 v tty i 9 mab- [10317] permission denied (not root)

Each line has the same format. Fields are separated by blanks, except that the

last field (everything after the rightmost hyphen, in the display above) may con­

tain blanks. The first item is a two-character code for the version of lsu being

run; they are

- 16 ­

code program

su su

SU lsu
nu nsu

cu csu

The next two fields give the month, day, and time; they are always in the form

of a two-digit number for the month followed by a slash followed by a two-digit

day of the month, and a two-digit hour followed by a colon followed by a two-

digit minute. The month is represented as a number from 1 (January) to 12

(December), and the day of the month follows the slash. Times are given using

a 24-hour (European) clock. The fourth field is one of "+", "-", "v", or "i";

the first indicates the substitution was successful, the second that it failed, the

third that a syntax check was attempted, and the fourth an informational mes­

sage. (Note that one run of any of these programs may produce many informa­

tional messages, but only one message indicating success or failure.) The fifth

field is the name of the terminal from which lsu or nsu were run; it is at least

seven characters long (if the terminal name is longer, this field is extended

appropriately). The sixth field is seventeen characters or less; it consists of the

user's name followed by a hyphen followed by the name of the new identity. If

there is a problem with the access file, the name of the new identity may be

omitted. If for some reason no login name can be found, the user identification

number is printed in parentheses. The seventh field is a stamp which can be

used to associate messages from the same run with one another; it is always five

digits enclosed in square brackets and separated from the sixth and eighth field

by one blank. Following this field, there is a hyphen, followed by a message

17 ­

field.

The message field indicates what happened and why. If the attempted sub­

stitution was successful, the message gives the login name, user identification

number, and group identification number of the new identity. If the attempted

substitution failed due to a system error, such as the access file having incorrect

permissions or not existing, or because the user did not know the correct pass­

word, the message indicates this. If the substitution failed because the user did

not have permission to make the desired access, many messages may appear,

each indicating one reason for denial of access; but all have the same stamp.

Note that under certain conditions error messages may be given but the access

will succeed; this mainly happens when a user listed in the nsu permission file

tries to nsu to an account not listed in any newuser's field of the nsu permission

file.

Security Considerations

Lsu and nsu are very sensitive programs; security was a major consideration

while writing them. We used a number of techniques to increase the difficulty of

"breaking" the programs.

The first weak point is the access file. Obviously, it must be owned by root

and not writable by any other user. Less obviously, it should not even be read­

able by any other user (if it were, an attacker would know which users can gain

access to privileged accounts, and thus that he or she should concentrate their

efforts on obtaining those user's password.) So, one step within the program ver­

ifies that these conditions hold. If not, the program terminates, the access . file is

- 18 ­

made unreadable, mail is sent to an administrator, and the lsu fails. (Making

that file unreadable prevents future lsu's or nsu's from using it but allows a

superuser to look at it later.)

There is one problem with this scheme. If the identity to be pushed is that

of the superuser, and the access file is corrupt or does not exist, it would not be

possible for anyone to become superuser, thereby forcing the system to be

reloaded (or some such drastic action.) To eliminate this problem, when the

access file is corrupt or nonexistant and the identity to be pushed has UIn 0, nsu

will ignore the access file. This way, the user need only supply the superuser

password. Of course, the first thing that user should do is fix the access file

problem!

In fact, the name of the access file itself is hidden, on the principle that not

advertising the location of the file will discourage attackers from using other

means of breaching security to alter the file. This is done by constructing the

file name in memory, and clearing the file name immediately after use . Thus,

the file name exists during only two systems calls: the first, to get status infor­

mation about the file; and the second, to open the file .

Lsu and nsu also conceal the reasons for denial of access from the user.

When a user runs either of these programs, and for some reason access is to be

denied, the only message the user will get is:

program name: permission denied

regardless of the reason for denial. This discourages attempts to figure out what

a password is, or when the action is allowed, by trial and error. Of course, the

- 19­

specific reason for denial is placed in the log file; this log, however, is as

stringently controlled as is the access file, and if it is not readable and writable

by root and no-one else, lsu and nsu will refuse to push any new identity. More­

over, the user must at all times supply a password, whether or not the password

is relevant to the denial of access. For example, if user "mab" tried to lsu to the

superuser, and he did not have permission in the access file, there is no need to

request a password; even if "mab" knows the password, access will be denied.

