Tree Approach to Vulnerability Classification

Sophie Engle, Sean Whalen, Damien Howard, and Matt Bishop

Department of Computer Science

University of California, Davis

[sjengle,shwhalen,djhoward,mabishop]@Qucdavis.edu

Abstract

We present a classification scheme based on conditions which must hold for a vulnerability to
exist. This scheme allows for vulnerabilities to fall into multiple classes without ambiguity,
and enables analysts to focus on the causes of vulnerabilities. We use a tree-based approach
to organize these conditions at different levels of abstraction.

1 Introduction

Several existing vulnerability classification schemes
fulfill various needs of researchers, developers, and
system administrators. However, current schemes
have not made material progress in integrating pol-
icy or identifying unknown vulnerabilities. Our goal
is to provide an unambiguous classification scheme to
further progress in these areas.

A vulnerability classification scheme should satisfy
several properties [7]. To illustrate these properties,
consider a subset of playing cards (see figure 1). Let
each card represent a vulnerability with the value,
suit, color, and type of card representing conditions
for the vulnerability to exist. Therefore the condi-
tions represented by the four of spades (44) include
having the value of four, belonging to the spade suit,
being black in color, and being a number card (versus
a face card).

Any classification scheme should allow vulnerabilities
that arise from similar conditions to belong in the
same class. For example, the four of spades, clubs,
hearts, and diamonds (44, 4 4% 44) should all
belong to the same class since each card has a value
of four.

v
€

Figure 1: Subset of playing cards containing the king,
queen, four, and three cards from all four suits.

However, vulnerabilities may fall into multiple
classes. For example, the four of spades (44) also be-
longs to the class of spade cards with the king, queen,
and three of spades (K4, Q#, 34). Based on color,
the four of spades also belongs to the class of black
cards along with any spade or club card. Finally, it
can also be viewed as belonging to the class of num-
bered cards, unlike the king or queen cards. The four
of spades (44) belongs to all of these classes simul-
taneously. Figure 2 shows different classes based on
the properties of value, suit, color, and type.

Classification should be primitive: determining if a
vulnerability belongs to a particular class requires
only a yes or no answer without ambiguity. As a
result, each class is described by exactly one prop-
erty. Consider the class of heart cards. To belong a
card must have a heart (¥) suit. Other properties,
such as value or type, do not matter. For example,
it is easily determined that the four of spades (44)
does not belong to the heart class while the three of
hearts (3¥) does.

Finally, classification should be well-defined and
based on measurable details. In the above examples,
classification of cards is based on value, suit, color, or
type. Classification should not be based on qualita-
tive characteristics such as high, low, lucky or unlucky.
Likewise, classification of vulnerabilities should not
be based on social characteristics or motives.

2 Terminology

Many security and vulnerability terms have ambigu-
ous or conflicting definitions, leading to confusion or
misunderstanding. To avoid this, we explicitly define
the terms used in this paper.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

34 44 Q& K& 34 44 Q& Keo

3d 4% Q& K& 3d% 446 Q& K&

39 49 QY K¥Y 3% 49 Q¥ KV

3¢ 4¢ Q¢ Ko 36 44 QO¢ Ko
by value by suit

34 44 Q& K& 34 44 Q& Ko

3d 4&% Q& Ko 3d% 446 Q& K&

3w 49 QY K¥Y 3% 4% Q¥ KV

3¢ 4¢ Q¢ Ko 36 44 Q¢ Ko
by color by type

Figure 2: Different classes based on value, suit, color, and type.

A security policy is a partition of system states into
allowed and disallowed states (see figure 3). A vul-
nerability is a set of transitions which take a system
from an allowed state to a disallowed state, cross-
ing the policy partition. The set of commands that
implement a vulnerability is considered an exploit,
while an attack is the ezecution of an exploit.

Each vulnerability defines exactly one vulnerable
state. An allowed state from which a disallowed state
may be reached is considered a vulnerable state
(see figure 3). For example, if user authenticated is
considered an allowed state but still permits policy
to be breached, then this state is a vulnerable state.
Once the transition from this state to a disallowed
state is blocked, this state is no longer considered
vulnerable. Attributes of vulnerable states are called
characteristics, which are discussed next.

2.1 Characteristics

An attribute of a vulnerable state is considered a
characteristic. For example, let the four of hearts
(44) represent a vulnerable state. The value, suit,
color, and type are all characteristics of the state.
The characteristic set is the set of all attributes
describing the vulnerable state.

policy
partition

~
disallowed states

vulnerable state

“.%CJ O
i tu-lu tn

~
allowed states

Figure 3: Representation of a vulnerable system. The
vulnerability is the set of transitions tg to tn.

