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Software Review and Security Analysis of the 
Diebold Voting Machine Software 

Final Report 
1 Executive Summary 
On May 14th 2007, the Florida Department of State (FLDoS) commissioned an independent expert 
review of Diebold Voting System Software, as documented in their Statement of Work [1]. The team, 
led by Florida State University’s (FSU) Security and Assurance in Information Technology (SAIT) 
Laboratory, was commissioned to conduct a software code review as part of the state’s voting system 
certification process. This report is the culmination of that review. 
1.1 The Analysis’ Scope 
The scope of the investigation, as defined in the Statement of Work (SoW), is: 

This review is for the purpose of yielding technological data to DOS [FLDoS] to ensure voting 
system effectiveness and security in Florida elections by investigating for potential flaws in 
target software as documented in reported literature and other published studies [1]. 

The team constructed a flaw list from surveyed literature and this list drove the analysis. FLDoS 
provided the team fully functional hardware and accessories, which we utilized to test and confirm the 
code’s operation. We did not conduct a comprehensive software review nor penetration testing, as each 
of these was outside the project scope. 
We emphasize that our technical analysis reflects neither endorsement of, nor opposition to, 
certification. We present this technical data for consideration by FLDoS in their decision processes. 
1.2 Systems Analyzed 
The two primary systems analyzed consist of the Diebold Optical Scan, firmware version 1.96.8, and 
Touch Screen, firmware version 4.6.5. We also examined the Diebold Touch Screen bootloader version 
1.3.6 as well as GEMS server software version 1.18.25. We considered flaws in previous versions of 
the software for all parts of each system, including those found in the AccuBasic interpreters.  
1.3 Findings Summary 
Our primary findings are: 
The version of the Optical Scan and Touch Screen software that we examined: 

(a) fixed many of the flaws in earlier versions, but 
(b) retain significant flaws that are documented in this report. 

As an example of the issues that remain, flaws in the Optical Scan software enable a type of vote 
manipulation if an adversary can introduce an unofficial memory card into an active terminal before the 
voting (or early voting) period (e.g., during “sleepover”). Such a card can be preprogrammed to alter 
the correspondence between physical bubbles on the scanned paper ballots and the candidates with 
which they are associated. Specifically, it can be used to essentially swap the electronically tabulated 
votes for two candidates, reroute all of a candidate’s to a different candidate, or tabulate votes for 
several candidates of choice toward another chosen candidate. We implemented this attack in the 
laboratory. The attack succeeds despite new protection mechanisms apparently designed to protect 
against similarly-documented attacks in previous studies.  
Many reported flaws were removed from the Touch Screen software. Nonetheless, we identified many 
that still exist. As one example, we found an attack that allows an adversary to prepare official, 
activated voter smart cards that would enable voters to cast multiple ballots in a ballot-stuffing attack. 
Creation of the cards requires an adversary able to insert a custom smart card into a legitimate voting 
terminal and to read the data off of a valid voter card (these steps could be done by separate 
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adversaries.) Once the adversary obtained the necessary information in this way, she could then create 
smart cards that could be used at any precinct throughout a county. Even if detected, this attack is not 
correctable: the malicious ballots, either in electronic or paper form, are essentially unidentifiable and 
thus cannot be removed. 
We provide our detailed findings and supporting analysis in the sections below. 

2 Project Introduction and Background 

2.1 Report Organization 
This document is the project report. It contains all of our pertinent findings and conclusions and the 
technical analysis that supports these conclusions. The document is written in two parts. The public 
part (Sections 1-7 and Appendix A) constitutes the public report in its entirety; it contains our findings 
and the analysis to support these findings. It is intended for public dissemination. In accordance with 
the terms of the Statement of Work, we have avoided revealing proprietary information in the public 
part of the report, and we are careful to avoid revealing information that would describe how to attack 
an election. The public report stands on its own and reflects the totality of our findings regarding 
known flaws. 
The private part consists of Appendix B and Appendix C, which are confidential as required by the 
Statement of Work because (a) they contain vendor-proprietary information; (b) they contain 
information about flaws that are not relevant to this investigation; or (c) they describe how to mount 
security attacks in detail and thus are not appropriate for the public report. 
This document first gives background information about the known flaws that guided our analysis. We 
then describe our findings and conclusions.  

2.2 Terminology 
2.2.1 SAIT Team. This phrase refers to the investigators organized for this project by SAIT 
Laboratory. The team members are identified in Section 2.3 below.  

2.2.2  Flaw/Fault/Vulnerability/Threat. In this report’s context, these four terms are closely related, 
distinguished only by subtleties and nuance. A software flaw is a defect that may or may not have an 
impact on normal program operation. We use the terms flaw and fault interchangeably. Software 
vulnerability is a code state or status that may lead to improper program operation. Thus, a flaw may 
introduce a vulnerability. The term threat refers to a potential occurrence that exploits a vulnerability, 
and is sometimes loosely used to refer to the threat manifestation. 

2.2.3 Adversary/Attacker/Intruder.  We use these terms interchangeably to refer to any malicious 
party that may try to manipulate a voting system. Our analysis focuses on two attacker categories, 
based on their role in the voting process. The first prospective attacker class is Voter. Three important 
voter properties are: (1) there are many voters; (2) they are untrusted; and (3) they have very limited 
access to the system. 

The second major prospective attacker category is Poll Worker. There are fewer poll workers than 
voters, but they have greater system access in terms of time and capability. 
Elections officials and voting system vendors represent two other recognized potential attacker 
categories. However, we consider attacks by these parties to be largely outside the scope of this review. 

2.2.4 Adversarial Skill. In this report we shall often refer to resources required by an adversary, one 
of which might be technical sophistication.  For example, in Section 3.6 we state that an adversary 
should have the requisite knowledge and skills.  When we make such statements, we generally speak of 
the first adversary to develop the attack, not necessarily the individuals carrying out the attack.  In 
many cases, the individuals carrying out the attacks do not need to have the same knowledge and skills 
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as the individuals developing the attacks. 

2.2.5 Fixed. A flaw is fixed if the corresponding vulnerability is no longer present in the source code. 
We emphasize that it is impossible to identify all flaws, so any statement in this report that an item is 
fixed simply reflects our best professional opinions. 

2.2.6 Benign. A flaw is benign if its technical effect does not interfere with the intended operation. 
Note that this is our technical assessment based on the extent of this study and the assumptions stated 
herein.  Readers should consider all reported and potential flaws with a broader eye for system impact, 
in particular taking into account the specific policies and procedures under which the systems will be 
used. 

2.2.7  “.abo” File. The Diebold AccuBasic Object scripts reside in files whose extension is .abo. We 
occasionally refer to AccuBasic Object script programs as .abo files.  

2.2.8 TSX™/OS™/AccuVote. This report uses numerous voting machine model identifiers. We 
generally refer to the Diebold Touch Screen system as the TSX and the Optical Scan device as the OS. 
Both are members of the Diebold AccuVote series.  

2.3 The Software Review Team 

2.3.1 Senior Investigators 
 Matt Bishop is a Professor of Computer Science at the University of California at Davis. He is an 

expert in secure software and electronic voting systems, having participated in several widely 
recognized electronic voting software systems code reviews. His computer security textbook, 
Computer Security: Art and Science, is the acknowledged benchmark against which all others 
related to this topic are measured.   

 Tadayoshi Kohno is an Assistant Professor of Computer Science and Engineering at the University of 
Washington. He is an expert in cryptography and secure software and is an author on the seminal 
“Hopkins Paper” [8] that triggered the current movement to more aggressive voting system code 
review.  

 Alec Yasinsac is an Associate Professor of Computer Science at Florida State University, a co-
Director of SAIT Laboratory, and is the lead Principal Investigator on this project. 

2.3.2 Investigators 
David Gainey is a computer science graduate student, a member of SAIT Laboratory, and is a 

member of the technical staffat the Florida State University Office of Technology Integration. 
Ryan Gardner is a doctoral student at Johns Hopkins University and a member of the ACCURATE 

center for voting systems research. 
Michael Gerke is a computer science graduate student and a member of SAIT Laboratory at 

Florida State University. He is presently employed by the Florida Department of State, Division 
of Elections. 

Zachary Hartley graduated from FSU with a Computer Science Masters degree in April 2007. He 
is presently employed by the Florida Department of State, Division of Elections. 

Evan Hollander is a computer science graduate student, a systems administrator in the Computer 
Science Department, and a member of SAIT Laboratory at Florida State University. 

John Kerski is a computer science graduate student and a member of SAIT Laboratory at Florida 
State University. 

Ryan Walega is a computer science graduate student and a member of SAIT Laboratory at Florida 
State University. 
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2.3.3 Team Organization 
2.3.3.1  Internal Team Structure and Operation. All investigators conducted hands-on source code 
analysis. The list of previously noted flaws drove the analysis.  Members received analysis assignments 
and were also free to investigate independently. Several investigators exercised automated analysis 
tools. The Lead PI coordinated analysis activities.  

Team members conducted structured note taking and referred to these notes during final report 
preparation.  

2.3.4  External Communication and Coordination 
2.3.4.1 Florida Department of State (FLDoS). As noted in the SoW, FLDoS was entitled to observe 
the code review process at their discretion; they chose to limit their interaction. FLDoS only interacted 
with the team at our invitation. They proved to be a valuable information resource, providing election 
configuration files, general election knowledge, and hardware demonstrations to support our analysis. 
Their support was consistently prompt and complete. The FLDoS placed no restrictions on our 
activities within the SoW. 

2.3.4.2 Diebold Election Systems. The SAIT Team established a communication channel with the 
vendor within the first project week and interacted with them on several occasions. The purpose of 
these communications was for the SAIT Team to gather information and to clarify issues relative to the 
target systems and source code.  

The relationship with Diebold Election Systems was professional and cordial. Diebold Election 
Systems assisted the SAIT Team by providing specific feedback relative to the gathered flaw list and 
also provided the team a copy of the private appendix to the 2006 California VSTAAB review [2]. We 
also conducted a conference call between the SAIT Team and Diebold engineers that facilitated our 
review. 

2.3.4.3 Florida State University. FSU and SAIT Laboratory hosted the code review and provided 
invaluable analysis resources and administrative support beginning the first active SoW day. The 
spaces and resources were ideal for this type of review. 