But "mab" will still have to supply the password; this is to prevent him from

knowing that he was denied access due to the access file. Otherwise, if an

attacker were impersonating "mab", the attacker would know to try another

account because he would not be able to use lsu or nsu to access the superuser

account.

Normally UNIX programs may be invoked by more than one name using a

mechanism called linking. Lsu requires that the program be invoked with _a

known name, because the name is used to determine how to verify the access

rights of the user. If lsu is invoked by an unknown name, it denies access.

Normally the value of the user's PATH environment variable IS not

changed (unless, of course, he instructs lsu or nsu to read a startup file which

does change that.) However, if the new identity is that of the superuser, a new

default value is supplied. This is done because some directories are writable by

users other than the superuser; a prime example is the current working directory,

known as ".", which is usually in nonprivileged user's values of PATH but

should never be in that variable's value for the superuser. The danger is it

makes accidentally invoking Trojan horses very likely.

- 20­

Backward Compatibility

The programs lsu and nsu are based on an older program called SU. How­

ever, lsu and nsu differ in several important respects.

First, under most UNIX systems, su does not do any access list checking; if

the user knows the password of the user whose identity he wishes to push, the

push is allowed. This prevents the use of group accounts as described in the first

section, because if the group account has a password someone can log into that

account. The one system which provides an access list (4.3 BSD UNIX) does so

only for the superuser and requires that the user be a member of the group

wheel. Unfortunately, the file defining the members of that group is world­

readable, and so an attacker knows which accounts he should try to penetrate in

order to use su to get superuser privileges. Worse, no constraints on time or ter­

minal are possible, and any account for which the user knows (or can guess) the

password is vulnerable.

The version of su provided with tsu and nsu provides the security of those

two programs but the environment of the original su. It uses only the access file,

not the group file, to determine if a user can access the superuser, unless the

access file is corrupt or nonexistant; in this case it acts just like nsu. This is very

confusing for people who are used to using the original su and do not know it

has been replaced!

Functionally, BU is similar to nsu in that it requires the password of the

account the identity of which is being pushed; however, the environment variable

USER retains its original value, and on System V-based UNIXes, HOME also

- 21 ­

retains its original value. This causes certain programs such as mail-reading pro­

grams to work with the original user rather than the new identity that was sub­

stituted.

Further Directions

There are two areas where security needs to be tightened; unfortunately,

these are under kernel control. The first is that some UNIX systems have a bug

in the paging algorithm that does not check for text pages which have been writ­

ten on; in this case, it is possible to alter one page of a setuid program to execute

a shell, and then rerun the setuid program. The effect is to provide a setuid shell

without needing a password. The only fix is to fix the kernel.

The second is that the access file is not encrypted. Were it encrypted, con­

cealing its location would not be so critical, and in fact this is planned for the

next version of these programs.

Currently these programs run on many different systems (see Appendix

III for a list.) Lsu has been used for several months for administrative accounts

and its users are quite pleased with the result. Not only do they not have to

remember a second password, but lsu provides a consistent environment for all

users of any particular account. This makes working together quite simple, and

allows one procedure to be drawn up, rather than a different one for each user.

All in all, it appears to be a success.

Acknowledgements: Thanks to Barry Leiner for his review of, and comments on,

the first draft, and Bob Van Cleef for his on the second.

- 22­

References

[BOUR84] Bourne, S., "An Introduction to the UNIX Shell", in UNIX User's
Manual, Supplementary Documents, 4.2 Berkeley Software Distribu­
tion, Virtuql VAXt-ll Version, Computer Science Division, Depart­
ment of Electrical Engineering and Computer Science, University of
California, Berkeley, CA (March 1984), as reprinted by the
USENIX association.

[DENN82] Denning, Dorothy, Cryptography and Data Security,
Wesley Publishing Company, Reading, MA © 1984.