We hypothesize that a large set of vulnerabilities
can be described by a smaller set of characteristics.
If true, detection and remediation of vulnerabilities
based on the characteristic set may be a practical
method of improving system security.

The characteristic set is minimal when it contains
the minimum number of characteristics necessary for
the vulnerability to exist. The characteristic set
is sound when the characteristics are independent.
The basic characteristic set is both sound and
minimal.

We hypothesize that the basic characteristic set can
be determined for any vulnerability. Removal of any
characteristic from the basic set breaks the connec-
tivity between the vulnerable and disallowed state,
disabling the vulnerability. For example, consider a
system with allowed states { K%, Qé, 44} and disal-
lowed state {4¥}. Any transition between two cards
which share an attribute is legal (similar to the game
crazy eights). Thus 44 is a vulnerable state (see fig-
ure 4a) with a basic characteristic set {value = 4}.
The set does not include suit as it does not effect the
transition to 4¥. Changing the value to 3 removes
this vulnerability from the system (see figure 4b).

A set of characteristics C is considered complete
with respect to a given system if the characteristic
sets of all vulnerabilities in the system are composed
of elements of C'. Finding the complete characteristic
set for a deck of cards is trivial (needing only value
and suit to describe all cards), however this is rarely
the case with computer systems.

We use the basic characteristic set of a vulnerabil-
ity to classify that vulnerability. The characteristics
themselves must be well-defined, and should be based
on code, the environment, or other technical details.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

policy
partition

K Q 4

L] suit ® | color | N | value

K Q ‘ 3 p .

L] suit & | color | B 7 .
o\ J

.
allowed states

vulnerable state

disallowed

Figure 4: a. vulnerable system (top), b. secure system

In this paper, we focus on the classification scheme
and methodology, and merely touch on specific char-
acteristics themselves.

2.2 Characteristic Trees

Unfortunately, enumerating the state machine repre-
sentation of a computer system is intractable. We
need another way of representing vulnerabilities and
characteristics. Therefore we use a tree to organize
the characteristics of a system. This characteris-
tic tree provides a hierarchical organization of the
characteristic set, allowing for greater flexibility and
depth than vulnerability classification based on char-
acteristics alone.

Different layers in the tree represent characteristics
at differing levels of abstraction. The characteristics
themselves can be given at any level of abstraction,
including low levels such as software or hardware im-
plementation as well as at higher, design levels of ab-
straction. For extremely simple systems, the charac-
teristics may be capable of describing system state
attributes directly. For complex systems the charac-
teristics must be more general.

Each node in the characteristic tree has associated
type and subtype indicating its allowed interaction
with other nodes. There are two main types: ab-
stract and detail. For a deck of cards, abstract
nodes may include value or suit, while king (K) or
spade (#) are more specific and would be considered
detail nodes.

Abstract nodes provide hierarchical organization of
the characteristics. There are two abstract subtypes,
container and category nodes. Abstract container
nodes are the most abstract and high-level nodes in

the tree. These nodes may only have other abstract
nodes as children. For example, design could be an
abstract container node for characteristics describing
design flaws. Likewise there could be an implemen-
tation node for implementation flaws.

On the other hand, abstract category nodes may con-
tain only characteristic nodes (defined below) as chil-
dren. These nodes provide the interface between ab-
stract and detail nodes.

There are two subtypes of detail nodes, characteris-
tic and implementation nodes. The characteristic
node represents an actual characteristic of the vul-
nerability. The set of all characteristic nodes in the
tree represent the characteristic set of the vulnerabil-
ity. These nodes may contain implementation level
details in the form of implementation nodes. Imple-
mentation nodes provide details for the parent char-
acteristic only, and may not always be included.

For example, if the characteristic node is “failure
to check bounds,” the corresponding implementation
node would contain information such as “bounds of
pass not checked in login program.” The type and
subtype relationships are summarized in figure 5.

Two other restrictions are placed on the character-
istic tree. First, abstract nodes must have at least
one child node or the abstract node is removed from
the tree. Hence abstract nodes are always internal
nodes, and only detail nodes (either characteristic or
implementation nodes) may be leaf nodes of the tree.
This also means that only characteristics may have
implementation-level details.

Finally, characteristic trees are always rooted. The
root node of the tree will always be an abstract con-
tainer node (called the root container). This node
represents the vulnerability as a whole.

Figure 6 shows the relationships between different
node types. Notice that because of these relation-
ships, any path from the root to any leaf in the tree
will include exactly one root container, one abstract
category node, and one detail characteristic node.

type subtype child type
abstract container abstract (any)
abstract category characteristic

detail characteristic | implementation

detail | implementation (none)

Figure 5: Characteristic tree node types.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

root container

| container ‘ l container | abstract
category

= | characteristic ‘ | characterlstlc ‘

E

3z

e zmplementatwn

Figure 6: Relationships between node types.