2.4 The Investigative Process 
The vast majority of this work took place in SAIT Laboratory. In accordance with our project plan, the 
investigation began with a short collaborative planning phase. The team met in SAIT Laboratory and 
spent several days examining code, documentation, and subject reports to understand the problem and 
to formulate an investigative approach. We then followed the resulting plan that was submitted to the 
Florida Department of State in accordance with the Statement of Work [1]. 
As the first objective, the team constructed a flaw list from surveyed literature; the flaw list is given in 
Appendix A. This list drove the analysis. The team did not conduct a comprehensive software review. 
Rather, we sought to determine if previously documented flaws exist in the target software. It is 
possible that there are other flaws that were not identified in previous reports; this study would not 
have identified them because the team was only looking at the question of whether previously 
identified flaws were fixed. This is different from a comprehensive security review. Despite not 
actively looking for new flaws, we did identify some and include a discussion of them in the private 
Appendix C. 
The Florida Department of State provided the team fully functional hardware and accessories matching 
the target software. We utilized these systems to confirm our understanding of the software. We did not 
conduct penetration or red team testing for these systems, as that was outside our charter. 
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The two target systems are the Diebold Optical Scan and Touch Screen systems that are presently 
submitted to the Florida Department of State Bureau of Voting Systems Certification. Specifically, we 
were provided the AccuVote TSX™ version 4.6.5, TSX bootloader version 1.3.6, and AccuVote OS™ 
version 1.96.8 software. We considered previously-identified flaws in earlier versions of all software 
for both systems including the AccuBasic interpreters. Additionally, we were provided GEMS 1.18.25 
to analyze interaction between this election management system and the two target voting devices. 

2.4.1 Limits of this Study 
Our analysis examined only those flaws previously reported in the cited literature. We examined the 
source code and the systems to determine whether or not the reported flaws still exist. Where 
appropriate, we attempted an attack that would exploit a reported flaw to demonstrate our findings. 
Any study involving systems and source code of the complexity of the Diebold Optical Scan and Touch 
Screen raises questions of completeness: could the investigators have missed problems? We have 
documented our efforts to allow others to evaluate the thoroughness of our study. When we have found 
successful attacks, we describe them in sufficient detail in the private appendices to allow others to 
duplicate them. Where we believe the flaw has been mitigated or fixed, we describe our basis for that 
assertion. Throughout, we document our assumptions so others may evaluate our results in the context 
of their environments. 
It is important to understand that our conclusions were guided by the source code examined. This 
means that if the code on a given system does not correspond to the source code we examined, our 
results may not apply. Further, if the programs that compile, link, load, or install the software, or any 
libraries or code linked in, disrupt the correspondence between this source and the given system, our 
results may not apply. 
Finally, we do not claim that our results extend beyond the scope of our investigation. We reiterate that 
the purpose of this report is to evaluate the technical properties of the current systems with respect to 
our list of previously-identified flaws.  The purpose of this report is neither to condemn nor endorse 
these systems and the findings herein should be considered in the context of the overall election 
process. We specifically do not contend that these systems are correct or secure beyond the specific 
results given here. This report is concerned solely with the question posed in the Statement of Work [1] 
and we do not claim that these results extend to a broader context. 

2.4.2 Diebold Known Flaw Details 

We analyzed reports discussing previously discovered flaws in the systems [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12,15]. The resulting flaw list given in Appendix A identifies one hundred and twenty six (126) items 
and we confined our study to them.  
It is also important to note that the items in this list have been rigorously debated by the public and for 
many of the listed flaws, their proper threat characterization remains unclear and sometimes highly 
contentious. In our assessment, some of the items are benign. Additionally, several items that made the 
list do not apply to this study, for example, they apply to a fundamentally different architecture than the 
software we reviewed. To retain the integrity of the list, we chose to retain them, but do not address 
them further. 

2.5 Diebold Software Architecture 

To protect intellectual property, we avoid providing details where these details are not relevant to our 
findings. We provide the following observations to give context to our findings. 
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2.5.1 Code Structure 
As we expected, the code style and readability varied significantly across the code base. One 
documented item (#29) identified complicated code as a problem, and there is substantial complicated 
code throughout the system. Other flaw list items (#29, 30, 32) pointed to poor internal program 
documentation, such as missing and weak comments. Another item (#31) highlighted design 
documentation weaknesses. Other than the latter of these, we found the code pretty much as described 
in the literature. While the documentation we received was much more comprehensive than we 
expected, detailed design documentation was not available. 

2.5.2 Off-The-Shelf Software 
As with most modern applications, there are several proprietary components to the reviewed voting 
systems. While we considered application-operating system interactions and documented flaws relative 
to bootloaders, we did not independently investigate the proprietary operating system, database system, 
or driver software.  The systems also incorporated non-proprietary components developed openly by 
the public software development community. 
3 Findings 
We group our findings according to their related functional areas. We address software components 
grouped by optical scan firmware, bootloader, interpreter, touch screen firmware, etc. Because many 
flaws overlap, we cross-reference extensively throughout the document to ensure consistency and to 
provide context to related flaws. 

3.1 Overview 
The Team’s primary finding is that while we find many improvements in mitigating the vulnerabilities 
in both the Optical Scan and Touch Screen software that we reviewed, both still retain significant 
software flaws. In many cases it appears that the vendor attempted to fix these flaws but that the 
attempted fixes introduced regression faults.  
As example of the issues that remain, flaws in the Optical Scan software enable an adversary to 
introduce an unofficial memory card into an active terminal before the voting (or early voting) period 
begins. This memory card can be preprogrammed to redistribute votes cast for selected candidates on 
that terminal including swapping the votes for two candidates.  The attack can be carried out with a 
reasonably low probability of detection assuming that audits with paper ballots are infrequent and that 
the preprogrammed cards are not detected before use. We implemented this attack in the laboratory and 
it succeeds despite new protection mechanisms apparently designed to protect against similarly-
documented attacks in previous studies.  
Many reported flaws were eliminated on the Touch Screen system as well. Nonetheless, we identified 
and constructed an attack that would allow an adversary to convert official, activated voter cards into 
smart cards that would enable voters to cast multiple ballots in a ballot-stuffing attack. These cards 
could be used at any precinct throughout a county. While polling place procedures may mitigate this 
attack, the attack might evade even rigorous policy enforcement. More damaging is that this attack is 
not easily correctable. The malicious ballots, whether electronic or paper, would be essentially 
impossible to identify, so they could not be removed. 
That said, we caution the reader that our findings are slanted towards negative results. We focus on 
flaws that are not completely fixed. Even where we describe flaws that are greatly improved, our focus 
is on any remaining weakness, as is our charter. Conversely, we do not discuss the many flaws that 
may have been removed, nor do we describe the structural or general system improvements that we see, 
though in our conclusion we do identify some cases where flaws appear fixed. 
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We reiterate that the purpose of this report is to evaluate the technical properties of the current systems 
with respect to previously-identified flaws.  Its purpose is neither to condemn nor endorse these 
systems itself, but rather the findings herein should be carefully considered in the context of the overall 
election process.  

3.2 Prerequisites and Mitigation 
As noted above, not all software flaws create vulnerability. In order to expand the context for each 
flaw, we include a description of circumstances or environments sufficient to exploit the associated 
potential vulnerability resulting from each remaining flaw. 
Additionally, we point out potential procedural or technical processes that could mitigate, reduce, or 
eliminate the associated vulnerability. Our list of potential mitigation strategies is not meant to be 
comprehensive, but rather to indicate one direction for addressing the vulnerabilities.  As is the nature 
of computer security, we also recommend that any implementation of a mitigation strategy be subject 
to a rigorous security evaluation. 
Finally, a standard tenant in security is “defense in depth,” which suggests that a system should provide 
adequate security even if individual components fail.  We recommend that this principle be considered 
when evaluating candidate protection mechanisms, whether procedural or technical. 

3.3 Prospective Flaws Identified in the Literature 
As we noted above, our investigation began with an intense literature review. This Findings Section 
reports technical information that our analysis revealed about the items documented in the flaw list.  
By our analysis, one hundred eight (108) of the one hundred twenty-six (126) flaws that we identified 
are pertinent to our review. Thirty-seven (37) pertinent flaws were not repaired, thirty-one (31) flaws 
were improved without complete removal, and forty (40) flaws were removed, corrected, or mitigated.  

3.4 Hardware and Physical Security Issues   
The flaw list contains fifteen items related to hardware and physical security issues. Our findings 
suggest that all hardware flaws are either corrected or not applicable to this review, except the one item 
below .  

3.4.1 Diagnostic Mode Not Protected (#55) 
An individual with unsupervised terminal access could place an Optical Scan terminal into diagnostics 
mode by simply pressing the two exposed “on” and “off” buttons on the machine and resetting it. From 
there, she could, for example, connect a device to the serial port and obtain all or most of the data on 
the memory card as described in Section 3.8.1.1, or reset the machine clock. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have the necessary hardware resources. (Depending on what she wants to do in diagnostics mode, 

she may need none.) 
2. Have a brief period of unsupervised access to an Optical Scan terminal. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid physical access control to optical scan terminals. 
2. Vendor: Protect access to the optical scan diagnostics mode or employ sufficient cryptographic 

protection mechanisms. 
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3.5 The Signature Flaw 
The fulcrum for many of the intended repairs is the vendor’s RSA signature. Thus, the weakness we 
uncovered in this scheme is one the widest ranging issues with the optical scan software and is also 
important to several remaining issues with the TSX.  
The hand-coded RSA signature verification is insecure and signatures generated with the implemented 
method can be forged. This is true of the signatures on the AccuBasic scripts that are run on the optical 
scan machines and of the signatures on the operating system images that are to be installed on the touch 
screen terminal. The ability to run arbitrary AccuBasic scripts on the optical scan machines partially 
enabled the Hursti attack [5], and the ability to replace unverified boot loaders and operating system 
images enabled the Princeton attack [4].  
The code applies what might initially appear to be a fairly standard RSA signature, using a SHA1 hash, 
a 2048 bit (or sometimes a 1024 bit) RSA modulus, and a public exponent of three (3). Since the SHA1 
digest is 160 bits, the RSA input is padded with zeros. To verify the signature, a decode operation 
computes the modular exponentiation of the signature with the corresponding public key to transform it 
back into the SHA1 hash of the signed file. However, when the result of the computation is checked 
against the computed SHA1 hash of the signed file, only the 160 bits that correspond to the SHA1 
digest are compared to the hash. The other 1888 bits are not examined. Not examining the other 1888 
bits renders this RSA signature variant vulnerable to forgery attacks.  
Given the way that signatures are verified, we can forge a signature on any file that has an odd SHA1 
hash, i.e. a SHA1 hash with a one in the least significant bit. Since we can almost always add spaces, 
no-ops, or other data that will not affect the way files are interpreted, we can forge a signature on a 
message with essentially any semantic meaning we choose.  Our code automatically modifies an 
AccuBasic script to give it an odd SHA1 hash without altering the script’s functionality and then forges 
signature on the script.  In its entirety, the code consists of approximately 250 lines of Java, using the 
standard Java 5 Application Programming Interface (API), and executes in a negligible amount of time. 
See Inset 1 below for more details of the signature verification process and an overview of the attack.  
Attack Prerequisites: This functional flaw is not exploited independently, but is utilized to manifest 
vulnerability from other flaws. In order to exploit this vulnerability, the attacker must: 
1. Discover a corresponding application vulnerability protected by the signature. 
2. Gain appropriate access and resources to forge the necessary signature (the public RSA key and a 

commodity PC). 
3. Inject malicious data with the forged signature into the application. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid physical access to media and devices. 
2. Vendor: Employ a standardized and widely-accepted mode for public key signature generation and 

verification.  Consider, for example, the PKCS #1 RSA Cryptography Standard. 