Addison­

[JOY84] Joy, William, "An Introduction to the C Shell", in UNIX User's
Manual, Supplementary Documents, 4.2 Berkeley Software Distribu­
tion, Virtual VAX-ll Version, Computer Science Division, Depart­
ment of Electrical Engineering and Computer Science, University of
California, Berkeley, CA (March 1984), as reprinted by the
USENIX association.

[MORR79] Morris, Robert and Thompson, Ken, "Password Security: A Case
History", CACM22(1l), pp. 594 - 597.

[UPM84] -, UNIX Programmer's Manual Reference Guide, 4.2 Berkeley
Software Distribution, Virtual VAX-ll Version, Computer Science
Division, Department of Electrical Engineering snd Computer Sci­
ence, University of California, Berkeley, CA (March .1984), as
reprinted by the USENIX association.

Appendix I. Syntax of the Terminal Field in the Access File

This appendix describes the semantics of the terminal field in the access file.

In the grammar below, words in CAPITAL ROMAN TYPE are terminals and

are defined after the grammar; words in small italics are nonterminals and are

defined within the grammar itself.

t vAX is a Trademark of Digital Equipment Corporation.

- 23 ­

stat ..- ezpr
expr .. - '(' expr ')'

I!' expr

expr '&' expr

expr 'I' expr

ttyname

ttyspeed

'any'

'none'

ttyname .. - name

I '+' name

I '-' name

,*, 	nameI
patternI

I 	 '+' pattern

'-' pattern
I
,*, 	patternI

ttyspeed .. - rate

I '+' rate

I '-' rate

,*, 	rateI

rate .. - RELATION NUMBER

name .. - STRING

pattern .. - "" STRING ''''

where RELA TION is any of:

@ (equal to) <> (not equal to) > (greater than)
- (equal to) >< (not equal to) >= (greater than or equal to)
< (less than) != (not equal to) <= (less than or equal to)

and NUMBER is any non-negative integer and STRING is any list of characters.

In 	a string, the following characters must be preceded by a "\" or they will ter­

minate the string and produce unexpected results:

(comma) (equal sign) > (greater than sign)
< (less than sign) (exclamation point) ((left parenthesis)
) (right parenthesis) (vertical bar) & (ampersand)

+ (plus sign) (hyphen) * (asterisk)

\ (backslash)

The symbol '+' means the characteristic applies to the standard input dev­

ice only, '-' means the characteristic applies to the standard output device only,

- 24 ­

and '*' means the characteristic applies to the standard error device only.

Appendix II. Syntax of the Time Field in the Access File

This appendix describes the semantics of the time field in the access file. In

the grammar below, words in CAPITAL ROMAN TYPE are terminals and are

defined after the grammar; words in small italics are nonterminals and are

defined within the grammar itself.

25 ­

stat ..-	 expr
expr 	 '(' expr ')'

'!' expr

expr '&' expr

expr 'I' expr

day_oJ_year day_oJ_week time_oJ_day

day_oJ_week day_oJ_year time_oJ_day

day_oJ_year time_oJ_day

day_oJ_year day_oJ_week

day_oJ_week time_oJ_day

day_oJ_week day_oJ_year

day_oJ_year

day_of_week

time_oJ_day

'any'

'none'

day_of_week::= DAY OF WEEK

I DAY OF WEEK '-' DAY OF WEEK

I day_oJ_week ',' day_of_week

time_oJ_day::= time_of_day '-' time_oJ_day

I time_oJ_day ',' time_of_day

I NUMBER ':' NUMBER ':' NUMBER MERIDIAN

1
NUMBER ':' NUMBER MERIDIAN

I NUMBER MERIDIAN

1
NUMBER ':' NUMBER ':' NUMBER
NUMBER ':' NUMBERI

I NUMBER
I SPECIAL_TIME

day_oJ_year ::= MONTH NUMBER ',' NUMBER

I MONTH NUMBER

I MONTH ',' NUMBER

I MONTH

I NUMBER 'I' NUMBER 'I' NUMBER

I NUMBER 'I' NUMBER

where NUMBER is a positive integer (if not valid, an error message is printed),

MERIDIAN is either "am" or "pm", SPECIAL TIME is either "noon" or

"midnight", DA Y _OF_WEEK is any of:

Sunday Tuesday Thursday Saturday
Monday Wednesday Friday weekdays

and MONTH is any of:

- 26­

January April July October
February May August November
March June September December

With any of these keywords, only enough of the name to identify a unique name

must be given, and case is ignored. (Note that 'a' is not a unique abbreviation

for "am", because it is also the first letter in "april" and "august".)