The complete characteristic tree hierarchically
organizes the complete characteristic set for a given
system. This tree provides an overall picture of
the types of characteristics vulnerable states tend to
have. Implementation nodes are never included in
the complete characteristic tree, as they are specific
to a particular vulnerability. Figure 7 provides an
example complete characteristic tree for card charac-
teristics.

Every vulnerability has a characteristic set and a cor-
responding characteristic tree. It is important to note
that individual characteristic trees are not decision
trees and do not represent a taxonomy of vulnerabil-
ities. However, a taxonomy of vulnerabilities could
be derived from a complete characteristic tree.

2.3 Symptoms

Recall that characteristics describe vulnerable states,
which are a subset of allowed states (see figure 3).
Symptoms are similar to characteristics, except
they describe disallowed states reached by the vulner-
ability. Specifically, symptoms are those properties of
the disallowed state which cause it to lay outside the
policy partition. Symptoms describe the effect of ex-
ploiting the vulnerability on the system.

Since both characteristics and symptoms are at-
tributes of system states, they are both described and
handled in similar manners. For example, there are
symptom sets and symptom trees with identical prop-
erties as characteristic sets and characteristic trees.

While the focus of this paper is classification based
on characteristics, classification based on symptoms
is also possible. In fact, symptoms may provide addi-
tional insight into the nature of vulnerabilities. The
complete symptom tree may even help provide a tax-
onomy of vulnerability severity.

For example, not all buffer overflow vulnerabilities
have severe consequences. Some overflows may crash

CARD VULNERABILITY

;ﬂt\ /value\
black red number face

N TS

AHdY O¢1--10KQ]J A

Figure 7: Complete characteristic tree for a deck of cards.

the system, while others may lead to privilege esca-
lation. Pairing the vulnerability characteristics and
symptoms allow us to differentiate between these two
overflows.

The pairing of characteristics and symptoms has
other implications. By pairing characteristics with
symptoms, we have a requires-provides relationship
similar to those described in [20]. More on the rela-
tionship between our work and the requires-provides
model is discussed in the future work section.

3 Classification

An unanticipated yet positive side effect of using
characteristic trees for vulnerability classification is
the simultaneous classification of the characteristics
themselves. The next several sections discuss vul-
nerability classification, characteristic classification,
taxonomies, and how classification is affected by the
ability to form the complete characteristic set of mod-
ern systems.

3.1 Vulnerability Classification

Ideally, the complete characteristic set for a given sys-
tem is determined before vulnerability classification
takes place. This allows for creation of the complete
characteristic tree, greatly simplifying the process of
vulnerability classification. The tree is created using
a top-down approach, repetitively dividing the char-
acteristic set into hierarchical categories until the de-
sired level of abstraction is achieved.

For example, let standard deck of cards represent
a system. Let the following represent the complete
characteristic set of this system:

{Q’*,'7‘71727 ’10’K7Q7J,A}
These characteristics describe either suit or wvalue.

This becomes the first division of characteristics in
the tree. Further inspection reveals that suit charac-

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

teristics can be further divided into black or red suits.
Similarly, value characteristics can be further divided
into number or face values. This produces the com-
plete characteristic tree shown in figure 7.

Once the complete characteristic tree is formed, vul-
nerability classification may occur. Classification is
broken down into three major steps:

1. Define characteristic set for vulnerability.
2. Create characteristic tree.
3. Classify vulnerability.

There are a number of ways to define the character-
istic sets of a vulnerability. One such method ana-
lyzes the steps taken to exploit the vulnerability [10].
After the characteristic set is defined, the character-
istic tree is created. This can be done easily using a
bottom-up approach since the characteristic tree for
any vulnerability is simply a subtree of the complete
characteristic tree. The process takes three steps:

1. Identify relevant characteristic nodes in complete
characteristic tree. Recall that implementation
nodes are not included in the complete charac-
teristic tree. Therefore characteristic nodes are
easily identified, as leaf nodes will always be
characteristic nodes.

2. Include the relevant characteristic nodes and all
ancestors of those nodes. This process can be
seen as discarding all nodes and branches in the
complete characteristic tree irrelevant to the
current vulnerability.

3. Add implementation nodes as mecessary. Any
characteristic node may have one or more im-
plementation nodes specific to the vulnerability.

For example, suppose the characteristics heart and
queen (¥, Q) are required for a vulnerability to ex-
ist. In the tree the leaf nodes ¥ and Q are added

(CARD VULNERABILITY)

Figure 8: Characteristic tree for { ¥, Q }.

to the tree first. Then the ancestor nodes from the
complete tree are included for both ¥ and Q. There-
fore nodes red and face are added next, followed by
suit and value before finally reaching the root node.
Figure 8 illustrates how the tree for this vulnerability
is derived.