3.6 Optical Scan Memory Card is Not Integrity Protected (#90) 
The data on optical scan memory cards is neither encrypted nor authenticated save the insecure 
signature on the AccuBasic script, which resides on the card. This vulnerability leads to many potential 
attacks. In Section 3.8.1.4 below, we describe how we constructed several exploits that manipulate the 
vote counts on a memory card during the voting day.  
With an understanding of the checksums on the memory card data, manipulating any of the 
unauthenticated data is not difficult. Thus, we further constructed exploits that could be carried out by 
an adversary with access to a memory card prior to election day and also note other possible threats.  
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Inset 1.  Overview of the RSA Signature Verification Process and Attack. 

By manipulating the physical ballot data stored on the memory card, we were able to: 

1. Swap two candidate’s vote counters. 
2. Cause all votes in a race to be tallied for a single candidate of our choice. 
3. Cause all votes for one or more lesser-known candidates to tally for a selected candidate. 
4. (Many alternative distributions.) 

Aside from the exploits we conducted in our lab, the lack of authentication of card data presents several 
other potential threats.  The memory card contains data that is used for a variety of purposes throughout 
the AV-OS firmware.  Because identifying and preventing all possible buffer overflows is an 
exceptionally difficult task, there is little assurance that a buffer overflow exploit could not be 
conducted through the manipulation of memory card data.  Such an exploit could, for example, allow 
an attacker to alter optical scan machine memory or enable her to execute code of her choice and 
essentially gain complete control of the machine. 
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Finally, the memory card for the optical scan machines contains many memory pointers.  The pointers 
are used to address candidate vote counters, ballot data, scripts, audit logs, and other structures.  There 
is no guarantee that an adversary would not be able to cleverly manipulate these pointers in a way such 
that she could change vote counts or otherwise maliciously alter the functionality of the machine. 
As with other attacks on the optical scan terminal, these attacks might be detected by aggressive 
auditing or during a recount. Once detected, they could be corrected by properly counting the paper 
ballots. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have the requisite knowledge and skills. 
2. Acquire a current memory card or complete knowledge of memory card structure and the ballot and 

the equipment necessary to write to the card. 
3. Gain sufficient unsupervised access to the terminal to replace the card before, during, or after the 

election but before the counts are sent to the central server. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid access to media and equipment to limit exploit 

opportunity. 
2. Vendor: Authenticate and verify all data on the AV-OS memory card whenever it is accessed.  Since 

the AV-OS is very limited in computational power, one efficient way of doing this may be the 
following, although all solutions we are aware of have some security weaknesses if secure hardware 
is not used: a.) Create a random, symmetric authentication key during some election initialization 
step, and store the key in inaccessible, persistent storage.  b.) After initially verifying a public key 
signature on the memory card, use the generated key to update a Message Authentication Code 
(MAC) on the entire contents of the memory card and a counter value.  c.) Increment the counter 
and update the MAC every time the machine writes to the memory card.  (The counter should not be 
stored on the card.)  d.)  Verify the MAC with the current counter every time the card is accessed.  
e.)  At the end of the election, sign the contents of the memory card with a unique private key.  (If 
secure hardware is not used to store the key, this scheme will have fundamental security limitations, 
but the vendor can attempt to store it the most inaccessible location possible and encourage election 
officials to save the key there for the minimal necessary amount of time.) 

3.7 AV-TSX Issues  

3.7.1 AV-TSX Firmware Faults  

3.7.1.1 Cryptographic Key Management  (#21)  
Two 128-bit AES keys are used for all authentication and encryption. 
The “data encryption key” is used for almost all authentication and encryption purposes, including 
encrypting and generating the message authentication codes for the stored electronic ballots (described 
in Section 3.7.1.10) and generating the message authentication codes for the election database file 
(described in Section 3.7.1.8). It is also used to key the hash that stores the supervisor PIN (described in 
Section 3.7.1.4). 
The “system key” is pivotal to key management. It is used to encrypt the file where the data encryption 
key is stored along with the smart card passwords (“keys” and “magic numbers”) and encrypting audit 
logs. See Section 3.7.1.3 for the specific ways the smart cards are authenticated and see Sections 
3.7.1.8 and 3.7.1.10 for the specific usage of and issues with the keys with the election database file 
and the stored voter ballots respectively.  
The system key is generated by computing an MD5 hash of the machine serial number. Its value is 
never changed after generation. Since the machine serial number is public, the system key is also 
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essentially public. Anyone who knows this procedure can generate the system key and can access 
anything it protects, including the data encryption key and anything that it is used to encrypt.  
The data encryption key is loaded in one of two ways. First, it can be read from a locally stored file. As 
noted earlier, the key file is encrypted under the publicly computable system key, so it is an open file to 
anyone who knows the encryption procedure (which is standard and well known).  
Alternatively, the data encryption key may be loaded from a “security key card”. The security key 
cards are insecurely protected as described in Section 3.7.1.3 (the same as all other smart cards), which 
allows anyone to read all data from them. They also initially use the default password and always use a 
fixed magic number (see Section 3.7.1.3 for a description of the magic number). Hence, security key 
cards should also not be used for storing secret information like keys for non-negligible amounts of 
time.  
Above we noted that the same system uses the same cryptographic key for multiple purposes, including 
both encryption and message integrity protection.  As a general principle, such key-reuse is strongly 
discouraged by the cryptographic community since the reuse of keys can introduce vulnerability. 
Attack Prerequisites: This flaw is not independently exploited; rather it is exercised as a component 
of an attack on another voting application. In order to exploit this vulnerability, the attacker must: 
1. Gain access to the machine serial number and compute an MD5 hash. 
2. Gain access to a memory card.  
3. Or alternatively, gain access to a current security key (smart) card. 
Potential Mitigation:  
1. Elections officials: Generate the keys on the security key cards immediately before loading the keys 

onto the machines and then securely delete them as soon as practicable.  
2. Vendor: Use accepted key management techniques and public key cryptography.  
3. Vendor: Use secure hardware private key storage and operations. 

3.7.1.2 Memory Card Update File is Unprotected (#42, 49, 51) 
The RABA Study [11] identified attacks that were allowed by modifying unauthenticated and 
unencrypted files stored on the memory card. Most files on the memory card are encrypted under the 
present firmware version. However, the file assure.ini remains unencrypted and unauthenticated and is 
subject to malicious manipulation.  
Given the lack of integrity protection on the assure.ini file, an attacker who could remove the card from 
the TSX terminal could modify the file to set the machine into pre-election mode. While the terminal is 
in this mode, the attacker could create valid voter cards. If the authentication key necessary to validate 
voter cards is the same across precincts, as we understand to be common practice in Florida, these 
cards could also easily be modified to be used at any other precinct within a county. In some cases 
modifications may not be required. Therefore, the scalability of this exploit could go far beyond one 
precinct and affect a whole county. We implemented and demonstrated this attack in our lab. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have relevant partial knowledge of the assure.ini file layout. 
2. Provide a supply of appropriately formatted smart cards.  
3. Gain sufficient access to a touch screen machine and its memory card.  The number of voter cards 

the attacker could produce is dependent on the amount of time she has with the machine.  Note that 
machines can also be taken off their stands and operate for a significant amount of time on battery 
power. 
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Potential Mitigation:  
1. Election officials: Rigorously enforce rigid physical access procedures for all electronic voting 

terminals. 
2. Vendor: Authenticate the assure.ini file, preferably with a public key signature.  Note that 

encryption on its own may still not provide integrity protection for this file. 
3. Precinct logs might, in some cases, detect this attack after the fact. However, even if the ballot 

stuffing attack is detected, there are no mechanisms built into the software for identifying the 
malicious ballots and recovering from the attack. 

3.7.1.3  Smart Card Authentication Uses Only a Hard Coded Password (#13, 40, 41, 69) 
The data and smart card passwords can now be set by election workers. Nevertheless, the implemented 
authentication protocol is not secure, allowing an attacker to create counterfeit, validating smart cards, 
including voter cards. 
When a smart card is inserted, the terminal sends a “smart card key” to the card.  Thus, an attacker can 
obtain it by inserting a custom smart card into the machine and recording the received key. Once the 
attacker has the key, she can pass it to her own machine (such as a PDA), which she can then 
authenticate as a legitimate voting terminal to a good smart card.  At this point, she can read the “magic 
number” (essentially a global, legitimate smart card password) from the smart card and can use it to 
forge smart cards of her choice.  Ultimately, the attacker only needs the magic number and not the key 
since she can make cards that always respond to key verifications with success messages, regardless of 
value. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have knowledge and skill to accomplish the attack. 
2. Have appropriate equipment. 
3. Have voter access to the terminal. 
Potential Mitigation:  
1. Election officials: Carefully monitor suspicious smart card handling, including times when cards are 

in pockets. 
2. Vendor: Use an established secure smart card authentication protocol that uses a smart card’s ability 

to compute cryptographic operations. (Several such secure protocols have been studied and 
established.) 