Appendix III. Compilation and Installation

When you get the [su package, type

sh Setup

This program asks you to enter your system type as defined below:

enter

BSD4 2
if your system is

Berkeley Software Distribution Release 4.2
BSD4 3 Berkeley Software Distribution Release 4.3
DYNIX2
NPSN3

0 Sequent Balance Dynix Release 2.0
NAS Processing System Network Build 3

ROS3 3 Ridge Operating System Release 3.3
SGI2 3 Silicon Graphics IRIS Graphics Library 2 - Workstation 2.3
SGI3 4 Silicon Graphics IRIS Graphics Library 3 - Workstation 3.4
SGI3 5 Silicon Graphics IRIS Graphics Library 3 - Workstation 3.5
SUN4 2 Sun Microsystems UNIX Release 4.2
SYSV AT&T System V
UNICOS Cray UNIX Operating System
UTS Amdahl UTS

(You can supply the type as a command-line argument, too.) This will link the

command file to make the programs for the system to "Makefile". Once this is

done, replace the lines

LSUPERM=".j .lsu"

SUPERM=".j .su"

LOG=".j .log"

DESTDIR=" jusrjlocaljbinj"

with the full path names of the access files for [su, both nsu and su, the log file,

- 27 ­

and the directory where the executables are to be placed, respectively. Then

type

make

to compile the programs and

make install

to install them.

If your system is not one of the ones named above, look in the directory

"Make" for a file that will work, or build one using them as a model. The com­

mand files all are named "Make.sys", where sys is the system type entered to

Setup (see above.) Do this for your system, too, and add the new abbreviation to

Setup. Then look in the directory "Ed" - these files edit part of "lsu.H" to

change the names of the log file and the permission files. The output will look

something like this (the lines that begin with "buf[" will be different; on a Sys­

tem V-based version of UNIX, the ed commands will have some extra backslashe~.·

This is due to the difference between BSD and System V pattern matchers.)

- 28 ­

1~\I\ * begin SUPERM \ *\1\ \$1,1 ~\I\ * end SUPERM \ *\1\ \$/c
1* begin SUPERM *1\
buf[O] = '. ';\
buff!] = 'I ';\
buf[2] = '.';\
buf[3] = 's';\
buf[4] = 'u';\
buffS] = '\0';\
/* end SUPERM *1\
1~\I\ * begin LSUPERM \ *\1\\$1,1 ~\I\ * end LSUPERM \ *\I\\$/c
1* begin LSUPERM *1\
buf[O] = '.';\
buff!] = '1';\
buf[2] = '.';\
buf[3] = '1';\
buf[4] = 's';\
buffS] = 'u';\
buf[6] = '\0';\
1* end LSUPERM *1\
1 '\1\ * begin LOG \ *\1\\$1,1 ~\I\ * end LOG \ *\I\\$/c
1* begin LOG *1\
buf[O] = '.';\
buff!] = '1';\
buf[2] = '.';\
buf[3] = '1';\
buf[4] = '0';\
buffS] = 'g';\
buf[6] = '\0';\
/* end LOG *1\
!,$w
q

This is used as input to ed to set up the names of the log file and the permission

files without putting the strings into a form that can be read by looking for

ASCII strings in the executable.) Figure out which one works. Finally, look in

"sysdep.h" and add the appropriate definitions.

Messages indicating log and access file problems are sent to the user

"lsumaint": Either create a mail alias by this name to reroute the messages to

the appropriate people, or change the value of the. constant LSUMAINT in

"sysdep.h".

- 29 ­

Appendix IV. Manual Pa.ges

The following pages are the manual pages for /su, nsu, and su, version 3.0.