Once the characteristic tree has been defined, classifi-
cation is trivial. Each node in the characteristic tree
represents a class (minus the root and implementa-
tion nodes), and the vulnerability belongs to all of
these classes simultaneously. For the example given
in figure 8, the vulnerability belongs to the class of
red cards, heart cards, queen cards, and so on.

This is the simplest method of classification the char-
acteristic trees provide. More complex classification
uses logical operations to combine simple classes. For
example, the class “royal flush” could be described as
including only cards in the face class having the same
suit characteristic.

3.2 Characteristic Classification

The characteristic tree not only provides the struc-
ture for classification of vulnerabilities, but also for
classification of the individual characteristics them-
selves. This provides more depth and meaning to in-
dividual characteristics, and increases understanding
of the impact certain characteristics may have.

Using the card example, the complete tree indicates
that the queen characteristic (Q) indicates the face
which also indicates value. On the other hand the
heart characteristic (¥) indicates color and suit. The
individual characteristics in this case now have two
more levels of meaning with the tree than without.

4 Example: Characteristics

To illustrate characteristic sets, we examine the com-
mon problem of buffer overflows. Using work from
[10] as a foundation, we break buffer overflows into
two main types: data and executable buffer over-
flows. This breakdown is based on the observation
that buffer overflows may occur in three different ar-
eas of process memory (data, stack, or heap) and aim
to modify either variables, return addresses, or func-
tion pointers.

A data buffer overflow occurs when input over-
writes existing data, causing the system to violate
security policy. These overflows may occur in any
area of process memory. A direct data buffer overflow

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

directly modifies the value of some variable, whereas
an indirect data buffer overflow modifies a pointer or
causes incorrect data to be used.

An executable buffer overflow occurs when exe-
cutable code is loaded into a buffer and eventually ex-
ecuted by altering either a return address or function
pointer. A direct executable buffer overflow directly
alters a return address, and hence must occur on the
stack. An indirect executable buffer overflow does not
involve modification of process state information. In
most cases, these overflows modify a function pointer
and may occur in any area of process memory.

4.1 Characteristics

Through the analysis in [10], we have isolated three
characteristics common to all buffer overflows. This
consists of an input, overflow, and modification char-
acteristic as follows:

— C_USR: Program allows user to upload input of
type TYPE. The value of TYPE may be data,
address, or instruction depending on the
specific overflow.

— C_BUF: User input exceeds bounds of associated
buffer. This represents the actual buffer over-
flow, due to absent or incorrect bound checks
on the user input.

— C_MOD: Modification of target ELEM allowed. The
target ELEM may be a variable, pointer,
return_address, or function_pointer depend-
ing on the specific overflow. This characteristic
implies that this modification is not detected and
countered.

Data buffer overflows involve user input of type data
or address (for indirect overflows). The target of
C_MOD is either a variable or a pointer to a variable.
These overflows also require an additional character-
istic describing policy violation:

— C_POL: Data value of ELEM affects process execu-
tion, causing policy violation. When ELEM is a
pointer, the data value refers to the value result-
ing from following the pointer.

Executable buffer overflows involve user input of type
instruction, address, or both. The target is always
areturn_address or function_pointer. In addition
to the three main characteristics already discussed,
these overflows have two other characteristics:

— C_JMP: Program can jump to the MEM in process
memory. For direct executable overflows, MEM is
always the stack. For indirect overflows, PMEM
is usually the heap, but may sometimes be the
data portion of process memory.

— C_EXE: Process can execute instructions stored in
the MEM.

4.2 Classification

While we cannot create a complete characteristic tree
for a system using these characteristics, we can fully
represent a class of buffer overflow vulnerabilities.
According to [10], all buffer overflows must have the
first three characteristics (C_USR, C_BUF and C_MOD).
In addition, data buffer overflows must also include
the C_POL condition. Executable buffer overflows
must include the C_JMP and C_EXE characteristics.

Therefore we can create complex classes (using logical
operations combining simple classes) to describe all
buffer overflow vulnerabilities. The general class of
buffer overflows can be described as:

C_USR A C_BUF A C_MOD A (C_POL V (C_JMP A C_EXE))

Classes for data buffer overflows or executable buffer
overflows can be expressed similarly. For example,
data buffer overflows could be described as:

C_USR N C_BUF A C_MOD A C_POL
Such that the following properties are true:

C_USR.TYPE = data V address
C_MOD.ELEM = variable V pointer
C_POL.ELEM = C_MOD.ELEM

4.3 Insights on Defense

Using these characteristics for buffer overflow vulner-
abilities, we came across several insights. For exam-
ple, by disabling the C_BUF characteristic all buffer
overflow vulnerabilities are disabled.