3.7.1.4 Supervisor PIN is Not Cryptographically Protected (#14, 69) 
The supervisor PIN is now stored on supervisor smart cards as a keyed hash of the actual PIN.  
Specifically, the PIN is concatenated with part of the “data encryption key” (the first 64 bits), and an 
MD5 sum is computed over the resulting string. The first 4 bytes of the MD5 are stored on the smart 
card. 
The most significant weakness of this approach again concerns the key management of the “data 
encryption key” as described in Section 3.7.1.1. The key can be compromised by an adversary with 
sufficient access to a voting terminal, and an adversary with it can find the PIN using a simple brute 
force computation. 
Again, the act of using the same key for more than one purpose is generally considered poor practice 
within the cryptographic community.  Moreover, the input to the hash function is 64 bits of the 128-bit 
data encryption key.  Using only 64 bits of the 128-bit AES key in this manner may allow an adversary 
to recover the data encryption key significantly faster than exhaustive search. 
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Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Gain unsupervised access to a voting machine or security key card. 
2. Obtain the “data encryption key”. (See Section 3.7.1.1). 
3. Gain access to a supervisor card. 
4. Read the PIN from the supervisor card. (See Section 3.7.1.3.) 
Potential Mitigation: 
1. Election officials: Enforce strict access to voting machines, security key cards, and supervisor cards. 
2. Vendor: Store the PIN in protected memory on the smart card and use the smart card’s ability to 

compute cryptographic operations to securely verify the PIN. 

3.7.1.5 Insecure Storage Mount (#15) 
The storage device is mounted by name only, and “\Storage Card” is the directory that Windows CE 
normally mounts the storage card to. However, this name is also a legitimate standard directory name 
that may not be associated with the intended purpose. Hence, this method of assessing whether or not 
the memory card is present is not secure.  As one simple example, an attacker could exploit this 
vulnerability to force the terminal to save votes to an unexpected location, such as one off of the 
memory card.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Gain access to a touch screen voting terminal. 
2. Create a “\Storage Card” directory in the Windows CE installation on the terminal. 
Potential Mitigation:  
1. Election officials and vendor: Ensure that voting terminals are not in debug mode 
2. Election officials: Rigorously enforce rigid physical access procedures for all electronic voting 

terminals. 
3. Vendor: Verify that the FILE_ATTRIBUTE_TEMPORARY attribute is set for the directory [8]. 

3.7.1.6  System Configuration Information is Unprotected (#16) 
A large portion of the system configuration is still stored in the system registry and can be altered by 
directly modifying the registry. The file settings.h defines several large macros for accessing the 
registry, and appsettings.h defines many specific application settings and functions for accessing those 
settings using the macros of settings.h.  These configurations include informative data such as machine 
serial number and precinct number and security critical settings such as whether or not the machine 
should use SSL for network connections.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have access to a touch screen terminal, memory card, and the memory card slot.  
2. Have skill and knowledge to load malicious code that would change the system registry or to load a 

new operating system image with an altered registry, both of which require knowledge of the 
bootloader process.  

Potential Mitigation:  
1. Election officials: Rigorously enforce rigid physical access procedures for all electronic voting 

terminals. 
2. Vendor: Authenticate this configuration data.   



 

16 

3.7.1.7 Protective Counter Stored in a Mutable File (#17) 
The “protected” counter is read from a mutable file located in the “system directory”, which is 
specified in a registry key. No cryptographic or other checks are made. The counter is written back to 
the same mutable file. Again, no cryptography or additional precautions are used.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have access to a touch screen terminal.  
2. Have skill and knowledge to manipulate or destroy the counter.  
Potential Mitigation:  
1. Election officials: Rigorously monitor physical access to voting terminals. 
2. Vendor: Use secure hardware with a monotonic counter or non-erasable storage to provide a 

reasonable guarantee that an attacker could not undetectably roll back the counter. 
3. Vendor: Use hash chains and other techniques from cryptographically secure audit logs to help 

prevent an adversary from rolling back the counter prior to the point of compromise. 

3.7.1.8  Ballot Definition File is Unprotected (#18) 
The ballot definition file is now authenticated with a home-grown Message Authentication Code 
(MAC).  The software uses an encrypted hash value for message integrity protection, which mitigates 
this vulnerability but does not eliminate the problem. The employed message integrity computation is a 
non-standard construction that is well-known to be insecure under the standard definition of integrity 
for message authentication codes; details are given below. The code in question authenticates the file 
by computing an MD5 hash over the file’s contents and then encrypting the hash using AES in ECB 
mode.   
There are two main concerns that result from this authentication method. The most direct concern 
regards key management. The AES key used is stored in an encrypted file whose encryption key is 
deterministically constructed from the machine serial number (see Section 3.7.1.1). This gives an 
attacker the ability to modify the ballot definition file and generate a new, valid authenticator. 
The second concern arises from the fact that MD5 is a deprecated hash function and is no longer 
considered secure [13]. Researchers have developed efficient methods for finding collisions in the 
function. Thus, even assuming sound key management, there is no guarantee that an attacker could not 
create two ballot definition files that yield the same hash and hence both validate using the same MAC, 
possibly leaving the ballot definition file susceptible to attack by someone with control of the ballot 
definition. Furthermore, the existence of collision-finding attacks against MD5 means that the message 
authentication scheme used in this software does not meet the standard definition of integrity for such 
cryptographic objects.  CMAC-AES and HMAC-SHA256 are two common message authentication 
schemes of choice.  
Finally, note that since stored votes are only associated with a candidate number and not a name (see 
Section 3.7.1.12), the ability to create custom ballot definition files allows one to alter or switch 
candidate names without any record in the vote counts or electronically stored ballots.  
Attack Prerequisites: In order to exploit the most direct vulnerability above, the attacker must: 
1. Know the machine serial number and the key construction. 
2. Understand how the ballot definition file authenticator is computed. 
3. Know the memory card file structure. 
4. Gain unsupervised access to the voting terminal. 
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Potential Mitigation:  
1. Election officials: Rigorously enforce rigid media protection control procedures. 
2. Vendor: Sign and verify the file contents with a secure signature scheme. 

3.7.1.9  Impersonate a TSX Terminal to GEMS (#20)  
This issue is discussed in detail in GEMS Section 3.10.3 below. 

3.7.1.10 No Integrity Protection of Stored Electronic Ballots  (#22, 23) 
The authenticity protection mechanisms used here are similar to the protections used for the election 
database file as explained in Section 3.7.1.8, and they share the same issues.  
Using the vender’s terminology, a “signature” is generated on each ballot/ResultRecord. The code 
MD5 hashes the ResultRecord and then uses AES in ECB mode to encrypt the hash using the “data 
encryption key” to produce the authenticator, or Message Authentication Code (MAC). 
The most significant problem here, as with the election database file (Section 3.7.1.8), is that there are 
no clear means of securely managing the key used for the message authentication code (“signature”) 
and encryption. Additionally, given historical attacks against other systems that reused cryptographic 
keys for multiple purposes, we recommend that the same key not be used for both generating the 
message authentication code and for encrypting the message. 
Furthermore, as also discussed in Section 3.7.1.8, MD5 is deprecated and researchers have developed 
efficient methods for finding collisions in the function. The existence of collision-finding attacks 
against MD5 implies that the message authentication scheme used in this software does not meet the 
standard definition of integrity for such cryptographic objects.  CMAC-AES and HMAC-SHA256 are 
two common message authentication schemes of choice. 
Finally, given the use of CBC mode for encryption, the initialization vector used for each encryption 
should be unique and unpredictable.  
Attack Prerequisites: In order to exploit the most direct vulnerability above, the attacker must: 
1. Know the machine serial number and the key construction. 
2. Understand how the electronic ballot authenticators are computed. 
3. Know the memory card file structure. 
4. Gain unsupervised access to the voting terminal or memory card before the electronic ballots are 

tabulated or transferred. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid media protection control procedures. 
2. Vendor: Use public key encryption and signatures to encrypt and authenticate each electronic ballot. 

3.7.1.11 Ballots are Stored Sequentially (#26, 27) 
When a ballot is cast, it is encrypted and appended to the ballot files in the primary and secondary 
storage directories. Thus, the ballots are stored in the order that they are cast and anyone with the 
encryption key could correlate votes with voters.  
Furthermore, a timestamp, with second granularity, is also stored (encrypted) with each ballot. So, not 
even subsequently shuffling the order of ballots will prevent someone with the encryption key from 
linking votes with the voters who cast them.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have unsupervised access to the voting machine 
2. Have access to the proper encryption key (see Section 3.7.1.1). 
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3. Know when voters vote or the order in which they vote. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid key management practices. 
2. Vendor: Store the ballots in a non-serial order and without a timestamp. 

3.7.1.12 Candidate Information is Not Stored in the Results File (#19)  
The cast and electronically stored ballots (“ResultRecords”) do not contain any information about 
candidates.  For all non-write-in candidates, each ballot only stores, for example, that candidate number 
1 received a vote, candidate number 5 received a vote, etc.  Thus, if the names on the screen do not 
correspond to what is expected, votes will be counted for the wrong candidates.   Furthermore, an 
attack that could alter the presentation of the names without trace, for example by temporarily 
modifying the ballot definition file, would be particularly effective since there would be no way to 
detect the attack. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker could: 
1. Design and authenticate a custom ballot definition file with altered candidate names (see Section 

3.7.1.8) or find another exploit. 
2. Gain access to a terminal memory card or an election office where ballot definition files are stored. 
3. Overwrite the legitimate ballot definition file with the custom one.  
Potential Mitigation: 
1. Election officials: Rigorously enforce access control to voting machines and ballot definition files. 
2. Vendor: Store the displayed names or other explicit information corresponding to every vote with 

each electronically cast ballot. 

3.7.1.13 Audit Logs are Not Cryptographically Protected (#28, 49)  
The logs are encrypted and authenticated the same way as the electronic ballots, using the “system 
key”, which is insecure. (See Section.3.7.1.10) Hence, they are also susceptible to viewing and 
modification by an adversary.  Among other things, such an ability may allow an adversary to erase 
record of an attack without detection. 

3.7.1.14 Data is Neither Authenticated Nor Encrypted Over the Communication Link (#25, 
35, 45, 46)  
The TSX firmware now supports SSL protection of its GEMS connections, though its use is optional. 
This issue is discussed in detail in GEMS Section 3.10.3 below. 
Additionally, the SSL pseudorandom number generator is seeded with poor entropy, based on tightly 
bounded clock measurements.  Cryptographic protocols often provide degraded security when the 
random numbers are not securely generated.  To mitigate potential concerns, the vendor could seed the 
cryptographically secure pseudorandom number generator with sufficient entropy. 