LSU (1) UNIX Programmer's Manual LSU (1)

NAME
su, lsu, nsu - substitute user id temporarily

SYNOPSIS
Isu [- I [userid I - - II command_as_shell_argument I
nsu [-I [useridl -- I [command_as_shell_argument I
su [- I [userid I -- II command_as_shell_argument I
csu [file ... I

DESCRIPTION
Lsu, nsu, and su allow a user to become another user without logging off. These programs, col­
lectively called "su programs", will execute a shell with real and effective UIDs and GIDs set to
those of the specified user. The new shell will be the program named in the shell field of the
specified user's password file entry, or sh (1) if none. The new user ID stays in force until the
shell exits.

Any additional arguments given on the command line are passed to the program invoked as the
shell. Notice that with sh and csh (1), this means commands must be preceded by the option -c
and must be quoted (see the respective manual pages or the examples below.) In this case, the
default user ID may be used by replacing userid with -- . This must be done if u,erid is to be
defaulted, since otherwise lau will think the first word of the command is the login name of a
user.

The user's environment variables are changed as follows: Isu and nsu set USER to the login
name corresponding to userid (the two are usually the same); all su programs set HOME to the
home directory of userid; SHELL, to the full path name of the shell being executed; and if the
userid has a llID of 0, PATH will be set to a specific set of directories . (If there is no PATH
environment variable and userid has a UID of 0, a PATH environment variable will be added.)
However, argument 0 of the shell being executed is set to the name of the su program being exe­
cuted except when the first argument is -, in which case the environment is changed further to
what would be expected if the user had logged in as userid , This is done by invoking the snell
with the first character of argument 0 being '-' (that is, as -Isu, -nau, or -su); this conven­
tion causes shells to read their start up files.

To use nsu or su, the user must know the password of the userid to which he wishes to change.
The system administrator may allow only certain users to use these programs to change to a '
given userid; in such a case no other user may use these programs to change to that u,erid
whether or not he knows userid's password. In these cases the system administrator may also
limit the devices from which these two programs may be run and the times during which it may
be run. With all users, the default userid is root.

To use Ins, the user need not know the password of the u,erid to which he wishes to Isu. How­
ever, the system administrator must explicitly grant the user permission to use this program.
The system administrator may constrain the use of this program by limiting the devices from
which it may be run, the times during which it may be run, and/or the userids that may be sub­
stituted. The system administrator also controls the userid that will be assumed should no
u8erid be supplied on the command line.

If the current user has a UID of 0, access control files are not checked and no passwords need be
supplied.

Csu takes as arguments one or more access files, and checks the syntax of the entries in these
files. If no arguments are supplied, C8U reads from its standard input. Csu may only be run by
the superuser.

7th Edition ARC 1

LSU (1) UNIX Programmer's Manual LSU (1)

EXAMPLES
To become user spool while retaining your nonlocal environment, type

lsu spool

To become user spool but change the environment to that which spool would have had it logged
in, type

Isu - spool

To execute command with the login environment and permissions of user spool, type

lsu - spool -c "command"

Note the arguments following spool are passed directly to spool's shell. To execute command as
the default user ID, type

Isu - - -c "command"

In all cases, 8U or n8U may be used rather than t8U .

WARNINGS
The shell supplied by tau and n8U runs the startup files of the user you are tau'ing or nau'ing to.
This is in the spirit of what these programs should do. If you really want the old behavior, use
BU j it runs the startup files of the user you are 8u'ing to, and is provided for backwards compati­
bility with an older version of 8U (1).

The default search path varies from system to system. If PATH is defined, the directories which
will be in the search path when a user tBUS, n8US or 8US to superuser also vary from machine to
machine. In an ideal world, the resulting search paths would always be the same, regardless of
the machine on which this program were run, but in our environment, this is not likely soon.

FILES
/ etc / passwd password file various access files log file

SEE ALSO
csh(l)' login(l), sh(l}

AUTHOR
Matt Bishop (mab@riacB.edu)

VERSION
This describes version 3 .0 of t8U, n8U, and BU .

7th Edition ARC 2

mailto:mab@riacB.edu

,,RII\CS
Mail Stop 230-5

NASA Ames Research Center

Moffett Field, CA 94035

(415) 694-6363

The Research Institute for Advanced Computer Science

is operated by

Universities Space Research Association

The American City Building

Suite 311

Columbia, MD 21044­

(301) 730-2656