Other defenses mostly focus on preventing executable
buffer overflows, which are often more severe than
data buffer overflows. These defenses focus on dis-
abling those characteristics specific to these over-
flows. To negate the C_MOD characteristic, return
addresses might be stored in memory areas write-
protected from processes. Monitoring and counter-
ing the change of return addresses also negate this
characteristic.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

protoco.
vulnerability

mis-configuration implementation
. software . hardware mis-specification ‘ ‘ forgery flaw ‘ lstate machine ﬂaw‘ ‘ software flaw ‘ ‘ hardware flaw ‘
mis-configuration | | mis-configuration I
authentication | | nonce authorization
aw flaw aw

Figure 9: General characteristic tree for protocol vulnerabilities.

By understanding what characteristics these defenses
disable, we also understand which types of buffer
overflow vulnerabilities are prevented.

5 Example: Trees

We draw on an example from protocol vulnerabili-
ties to illustrate characteristic trees [22]. We define
the relevant characteristics, and present a specific in-
stance of such a tree.

5.1 Characteristics

Several characteristics specific to protocol vulnerabil-
ities have been identified, as shown in figure 9.

— SOFTWARE/HARDWARE MIS-CONFIGURATION:
Software configuration violates network policy.

— MIS-SPECIFICATION: Intended semantics not
captured by protocol specification. For example,
mandating broken encryption schemes.

— AUTHENTICATION FLAW: Protocol design
verifies identities insufficiently or not at all.

— NoNCE Frnaw: Protocol design binds data to
session non-uniquely or not at all.

— AUTHORIZATION FLAW: Protocol design verifies
permissions insufficiently or not at all.

— STATE MACHINE FLAW: Protocol specification
tracks internal state insufficiently or not at all.
Enables flooding and brute forcing.

The characteristics of software and hardware flaws
are too numerous to enumerate here. We have defined
a general set of symptoms, and are refining them for
specific implementations.

5.2 Specific Instance

Figure 9 gives a generalized tree for protocol vulner-
abilities, based on analysis of 24 protocol vulnerabil-
ities. Specific vulnerabilities tend to be simple. For
example, consider the Network Time Protocol version
2. A key index of 0 indicates signature verification
should not be performed and the sender should not
be trusted. However, the key index is not included
in the hashing of the message, making it forgeable.
An attacker could set the key index of another client
to 0, effectively disabling that client’s access to NTP
election on a different host.

This vulnerability is captured with the tree in fig-
ure 10. This tree also includes the denial-of-service
symptom that the vulnerability causes.

6 Classification Properties

Using characteristic trees allows us to create a classi-
fication scheme with properties beyond those we orig-
inally strived to achieve. The following sections dis-
cuss several properties we have encountered so far.

EXPLOIT

(vulnerability)(symptoms)
[
| design

forgery flaw

| ’ denial-of-service |

authentication

(key index

Figure 10: A network time protocol exploit.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

6.1 Classification Requirements

Our simple tree-based approach to classification pro-
vides three of the main requirements for our classi-
fication scheme. The requirements, taken from the
introduction, are as follows:

1. Any classification scheme should allow vulner-
abilities that arise from similar conditions to
belong in the same class.

2. Vulnerabilities may fall into multiple classes.
3. Classification should be primitive.

4. Classification should be well-defined.

Since the abstract nodes of the characteristic tree
group similar characteristics together, vulnerabilities
sharing similar characteristics will share the same ab-
stract nodes. This satisfies the first requirement.

Also, each node in the tree represents a simple class.
The vulnerability belongs to all these classes simul-
taneously, satisfying the second requirement.

If a node does not exist in the characteristic tree, the
vulnerability does not belong to the corresponding
class. Similarly, if the node exists the vulnerability
does belong to that class. This simple existence test
is unambiguous, and satisfies the third requirement.

The fourth requirement depends on the character-
istics themselves. Without well-defined characteris-
tics, classification cannot be considered well-defined.
However, if the characteristics are well-defined, then
the characteristic trees and classification are also well-
defined. Hence our earlier statement that all charac-
teristics must be well-defined.

6.2 Tree Properties

By applying a tree structure to characteristic sets we
inherit the positive (and negative) properties of trees
in general. Most importantly, the use of trees provide
hierarchical organization, flexibility, and simplicity to
our classification scheme.

The hierarchical organization allows us to provide
multiple levels of abstraction as necessary to our char-
acteristics. In many situations low levels of abstrac-
tion are necessary to provide the detail and assur-
ance necessary for the environment. However, in sit-
uations where this is unnecessary these lower levels
need not be included or analyzed to save time, space,
and money.