3.7.2 AV-TSX Bootloader Faults 

3.7.2.1  Bootloader Automatically Replaces Itself (#3, 4, 6, 11) 
There are now two processes to update software in the TSX. One of these automatically updates the 
unsigned bootloader with a file named “eboot.nb0” if it is found on the memory card. This method is 
conditionally compiled. However, in the software version that we are analyzing, the code is included. 
In this approach to updating, the bootloader does not perform any kind of cryptographic authentication 
of the replacement bootloader found on the memory card. This vulnerability is mitigated by the 
requirement that the machine be in “debug mode” for the update to occur. An attack loading a custom, 
malicious bootloader is immediately possible if the terminal is delivered to the polling place already in 
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debug mode. Otherwise, an attacker must open the case and move a hardware switch to enable this 
attack. 
While enabling debug mode can only be done with physical access to the hardware, this protection is 
not as strong as would be provided by requiring a signed bootloader or another strong access control 
method. 
The other software update method that appears to be implemented more recently conducts software 
updates through the supervisor account when the normal voting machine software is running. 
Nevertheless, we detected a shortcoming in the supervisor PIN verification process (see Section 3.7.1.4 
above). 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have a modified memory card with a tested bootloader and 

a. Gain access to a terminal in debug mode or 
b. Obtain a compromised supervisor PIN. 

Potential Mitigation:  
1. Elections officials must rigorously ensure that TSX terminals are not routinely in debug mode. 
2. Vendor: Remove the automatic filename update code from the source. 
3. Vendor: Fix the supervisor PIN problem (see Section 3.7.1.4 for the PIN problem description). 

3.7.2.2  Bootloader Automatically Replaces Local Operating System (#7) 
The flaw has been changed, but still exists in a different form. If the bootloader finds a file named 
“nk.bin” (or some other nk.* files) on the terminal's memory card, rather than installing it as the new 
permanent operating system, it boots it as the current one.  Once again, the file is not authenticated. 
This only occurs when the machine is in debug mode.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Generate a Windows CE operating system image (Microsoft provides tools to do this) with 

malicious voting software. 
2. Gain access to a terminal in debug mode. 
Potential Mitigation:  
1. Election officials: Rigorously enforce rigid media protection control procedures. 
2. Vendor: Sign and verify the file contents with a secure signature scheme. 

3.7.2.3 Bootloader Automatically Runs .ins Files on the Memory Card (#8) 
The bootloader also uses .ins files to install new operating system images.  Specifically, if the machine 
is in debug mode and the bootloader finds the file “avtsx.ins” on the memory card, it will attempt to 
install a new operating system image contained within the file.  The .ins files are now signed with an 
RSA signature variant, but the signature is not implemented properly and can be forged.  The details of 
the signature and its weakness are described in Section 3.5. An attacker could therefore create a 
Windows CE image of her choice that properly authenticates. Our code for forging signatures on .abo 
scripts can be ported to do the same for .ins files because they are authenticated by the same faulty 
verification code.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Generate a custom Windows CE operating system image (Microsoft provides tools to do this) with 

malicious voting software and insert it into an “avtsx.ins” file. 
2. Gain access to a voting terminal in debug mode or gain several minutes of access to any terminal. 
3. Insert a new memory card with the custom “avtsx.ins” file. 
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Potential Mitigation: 
1. Election officials must ensure that debug mode is disabled on all voting terminals. 
2. Election officials must strictly monitor access to voting terminals. 
3. Vendor: Properly cryptographically sign and verify all .ins file before running them.  

3.8 AV-OS Software Issues 

3.8.1 AV-OS Firmware Faults 

3.8.1.1 Leaks Memory Card Contents (#56)  
In this vulnerability, an attacker uses a designed machine function in precisely the way that it was 
intended. That is, the attacker can copy the memory card contents to her own laptop by connecting the 
laptop to the optical scanner serial port or phone line, turning the machine on, entering diagnostic mode 
by simultaneously pressing the “yes” and “no” buttons, and selecting a menu option to dump the 
memory card’s contents.  The attacker’s only technical contribution is establishing a routine terminal 
emulation to synchronize the laptop with the Optical Scanner, which is a standard function. 
Alternatively, the modem can also be used to dump the data.  
We connected the optical scanner to a Windows XP computer and we were able to dump the contents 
of the card onto the computer using HyperTerminal.  Though our experiments only dumped the first 
4kB of the 128kB memory card, the data included all of the ballot definition and scripts. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have the knowledge of the exploit. 
2. Have unsupervised access to a terminal. 
Potential Mitigation:  
1. Election officials: Rigorously monitor access to the optical scan machine. 
2. Vendor: Allow memory card dumps only from supervisor mode. 

3.8.1.2 Supervisor PIN Not Cryptographically Protected (#57, 92) 
The supervisor PIN was removed from the source code and an encoded version is now placed on the 
memory card.  When a user wants to enter supervisor mode, the following authorization protocol takes 
place: 
• The shuffled PIN and a decryption key are read by the terminal from the election header 

fields on the memory card. 
• The user enters her PIN on the machine.  
• The shuffled PIN is decoded using the decryption key and compared against the PIN entered 

by the user.  
The remaining weakness is that in this protocol, the key that reveals the PIN is also on the memory 
card, so anyone with access to a card and reader and knowledge of the shuffling algorithm can extract 
the shuffled PIN and the key and thus can decipher the supervisor PIN.  
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have unsupervised access to a machine to dump a current memory card or access to a memory card 

itself. 
2. Have the necessary equipment to read from the memory card. 
3. Have knowledge of the key shuffling algorithm. 
Potential Mitigation:  
1. Election officials: Exercise rigorous control procedures over voting terminals and removable media. 



 

21 

2. Vendor: Securely encrypt and authenticate the PIN and deliver the key to the machine through a 
medium that is as inaccessible as possible to most people.  Ideally, the decryption key should be 
stored in secure hardware, and unless secure hardware is used, there is a bootstrapping problem that 
creates a fundamental limitation in the privacy of the PIN.  

3.8.1.3 No Authentication Between GEMS and the Terminal (#58) 
The primary concern with this vulnerability is if the devices were to connect across the Internet. The 
vendor strongly states that no such connection occurs. If the connectivity is through a serial connection 
with trustworthy technicians utilizing the connection, the potential impact is largely negated.  
However, if the connection is via a modem, a man in the middle attack may be possible. The vendor 
wrote code to mutually authenticate the GEMS server and optical scan terminal, employing a home-
grown encryption algorithm. Much like the protection of the Supervisor PIN, described in Section 
3.8.1.2 above, critical components are provided in encrypted form within messages that contain the 
decryption key. This practice does not provide the intended security properties. More specifically, the 
protocol relies on the exchange of a password that is encrypted using weak encryption functions and 
the keys are exchanged in the clear at the beginning of each handshake, leaving the protocol vulnerable 
to an eavesdropping attack. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have access to the memory card or a mechanism to eavesdrop on the communications. 
2. Have knowledge of the communication protocol. 
Potential Mitigation:  
1. Elections officials: Never connect to the AV-OS terminals to the Internet or other untrusted 

networks. 
2. Vendor: Remove code supporting networking connections or require use of a secure, mutually 

authenticated protocol, such as SSL. 

3.8.1.4  Attacker Can Hide Preloaded Votes (#59, 85, 89, 90, 94, 95, 96) 
The original attack has been largely mitigated. However, it is still possible to load selected vote counts 
on a memory card that the terminal will recognize if inserted and it is still possible to forge AccuBasic 
Interpreter scripts. We constructed four exploits of this vulnerability in the lab. 
1. We prepared a memory card with preloaded votes and inserted it into the terminal after the zero 

report printed. The machine accurately displays the number of ballots that have been cast (or 
loaded), which could be detected by a conscientious precinct clerk or poll worker.  The attack 
requires less than a minute of unfettered access to the terminal at the beginning of the voting day. 

2. In our second exercise, we extracted a memory card from the terminal after several votes had been 
registered, modified the counters to redistribute votes, but also to maintain the same total vote count, 
and reinserted the memory card in the terminal. This process took several minutes of access to the 
terminal, and if it were accomplished in a real election, it would be detectable by a recount of the 
paper ballots. 

3. In the third exploit, we prepared a memory card with a predetermined vote count and waited until 
the number of votes on the card were normally registered on the terminal. We then replaced the 
official memory card with our forged card. The machine display reflected the correct, expected 
number of votes cast and the precinct count printout showed the specific candidate votes that we 
injected. This attack took only a few moments access to the terminal, though it demands that the 
memory card be inserted when the appropriate number of ballots have been cast. If this attack were 
conducted by a poll worker who could switch cards at the precise point when the machine count 
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matched the malicious card’s vote count, it is unlikely that the attack would be detected unless a 
recount occurred. In a recount, the count would be corrected based on the paper records.  

4. We constructed an interpreter script that disregards the counters on the memory card and prints the 
counts that we preload. This attack would normally be detected and corrected when the electronic 
vote count is transferred to the SoE. If the discrepancy between the two electronic counts is noted, 
the correct count could then be confirmed by a recount of the paper ballots. 

There are two software issues related to this vulnerability. The first is the RSA signature described in 
Section 3.5 above. As we demonstrated in the lab, without knowing any key, we can forge a signature 
on essentially any functional interpreter script that we desire.  This issue applies to bullet 4 above. 
The second issue concerns the fact that vote counts on the memory card are not properly protected. 
This allowed us to edit fields to change votes with our only challenge being to appropriately set error 
correcting checksum values.  This issue applies to bullets 1, 2, 3, and 4 above. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have unsupervised access to the optical scanner. 
2. Have access to uncommon memory cards and equipment to read and write them. 
3. Have significant computer skill and access to the proper ballot definition. 
Potential Mitigation:  
1. Election officials: Restrict access to removable media, particularly memory cards. 
2. Vendor: Authenticate the contents of the memory cards including vote counts.  (More details on this 

are suggested in Section 3.6.) 
3. Vendor: Employ secure audit logging techniques as developed within the security and applied 

cryptography literature. 