The flexibility of trees allows us to adapt our charac-
teristic trees to accommodate for new vulnerabilities.
For example, in the absence of a predefined complete
characteristic tree, we can define an initial general-
ized tree that we expand with new characteristics as
more vulnerabilities are analyzed.

Finally, the simplicity of the tree structure allows
us to focus on the characteristics of vulnerabilities
themselves, and not on a complicated (or restricted)
method of classifying them.

6.3 Obstacles

There is at least one significant downfall to this ap-
proach. Since characteristics are based on a partic-
ular system, one complete characteristic tree cannot
be used for both Linux and Windows vulnerabilities
unless the complete characteristic sets overlap. How-
ever, the abstract nodes are likely to overlap between
complete trees, with the only differences being in the
lower-level nodes more specific to the system.

The overlap of these characteristic sets would provide
more insight to vulnerabilities in general. Eventually,
it should be possible to build a high-level characteris-
tic tree representing vulnerabilities in general without
system dependencies.

7 Related Work

Our work is closest to the Program Analysis (PA) [5]
classification scheme, as the PA notion of a “raw error
pattern” is similar to our notion of a “characteristic.”
However, both the RISOS [1] and Program Analysis
schemes do not take into account level of abstrac-
tion, and classify vulnerabilities using generic cate-
gories that lend themselves to ambiguity. Landwehr’s
scheme [18] focuses on the genesis, time of introduc-
tion, and location of vulnerabilities. Aslam [2, 3] clas-
sifies vulnerabilities using a decision tree, and does
not allow vulnerabilities to fall into multiple classes.

Some classification schemes have specific goals. En-
dres presented a classification scheme from analyzing
errors from a specific subset of programs [14]. How-
ever, the focus of the work was to determine what
meaningful conclusions may be drawn from analysis
of errors, and is not immediately extensible as a gen-
eral vulnerability classification scheme.

DeMillo and Mathur present a grammar-based classi-
fication scheme of faults [13]. However, their work is
specific to problems found in TEX. Weber presents a

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

taxonomy of computer intrusions, but focuses on cre-
ating good classes for evaluating intrusion detection
systems [21].

Numerous other classification schemes exist, differing
from ours in perspective or approach. In his thesis,
Krsul presents another classification scheme based on
assumptions made by programmers [16, 17]. Cohen
presented a classification scheme based on attack and
defense [11, 12].

Howard’s taxonomy provides a scheme with a differ-
ent perspective and set of properties than ours [15].
The taxonomy presented focuses on computer inci-
dents, and uses events, actions, targets, and attacks
for classification. Our approach focuses more on the
characteristics present that allow such actions or at-
tacks to occur.

The attribute categorization scheme presented by Os-
trand and Weyuker allows for development of new
characteristics similar to our scheme [19]. However,
the method presented requires further development
to be widely applicable, and does not make use of
trees to handle abstraction and classification.

8 Future Work

Determining the complete characteristic set for mod-
ern systems may not be a tractable task. Despite this,
an initial generalized characteristic tree may be
formed. The generalized tree defines only the most
abstract levels of the characteristic tree, allowing for
characteristics to be “plugged in” as vulnerability
classification progresses. The initial generalized tree
should eventually evolve into the complete character-
istic tree as more characteristics and vulnerabilities
are discovered.

We are attempting to populate a generalized charac-
teristic tree using known protocol and host vulner-
abilities. Doing this for multiple systems will help
identify shared characteristics, leading to general re-
mediation techniques. From this work we intend on
creating a simple language for expressing vulnerabil-
ities classified with our approach. This language will
enable analysts to perform policy-based reasoning,
and is one of the strengths of our system.

We plan to investigate meaningful visualization of our
results. Currently the simple tree representation is
useful only for the complete (or generalized) charac-
teristic tree and individual vulnerabilities. We also
hope to provide a method of representing multiple

vulnerabilities simultaneously. Visualization may al-
low us to simply analysis, presentation, and discovery
of new relationships between vulnerabilities.

So far little work has been done on the symptoms
of vulnerabilities (discussed in section 2.3). However,
the combination of characteristics and symptoms may
have some of the most exciting implications. By using
the requires-provides approach given by Jigsaw [20],
our work may eventually extend to generating attack
chains and automated tools.

9 Conclusion

Our aim is to provide a simple, yet flexible method
of classifying vulnerabilities based on characteristics.
We also strive to achieve the properties listed in
section 6.1, which distinguishes our work from for-
mal taxonomies [16]. This includes providing a well-
defined, primitive classification scheme that allows for
vulnerabilities to fall into multiple classes. We believe
the scheme we have outlined in this paper satisfies
this requirement.