3.8.1.5  Vote Counters Are Not Directly Checked for Overflow (#85, 89, 95, 96) 
Candidate ballot counters are protected from overflow by a total ballot counter. This is an imprecise, 
and apparently an overly strict approach that detects when a machine has reached the limit for overall 
votes. Since individual candidate vote counters can hold as many votes as the total ballot counter, this 
approach appears to prevent overrunning all vote counters. 
This check depends on an invariance between the protected and protecting variables. It assumes that 
votes are always recorded through the voter interface and processed by the firmware that ensures the 
necessary consistency.  This works if the counts start at zero and votes are always recorded through the 
intended paper ballot interface.  However, this may not be the case.  Specifically, Hursti programmed a 
memory card to effectively store a negative vote count by storing a very large vote count, which then 
overflowed [5], though this did not cause the total ballot count to overflow. 
Other consistency checks, such as whether the total number of votes in a race equals the sum of the 
votes for each candidate in the race are also now used, and may prevent a possible exploit of this flaw.    
While we do not see any immediate attacks caused by this issue, it invites consistency attacks, for 
example, that may attempt to subtract votes from a candidate with zero votes by manipulating the 
memory card. There are mechanisms that appear to prevent attacks that we examined in the code. 
However, defensive programming practice suggests implementing overflow protection at the point 
where the variable is computed. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Find a malicious means of overflowing a vote counter. 
2. Acquire a memory card and knowledge of its structure. 
3. Create a memory card such that the appropriate vote counter would overflow. 
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4. Insert the memory card into an optical scan machine. 
Potential Mitigation: 
1. Election officials: Strictly monitor access to optical scan machines and memory cards. 
2. Vendor: Directly verify that vote counters do not overflow every time they are incremented. 

3.9 AccuBasic Interpreter Faults 

3.9.1   Error Checking is Inadequate  (#67, 68, 81, 82) 
The interpreter does not provide descriptive prompts as to errors that were encountered. Most of the 
prompts are along the lines of “worked/didn't work”. Once the main interpretation has started, there 
seems to be no printing of error messages to indicate problems. 
While we did not develop an example attack, this design weakness might make an attack 
indistinguishable from a random error if such an attack were employed.  

3.9.2 Error Codes Returned by the AV-OS System are Ignored (#83) 
A specific function provides the entry point to the AccuBasic interpreter and returns a status code 
indicating the success or failure of script interpretation. In all instances within the AV-OS code where 
this function is called the return value is ignored.  
As above, we did not identify any direct exploits resulting from this flaw, but the lack of error checking 
may make it easier to execute other attacks without detection.. 

3.9.3 AccuBasic Scripts Can Be Misused (#62, 86, 87, 97) 
The interpreter allows AccuBasic code to perform conditional operations based on comparisons of data 
including vote counts, time, date, candidate names and any other data to which it has access.  This may 
enable an attacker to hide exploits by presenting the user with conditional information.  
Additionally, AccuBasic scripts can interact with the user through the terminal’s LCD screen. This may 
allow a malicious script to use social engineering techniques to enable attacks. For example, an attacker 
may preload a script that prints a message such as “Bad memory card.  Please insert another” in order 
to accomplish the memory card swapping attack described in Section 3.8.1.4 above. 
To illustrate this flaw at a basic level, we wrote AccuBasic scripts that print text of our choice and that 
also passed signature verification; for additional details see Sections 3.5 and 3.8.1.4.  

3.9.4 Public Key Hard-Coded into the Source (#91) 
Embedding the public key in the source code does not pose a direct security problem. However, having 
the public key hard-coded into the source code prevents the vendor from routinely changing the 
public/private key pair.  On the other hand, hard-coding the public key also prevents an adversary from 
easily changing it.   The particular trade-offs between these two approaches should be evaluated in the 
broader context of election systems. 

3.9.5 Unchecked String Operation: Allows Overwrite of Stack Memory (#113, 114) 

The vulnerable string operations for these two flaws still exist in the code as described in the VSTAAB 
report [2]. However, the repairs made to correct other flaws mitigate the vulnerability introduced by 
these flaws. So the flaws are still there, but the corresponding vulnerability (based on another flaw) 
seems to be fixed, as we report in Table 1 below. Due to the level of detail involved, we defer further 
discussion to the private Appendix B. 
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3.10 GEMS Server Faults 

3.10.1 AccuBasic Scripts are Not Authenticated on the GEMS Server (#118) 
GEMS itself does no checks to the AccuBasic byte code (.abo) because they rely on the (problematic) 
RSA signatures (see Section 3.5) on the OS machine to verify the AccuBasic code. GEMS is 
apparently backwards-compatible with versions of the AV-OS/AccuBasic that did not contain 
signatures. Any .abo code could be placed on the GEMS server and selected to send to the AV-OS if 
there are no procedural/physical safeguards. This would be a vector for loading a malicious .abo script, 
although it is more complicated than simply writing one to the memory card (due to formatting 
differences in the .abo files), and requires access to GEMS rather than the card itself.  
Attack Prerequisites:  
1. Have access to the GEMS folder that contains the .abo files and to the option within GEMS itself to 

select which .abo file will be sent.  
2. Create a malicious AccuBasic script, which would require knowledge of the RSA signature flaw. 

(See Section 3.5.)  
Potential Mitigation:  
1. Election Officials: Safeguard access to the GEMS server.  
2. Vendor: Use a secure signature scheme to sign and verify the AccuBasic scripts.  
3.10.2 Password Does not Protect Access to GEMS or Audit Logs (#43, 123) 
The GEMS password authentication process can be defeated with a simple attack, given a few 
moments access to the computer. This attack is publicly known and revolves around the way the 
password is stored in a Microsoft Access database. We constructed a proof of concept exploit for this 
vulnerability to confirm its applicability. 
The same vulnerability occurs with the audit logs of the TSX. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have knowledge of the exploit. (This attack is described in detail on a public Internet web site.) 
2. Have remote or local access to a GEMS server 
Potential Mitigation:  
1. Election officials: Rigorously protect physical access to GEMS servers. 
2. Election officials: Never connect GEMS servers to the Internet or an untrusted network. 
3.10.3 Incomplete Implementation of the SSL Protocol (#124)  

The use of SSL with the GEMS server is optional. The user is presented a dialog box that allows her to 
choose both whether or not she wants to use SSL and whether or not she wants to require 
authentication of the client. Both of these should be made mandatory. The corresponding setting on the 
TSX client is stored in the machine registry.  
When SSL is used, if the option to require authentication is set, GEMS does require authentication 
from the client. Additionally, the software includes the option to connect using an early version of SSL 
(V2) that is subject to downgrade attacks.  
We also note that the GEMS server does not use SSL when communicating with the AV-OS. Rather, 
they employ a vendor generated communication protocol for the AV-OS that does not include any SSL 
calls. (See Section 3.8.1.3 above.) 
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The TSX will verify that it is establishing an SSL connection with a GEMS server, but not which 
GEMS server.  Similarly, the GEMS server will verify that it is establishing a connection with a GEMS 
client, but not which GEMS client.  While this is an improvement over the SSL implementation 
evaluated by the RABA Study [11], this implementation is still vulnerable to man-in-the-middle attacks 
assuming that multiple states or election districts use the same public keys for the Diebold certificate 
authority (which we assume to be the case since they are hard-coded into the software).  For example, 
an insider from District A with sufficient infrastructure access could use a copy of her GEMS private 
key and a TSX client’s private key to mount a man-in-the-middle attack against the TSX machines and 
GEMS server in District B. 
Attack Prerequisites: In order to exploit this vulnerability, the attacker must: 
1. Have knowledge of the weakness and exploit techniques. 
2. Have sufficient knowledge of the operating environment. 
3. Possess the proper equipment and infrastructure access. 
Potential Mitigation:   
1. Election officials: Never attach GEMS, AV-OS, or TSX terminals to the Internet or an untrusted 

network. 
2. Vendor: Require client authentication whenever connecting to a remote host. 
3. Vender: Verify that the client and server are communicating with the intended parties, not simply a 

certain class of devices. 
4 Non-Pertinent Faults 
The team ran automated analysis tools over the code base. The non-pertinent flaws that we identified 
are contained in the private Appendix C. 
Additionally, flaw #44 noted that the code contains third party components. We also found such 
references in the source that we reviewed. Since we did not find discussions of specific flaws related to 
third party software in the previous reports that we reviewed, we do not include a discussion of these 
third-party products in the public portion of this report. We list the third party products that we 
identified, along with their versions, in private Appendix C. 
5 Conclusions 
Electronic voting systems offer tremendous opportunity to expand accessibility and reduce costs even 
in the face of increasing safety and accuracy demands. Conversely, they also offer virtually unbounded 
opportunity to manipulate elections if they are not properly secured. Code review is one step in this 
process. 
This report presents the background, organization, process, findings, and opinions of our software code 
review. We conclude with the following summarizing issues.  
5.1 Flaw Retention Overview 
The team was tasked to determine if flaws identified in the literature remain in the software version 
submitted for certification. Table 1 reflects our precise answer to this question under the definitions and 
terminology outlined in Section 2.2. 
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Applicable 
Component No Change Improved Fixed 

Physical Security 11, 55  48, 50, 51 

OS Firmware 56, 62, 64, 92, 93 57, 58, 59 84, 85, 88, 89 

OS Interpreter 81, 82, 83, 8, 86, 
87, 91, 97, 98 

90, 94, 96, 105, 113, 
114 

80, 95, 99, 100, 101, 102, 
103, 104, 105, 106, 107, 108, 

109, 110, 111, 112  

Bootloader 3, 6 4, 5, 7, 8 1 

TSX Firmware 

15, 16, 17, 19, 22, 
24, 26, 28, 30, 32, 
40, 41, 42, 43, 44, 

51 

13, 14, 18, 20, 21, 23, 
25, 27, 29, 31, 34, 35, 

45, 46, 49, 69 
24, 33, 36, 38 

TSX Interpreter 67, 68  65, 66, 70, 71, 72, 73, 74, 75, 
76, 77, 78, 79 

GEMS 123 118, 124  

Table 1. Flaw Categorization by Flaw Number (See Appendix A) 

5.2 The Optical Scan Software 
The vendor implemented integrity verification and encryption to address some of the reported flaws. In 
many cases, unproven designs were applied that left vulnerability where stronger tools could provide 
measurable protection.  We demonstrated several attacks in our laboratory.  For one attack, we 
exploited a flaw in the AV-OS RSA implementation to create a custom AccuBasic script with a forged 
RSA signature.  Our custom AccuBasic script will cause the AV-OS to output incorrect election totals. 
Many of the remaining vulnerabilities are detectable and correctible through normal elections 
procedures and would certainly be detected during audits and recounts. 

5.3 The Touch Screen Software 
The vendor has made improvements to address many of the specific flaws expressed to date. Despite 
these improvements, many flaws remain in the TSX system.  In our opinion, the vendor could make 
significant additional improvements by employing strong signature protocols and improved key 
management techniques.   

5.4 Removable Media 
All removable media associated with electronic voting systems is highly sensitive, and must be 
protected year-round with the same status and priority as voted ballots. Unsupervised access to an item 
as simple as a TSX supervisor card and its accompanying PIN allows an individual to create valid voter 
cards. In the wrong hands, these cards can cause significant damage to a county’s vote count validity.  

5.5 “Security Through Obscurity” is Not Sufficient to Protect Voting Systems 
Two important transitions heightened this realization: (1) the rapid expansion of computer use in 
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elections; and (2) the explosive growth of computing in general accelerated by the explosion of the 
Internet. The processes and methods behind these systems are often publicly exposed, as was witnessed 
when the Diebold Touch Screen source code surfaced on the Internet in 2003 [14]. The exploit 
described in Section 3.5 clearly illustrates the convergence of theory and practice in electronic voting 
security. The signature scheme applies well-known cryptographic primitives and is employed in an 
efficient and intuitively appealing, though home-grown, approach. However, security theory and 
mathematical analysis revealed a simple, efficient algorithm that allows an attacker to forge essentially 
any arbitrary message, thus easily subverting this approach.  

5.6 Engineering In Security 
As with any system, it is most effective and least costly to incorporate necessary components up front 
rather than adding them later. Just as a house that is designed and constructed with a garage may cost 
more up front, its overall cost is generally much less than the cost of the house without the garage, and 
the additional cost of adding the garage later. Worse yet, if the original design did not include 
provisions for a prospective garage, adding one may not be possible at all.  

The issue is similar with voting systems security. Systems designed with security in mind have a much 
better chance of addressing evolving threats than after-the-fact security response, particularly when 
prospective security features were not considered or provided for in the original design.  
This report amplifies this challenge. A primary issue in our analysis is the impact of regression faults, 
or faults that occur as a result of modifying a system. In this case regression faults leaked into the 
system as the result of modifications to correct other faults. Implementing security is much easier if 
done from the ground up. 
5.7 Persistence of Vulnerability 
The flaws examined in this study have been published in public reports, several of them over three 
years ago.  Many of these flaws appear in multiple studies, reiterating that they existed. While the 
vendor has fixed many of these flaws, many important vulnerabilities remain unaddressed, or the 
attempted fixes leave vulnerabilities in place.  Solutions to most of the issues in these systems have 
been studied in depth and added to the public knowledge base. Although such information is available 
in a variety of resources, as are knowledgeable professionals, studies have repeatedly shown that home-
grown security mechanisms rarely provide the intended security properties. Home grown mechanisms 
cannot replace systematically developed and time tested security solutions. 

5.8 Key Management is a Difficult [Voting System] Problem 
It is a well-known that key management is one of the most challenging issues in using cryptography to 
protect information systems. Whether a system embeds public keys in the source code or attempts to 
bootstrap a private key separate from application initialization, the challenges of managing keys that 
enable even mutual authentication are great.  

5.9 Issues to Improve Voting System Security Evaluation  
With the growth of electronic voting systems, software review is becoming more and more 
commonplace. We offer the following observations that may help future analysis efforts. 

5.9.1 Require Vendors to Deliver a Complete Development Environment with Software 
Software review and proof of concept testing are resource intensive processes that demand domain 
appropriate skills. Conversely, software development environments can vary greatly. In order to reduce 
both spin up and proof of concept construction time in the review process, states should require 
vendors to file complete development environments with their systems. The environment delivered 
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should enable the state, and any review teams, to rebuild the certified binaries. During a review, these 
should be delivered with the source code to the review team.  

5.9.2 Require Vendors to File Design Documentation with the Department of State  
Similarly to having development environments, software review can be simplified if accurate, detailed 
design documentation is available. States should require such documentation and make it available to 
any software analysis effort.  

5.9.3 Independent Security Evaluation 
We recommend that voting systems be subjected to ongoing reviews so that flaws can be discovered 
before an election and before a system is adopted, and proposed fixes can be evaluated for 
completeness, rather than after an election outcome comes into doubt. 
As another efficiency consideration, it is unlikely that all states are fiscally capable of conducting 
rigorous voting system analysis. Thus, we emphasize that a uniform testing process, such as the one 
presently under construction by the United States Elections Assistance Commission (EAC) Technical 
Guidelines Development Committee (TDGC), be adopted and that standard practices for sharing 
review results among states be implemented. 
6 Acknowledgments 
As part of our work we used automated source code analysis tools Fortify Source Code Analysis 
(SCA), made by Fortify Software and Coverity Prevent by Coverity in order to assist with the code 
review process. Fortify Software donated the tool to us free of charge for use on this project and we 
thank them for their contribution. We note that one member of the team (Bishop) is on Fortify 
Software’s Technical Advisory Board and Coverity is a SAIT Laboratory partner. 
We also acknowledge the major contributions of the ACCURATE Center in this review. We note that 
the final report’s first author is an ACCURATE member and we received significant advice and 
resources from several ACCURATE members throughout this process, for which we are grateful.  
We thank Doug Jones, Avi Rubin, and David Jefferson, who provided several documents that we used 
in research for this work. 
A special thanks to Avi Rubin and Breno de Medeiros for their comments on a draft of this report. 

7 References
 

1 “Software Review and Security Analysis for Diebold Voting Machine Software.”, Joint Florida 
Department of State and Florida State University Statement of Work, May 14, 2007. 

2 David Wagner, David Jefferson, and Matt Bishop, “Security analysis of the Diebold AccuBasic 
Interpreter”, Voting Systems Technology Assessment Advisory Board (VSTAAB), University of 
California, Berkeley, February 14, 2006. 

3 Diebold Election Systems, Inc., “Source Code Review and Functional Testing,” CIBER, Inc., 7501 
South Memorial Pkwy, Suite 107, Huntsville, AL 35802, February 23, 2006. 

4 Ariel J. Feldman, Alex Halderman, and Edward W. Felten, "Security Analysis of the Diebold 
AccuVote-TS Voting Machine", Center for Information Technology Policy and Dept. of Computer 
Science, Princeton University, September 13, 2006. 

5 The Black Box Report, SECURITY ALERT: Critical Security Issues with Diebold Optical Scan 
Design, July 4, 2005. 

6 Harri Hursti, “Diebold TSX evaluation: Critical security issues with Diebold TSX.,” Available at 
http: www.bbvdocs.org/reports/BBVreportIIunredacted.pdf, May 2006. 

 



 

29 

NF 

7 A. Kiayisas, L. Michel, A. Russell, A. A. Shvartsman, “Security Assessment of the Diebold Optical 
Scan Voting Terminal”, UConn VoTeR Center and Department of Computer Science and 
Engineering, University of Connecticut, October 30, 2006. 

8 Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin, and Dan S. Wallach, “Analysis of an 
Electronic Voting System”, IEEE Symposium on Security and Privacy, May 9-12, 2004, pp. 27-40. 

9 Maryland State Board of Elections, “Response to: Department of legislative services trusted agent 
report on Diebold AccuVote-TS voting system”, Available at http://mlis.state.md.us/Other/voting 
system/sbe response.pdf, January 2004. 

10 Ohio Secretary of State, “Direct Recording Electronic (DRE), Technical Security Assessment 
Report”, Compuware Corporation, 1103 Schrock Road, Suite 205, Columbus, Ohio 43229, 
November 21, 2003. 

11 RABA Technologies. Trusted agent report: Diebold AccuVote-TS voting system. Available at http: 
www.raba.com/press/TA Report AccuVote.pdf, January 2004. 

12 Science Applications International Corporation, “State of Maryland Risk Assessment Report, 
Diebold AccuVote-TS Voting System and, Processes, SAIC-6099-2003-261, September 2, 2003. 

13 Xiaoyun Wang and Hongbo Yu, “How to Break MD5 and Other Hash Functions”, EUROCRYPT, 
May, 2005, pp. 19-35. 

14 Bev Harris, “Black Box Voting: Vote Tampering in the 21st Century”. Elon House/Plan Nine. July, 
2003. 

15 Collaborative Audit Committee, “Collaborative Public Audit of the November 2006 General 
Election”. Available at http://urban.csuohio.edu/cei/public_monitor/cuyahoga_2006_audit_rpt.pdf, 
April 2007. 

 



30 

Appendix A Flaw List 

 

ID Description Source Page # 

    

1 Machine boots into Windows explorer rather than BallotStation 
if explorer.glb is found on memory card [4] 5 

2 Machine door lock is consistently pickable in <10 seconds [4] 5 

3 fboot.nb0 can be used to load malicious software [4] 5 

4 fboot.nb0 can be overwritten without authentication or integrity 
checks [4] 16 

5 Denial of Service with PowerOffSystem() API [4] 16 

6 Bootloader replaces itself with eboot.nb0 or fboot.nb0 if found 
on memory card on boot, no authentication [6] 5 

7 Bootloader replaces OS with nk.bin (or some other nk.xxx's) if 
found on memory card, no authentication [6] 7 

8 Bootloader "runs" any .ins files in memory card on boot after 
prompting user, no authentication [6] 8 

9 Back of machine casing comes off and leaves seals in tact [6] 9 

10 Hidden SD memory card slot inside the machine case [6] 10 

11 Jumpers on machine motherboard enable debug features [6] 10 

12 Hidden, voter accessible button on back of case [6] 11 

13 Lack of smartcard authentication (use a hardcoded password) [8] 9 

14 PIN sent from smartcard to terminal in cleartext [8] 11 

15 Insecure file mount, does not ensure writing to removable 
media [8] 12 

16 Unprotected system configuration file [8] 12 

17 Protective counter stored in mutable file [8] 12 

18 Ballot definition unprotected and unauthenticated [8] 13 

19 Candidate information is not stored in the results file (only vote 
counts) [8] 14 

20 Impersonate a legitmate voting terminal, no authentication and 
data can be gathered from ballot definition files [8] 14 

21 Cryptographic key management beyond hard-coded DESKEY [8] 14 

22 DES CBC encryption uses constant 0 for IV [8] 15 

23 No integrity protection of stored vote counts and data [8] 15 

24 No sequence numbers stored with votes (to help detect record 
deletion, may be problematic with respect to privacy) [8] 15 
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25 No integrity checks, authentication, or encryption on votes 
transferred to the backend server [8] 16 

26 Votes are written serially [8] 16 

27 Bad RNG for randomizing vote order [8] 16 

28 Audit log problems: no consistency for what is logged, does not 
verify that printer is attached before writing to it [8] 17 