We focused on using characteristics to describe vul-
nerabilities to achieve well-definedness. Applying a
tree structure to these characteristics allowed us to
handle multiple levels of abstraction. Finally, to al-
low vulnerabilities to fall into multiple classes, we de-
cided against making this a decision tree. Instead,
each node in the tree represents a simple class. The
vulnerability then belongs to all these simple classes
simultaneously. Allowing multiple levels of abstrac-
tion also gave us flexibility and organization to our
characteristics.

By finding the complete characteristic set for a given
system, we can also use these trees to come up with
a taxonomy of vulnerabilities. While each complete
characteristic set depends on a specific system, we
believe this to be the best way of identifying vul-
nerabilities for that system. Furthermore, we may
be able to discover and prevent previously unknown
vulnerabilities by examining the system for individ-
ual characteristics from the complete set.

Much work using this scheme needs to be done, espe-
cially regarding host-based vulnerabilities. However,
initial results in protocol vulnerabilities and buffer
overflow vulnerabilities have been obtained. In both
cases classification was not only practical, but gave us
further insight into the nature and potential defenses
of these vulnerabilities.

MAy 2005

TREE APPROACH TO VULNERABILITY CLASSIFICATION

Our main hypothesis states that a large set of vul-
nerabilities can be described by a smaller set of char-
acteristics. The correctness of this hypothesis de-
termines whether our work simplifies the vulnerabil-
ity analysis of a system. Regardless, understanding
the conditions that create vulnerabilities will help us
guard against their introduction and exploitation.

Acknowledgements

We gratefully acknowledge the support of the National
Science Foundation under grant CCR-0311723 to the Uni-
versity of California at Davis.

References

[1] Abbott, R. P., J. S. Chin, J. E. Donnelley, W. L.
Konigsford, S. Tokubo, and D. A. Webb, “Security
Analysis and Enhancements of Computer Operat-
ing Systems,” Report NBSIR 76-1041, Institute for
Computer Sciences and Technology, National Bureau
of Standards, April 1976.

[2] Aslam, Taimur, “A Taxonomy of Security Faults
in the Unix Operating System,” Masters Thesis,
COAST Technical Report 95-09, Department of
Computer Science, Purdue University, 1995.

[3] Aslam, Taimur, Ivan Krsul, and Eugene H. Spafford,
“A Taxonomy of Security Faults,” Proceedings of
the National Computer Security Conference, COAST
Technical Report 96-05, 1996.

[4] Basili, Victor R. and Barry T. Perricone, “Soft-
ware Errors and Complexity: An Empirical Inves-
tigation,” Communications of the ACM, vol. 27, no.
1, pp. 42-52, January 1984.

[5] Bisbey II, Richard and Dennis Hollingworth, “Pro-
tection Analysis: Final Report,” Unclassified Report
ISI/SR-78-13 for DTIC AD A056816, University of
Southern California, Information Sciences Institute,
May 1978.

[6] Bishop, Matt, Computer Security: Art and Science,
Boston: Addison Wesley Professional, 2003.

[7] Bishop, Matt, “Vulnerability Analysis,” Proceedings
of the Second International Symposium on Recent
Advances in Intrusion Detection, pp. 125-139, Sep-
tember 1999.

[8] Bishop, Matt, “A Taxonomy of UNIX and System
Network Vulnerabilities,” Technical Report CSE-95-
8, Department of Computer Science, University of
California at Davis, May 1995.

[9] Bishop, Matt and David Bailey, “A Critical Analy-
sis of Vulnerability Taxonomies,” Technical Report
CSE-96-11, Department of Computer Science, Uni-
versity of California at Davis, September 1996.

ishop, Matt, Damien Howard, Sophie Engle, an

10] Bish M Damien H d, Sophie Engl d
Sean Whalen, “A Taxonomy of Buffer Overflows,”
(Pending), 2005.

Cohen, Fred, “Information System Attacks: A Pre-
liminary Classification Scheme,” Computers € Secu-
rity, vol. 16, no. 1, pp. 29-46, 1997.

(1]

[12] Cohen, Fred, “Information System Defenses: A Pre-
liminary Classification Scheme,” Computers € Secu-

rity, vol. 16, no. 2, pp. 94-114, 1997.

DeMillo, Richard and Aditya Mathur, “A Grammar
Based Fault Classification Scheme and Its Applica-
tion to the Classification of the Errors of TEX,”
Technical Report SERC-TR-165-P, Software Engi-
neering Research Center, September 1995.

Endres, Albert, “An Analysis of Errors and Their

Causes in System Programs,” ACM SIGPLAN No-
tices, vol. 10, no. 6, pp. 327-336, 1975.

[13]

[14]

[15] Howard, John Douglas, “An Analysis of Security In-
cidents on the Internet 1989 - 1995,” Ph.D. Thesis,

Carnegie Mellon University, 1998.

Krsul, Ivan, “Software Vulnerability Analysis,”
Ph.D. Thesis, COAST Technical Report 98-09, De-
partment of Computer Sciences, Purdue University,
1998.

[16]

[17] Krsul, Ivan, Eugene Spafford, and Mahesh Tripuni-
tara, ”Computer Vulnerability Analysis,” COAST

Technical Report 98-07, May 1998.

Landwehr, Carl E.; Alan R. Bull, John P. McDer-
mott, and William S. Choi, “A Taxonomy of Com-
puter Program Security Flaws,” ACM Computing
Surveys, vol. 26, no. 3, pp. 211-254, September 1994.

Ostrand, Thomas J. and Elaine J. Weyuker, “Col-
lecting and Categorizing Software Error Data in an
Industrial Environment,” Journal of Systems and
Software, vol. 4, no. 4, pp. 289-300, November 1984.

Templeton, S. J. and K. Levitt, “A Re-
quires/Provides Model for Computer Attacks,”
Proceedings of the New Security Paradigms Work-
shop 2000, Cork Ireland, September 2000.

18]

[19]

20]

[21] Weber, Daniel, “A Taxonomy of Computer Intru-
sions,” Masters Thesis, Massachusetts Institute of
Technology, Department of Electrical Engineering

and Computer Science, 1998.
Whalen, Sean, Matt Bishop and Sophie Engle,
“Protocol Vulnerability Analysis,” Technical Re-

port CSE-2005-04, Department of Computer Sci-
ence, University of California, 2005.

22]

MAy 2005

10

ftp://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-msthesis.ps.Z
ftp://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-taxonomy-msthesis.ps.Z
ftp://ftp.cerias.purdue.edu/pub/papers/taimur-aslam/aslam-krsul-spaf-taxonomy.ps
http://doi.acm.org/10.1145/69605.2085
http://doi.acm.org/10.1145/69605.2085
http://doi.acm.org/10.1145/69605.2085
http://csrc.nist.gov/publications/history/bisb78.pdf
http://csrc.nist.gov/publications/history/bisb78.pdf
http://www.aw-bc.com/catalog/academic/product/0,4096,0201440997,00.html
http://nob.cs.ucdavis.edu/~bishop/papers/1999-vulclass/
http://www.cs.ucdavis.edu/research/tech-reports/1995/CSE-95-8.pdf
http://www.cs.ucdavis.edu/research/tech-reports/1995/CSE-95-8.pdf
http://www.cs.ucdavis.edu/research/tech-reports/1996/CSE-96-11.pdf
http://www.cs.ucdavis.edu/research/tech-reports/1996/CSE-96-11.pdf
http://dx.doi.org/10.1016/S0167-4048(97)85785-9
http://dx.doi.org/10.1016/S0167-4048(97)85785-9
http://dx.doi.org/10.1016/S0167-4048(97)88289-2
http://dx.doi.org/10.1016/S0167-4048(97)88289-2
http://www.serc.net/report/tr165p.pdf
http://www.serc.net/report/tr165p.pdf
http://www.serc.net/report/tr165p.pdf
http://portal.acm.org/citation.cfm?id=390016.808455&coll=GUIDE&dl=GUIDE&CFID=28329513&CFTOKEN=19837475
http://portal.acm.org/citation.cfm?id=390016.808455&coll=GUIDE&dl=GUIDE&CFID=28329513&CFTOKEN=19837475
http://www.cert.org/research/JHThesis/Start.html
http://www.cert.org/research/JHThesis/Start.html
ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-phd-thesis.pdf
ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul9807.pdf
http://doi.acm.org/10.1145/185403.185412
http://doi.acm.org/10.1145/185403.185412
http://dx.doi.org/10.1016/0164-1212(84)90028-1
http://dx.doi.org/10.1016/0164-1212(84)90028-1
http://dx.doi.org/10.1016/0164-1212(84)90028-1
http://seclab.cs.ucdavis.edu/papers/NP2000-rev.pdf
http://seclab.cs.ucdavis.edu/papers/NP2000-rev.pdf
http://hdl.handle.net/1721.1/9861
http://hdl.handle.net/1721.1/9861
http://www.node99.org/projects/vuln/vuln.pdf

	Introduction
	Terminology
	Characteristics
	Characteristic Trees
	Symptoms

	Classification
	Vulnerability Classification
	Characteristic Classification

	Example: Characteristics
	Characteristics
	Classification
	Insights on Defense

	Example: Trees
	Characteristics
	Specific Instance

	Classification Properties
	Classification Requirements
	Tree Properties
	Obstacles

	Related Work
	Future Work
	Conclusion