29 Complicated, undocumented code segment [8] 18 

30 Poor change-control process info in code comments [8] 19 

31 Missing design documents [8] 19 

32 Code comments suggesting fixes, not documented further [8] 20 

33 1.06 Parameters and return values of functions are generally 
not commented [10] 32 

34 1.26 DES encryption key is hard-coded [10] 36 

35 1.27 Data is not encrypted when transmitted over data link [10] 36 

36 1.31 The supervisor's password is hard-coded [10] 36 

37 2.06 System can be locked up by pressing F4 and choosing to 
open BallotStation.exe [10] 38 

38 2.09 PIN for all smart cards is the same and the factory default 
(1111) [10] 39 

39 2.14 Several TCP/UDP ports are open [10] 40 

40 Can make counterfeit voter and supervisor cards [10] 52 

41 Can vote multiple times with a card writer [10] 52 

42 PCMCIA cards are not encrypted [10] 52 

43 Microsoft Access database has no password protection (used 
for ballot definition, audit logs, and tally results) [10] 52 

44 1.16 Software contains third party components [10] 56 

45 Digital certificates only exist at the servers and these are 
neither signed nor authenticated by the AccuVote terminals [11] 9 

46 No GEMs authentication by the AccuVote-TS terminals [11] 9 

47 AccuVote-TS terminals have two locking bays - all terminal 
locks are identical [11] 18 

48 
With a keyboard, attacker can access options (unnecessary 
test code) "Save As", "Finish Recording", and "Open" to 
overwrite results and audit file 

[11] 18 

49 
Only files with cryptographic protection on PCMCIA card are 
the results file and the audit file (extent of protection, even on 
these, may not be great) 

[11] 18 

50 Can attach a keyboard to the terminal and access functionality 
in the software that allows the attacker to view the entire [11] 18 
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directory tree on the machine's internal memory and on the 
PCMCIA card 

51 Attacker can load a PCMCIA card with an update file [11] 18 

52 Training does not include an information security component [12] 5 

53 No documentation that identifies the process for maintaining 
access controls [12] 7 

54 Executes code (Accubasic object bytecode) off the memory 
card [5] 1 

55 
Machine enters diagnostic mode if 2 buttons are depressed 
when it is powed on, no password needed (allows reinitializing 
of the machine and its clock, for example) 

[7] 6 

56 Leaks memory card contents [7] 6 

57 Supervisor PIN not cryptographically protected [7] 7 

58 No authentication between GEMS and the terminal [7] 9 

59 Executes code (Accubasic object bytecode) off the memory 
card [7] 4 

60 Machine allows multiple feeding of ballots due to feed sensor 
position [7] 12 

61 AccuBasic interpreter firmware chip is designed to be 
replaceable [7] 13 

62 Memory card access works as an extension of main memory 
rather than as a file system [2] 9 

63 Machines do not allow for counting of ballots but only ballot 
pages (report after 2006 election) [15] 36 

64 Machines do not report data at a machine level of precision, 
only a precinct level (report after 2006 election) [15] 36 

65 Three types of tokens used to potentially read and modify data 
in global memory (no specifics given) [3] 7 

66 Bounds on the heap and stack segments do not appear to be 
checked [3] 9 

67 Error checking is inadequate for identifying and recovering from 
failures in a damaged or disfunctional environment [3] 11 

68 Error handling makes it difficult to differentiate between 
malicious activity and failure [3] 11 

69 The contents of the smartcards are neither encrypted nor 
digitally signed [11] 17 

70 
W1 Array bounds violation: Overwrite any memory address with 
a 4-byte value that the adversary has partial control over. 
Allows attacker to inject malicious code and take complete 
control of the machine 

[2] 15 

71 
W3 Input validation error: Choose any memory location and 
begin executing it as .abo code; could be used to conceal 
malicious .abo code in unexpected locations, or to crash the 
machine 

[2] 15 

72 
W6 Array bounds violation: Overwrite any memory location with 
any desired value. Allows attacker to inject malicious code and 
take complete control of the machine 

[2] 15 

73 W7 Buffer overrun: Corrupt memory, crash the machine [2] 15 

74 W8 Buffer overrun, integer conversion bug: Corrupt memory 
until the machine crashes [2] 15 
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75 
W10 Buffer overrun: Overwrite return address on the stack. 
Allows attacker to inject malicious code and take complete 
control of the machine 

[2] 15 

76 W11 Array bounds violation: Information disclosure: read from 
potentially any memory address. Crash the machine [2] 15 

77 
W12 Array bounds violation: Writes any 4-byte value to any 
address. Allows attacker to inject malicious code and take 
complete control of the machine 

[2] 15 

78 W13 Array bounds violation: Information disclosure: read a 4-
byte value from any address [2] 15 

79 
W14 Pointer arithmetic error: Crash machine. Could begin 
interpreting random memory locations as though they were 
.abo code 

[2] 15 

80 Three types of tokens used to potentially read and modify data 
in global memory. (no specifics given) [3] 7 

81 Error checking is inadequate for identifying and recovering from 
a failures in a damaged on disfunctional environment [3] 11 

82 Error handling makes it difficult to differentiate between 
malicious activity and failure [3] 11 

83 Error codes returned by the AV-OS system are ignored. [3] 11 

84 Attacker can hide preloaded votes (exact mechanism not given) [5] 8 

85 Vote counter allows integer overflows [5] 8 

86 Allows programming conditional behavior based on time, 
number of votes counted, and others [5] 8 

87 Enables AccuBasic program interaction over the LCD screen 
(can pose as normal firmware, for example) [5] 20 

88 AV-OS fails to check that the vote counters are zero at the start 
of election day [2] 18 

89 
The code does contain a check to ensure that it will not accept 
more than 65535 ballots. It manipulates vote counters values 
without first checking them for overflow as 16-bit if more than 
65535 votes are cast, the vote counters will wrap 

[2] 18 

90 Cards' integrity is protected by symmetric MAC rather than a 
much more ideal pk signature [2] 20 

91 Default cryptographic keys that are hard-coded into the source 
code [2] 20 

92 
PIN is stored in an obfuscated format, but this obfuscation 
offers limited protection due to reliance on hard-coded magic 
constants 

[2] 21 

93 
No requirements documents, architecture documents, design 
documents, threat model documentation, or security analysis 
documents 

[2] 24 

94 Modify the vote counters on the memory card to pre-load it with 
some non-zero number of votes for each candidate [2] 25 

95 
Replace the AccuBasic script with a malicious script that falsely 
printed a zero report showing zeros, even though the vote 
counters were in fact not zero  

[2] 25 

96 Attacker can maliciously preload some of the vote counters with 
fraudulent non-zero values  [2] 27 

97 Enables AccuBasic program interaction over the LCD screen 
(can pose as normal firmware, for example) [2] 28 

98 Several fields not covered by checksums [2] 29 



 

34 

99 

V1 Array bounds violation: Overwrite any memory address 
within �215 bytes of the global context structure with a 2-byte 
value that the adversary has partial control over. Might allow 
attacker to inject malicious code and take complete control of 
the machine 

[2] 14 

100 V2 Format string vulnerability: Crash the machine; read the 
contents of memory within a narrow range [2] 14 

101 
V3 Input validation error: Choose any location on the memory 
card and begin executing it as .abo code; could be used to 
conceal malicious .abo code in unexpected locations, or to 
crash the machine 

[2] 14 

102 V4 Array bounds violation: Memory corruption; crash the 
machine [2] 14 

103 
V5 Double-free() vulnerability: Overwrite any desired 4-byte 
memory address with any desired 4-byte value. Allows attacker 
to inject malicious code and take complete control of the 
machine 

[2] 14 

104 
V6 Array bounds violation: Memory corruption: overwrite any 
memory address up to 216 bytes after the global context 
structure with a 2-byte value that the adversary has no control 
over. Might allow overwriting vote counters 

[2] 14 

105 V7 Buffer overrun: Memory corruption; crash the machine [2] 14 

106 

V8 Buffer overrun: integer conversion bug: Memory corruption: 
overwrite up to 215 consecutive bytes of memory starting at 
global context structure. Might allow attacker to inject malicious 
code and take complete control of the machine. Might allow 
overwriting vote counters. Information disclosure: read any 
memory location 215 bytes away from global context structure. 
Crash the machine 

[2] 14 

107 

V9 Buffer underrun: Memory corruption: overwrite up to 215 
consecutive bytes of memory extending backwards from the 
global context structure. Might allow attacker to inject malicious 
code and take control of the machine. Might allow overwriting 
vote counters.  Information disclosure: read any memory 
location within this window. Crash the machine 

[2] 14 

108 
V10 Buffer overrun: Overwrite return address on the stack. 
Allows attacker to inject malicious code and take complete 
control of the machine 

[2] 14 

109 V11 Array bounds violation: Information disclosure: read from 
potentially any memory address. Crash the machine [2] 14 

110 
V12 Array bounds violation: Write any 2-byte value to any 
address up to 216 bytes after the global context structure. Might 
allow attacker to inject malicious code and take complete 
control of the machine. Might allow overwriting vote counters 

[2] 14 

111 
V13 Array bounds violation: Information disclosure: Read any 
2-byte value from any address up to 216 bytes after the global 
context structure 

[2] 14 

112 
V14 Pointer arithmetic error: Crash machine. Could begin 
interpreting random memory locations as though they were 
.abo code 

[2] 14 

113 V15 Unchecked string operation: Machine might crash or 
become unresponsive [2] 14 

114 
V16 Unchecked string operation: Overwrite stack memory. 
Might allow attacker to inject malicious code and take complete 
control of the machine 

[2] 14 
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115 Some default values not found in the user's guide [3] 13 

116 Default values defined in the source code [3] 13 

117 Contains "malign" undocumented functions [3] 13 

118 AccuBasic executable files (.abo) on the server are not 
authenticated [5] 9 

119 Failure to regularly install MS Windows updates [11] 20 

120 Server enables "autorun" feature, thus software can be installed 
via CD by anyone with physical access [11] 20 

121 Open USB port on the back of the server [11] 21 

122 CD is Bootable [11] 21 

123 Database password and audit logs stored within the database 
itself [11] 21 

124 Incomplete implementation of the SSL 3.0 [11] 21 

125 Lack of routine server security practices, such as firewall 
protection, etc. [11] 21 

126 BIOS not password protected [11] 22 

 




