
A Model for Vulnerability Analysis and Classification

Sophie Engle and Matt Bishop
Department of Computer Science

University of California, Davis
One Shields Avenue, Davis, CA, 95616 USA

{engle,bishop}@cs.ucdavis.edu

Abstract

In this paper, we present a model for vulnerability anal-
ysis that enables us to mitigate the complexity of modern
systems through well-defined layers of abstraction. We use
this model to build a new framework for vulnerability clas-
sification. Finally, we present our results classifying buffer
overflow vulnerabilities.

1. Introduction

The study of system vulnerabilities has been obscured
by a lack of precision and clarity. Providing a formal model
for vulnerability analysis may help remove this ambiguity
by providing precisely-defined concepts and relationships
between these concepts. However, it is a widely held belief
that systems are too complex for formal models. For exam-
ple, the state space of a modern computer is too complex
to enumerate. Most Turing machines are given in terms of
high-level algorithms instead of states, transitions, and con-
figurations.

Further, it is not clear how security fits into the classic
formal model for modern computers – the Universal Tur-
ing Machine. Does a vulnerability exist on the tape of the
Turing machine, or in the system control? How is a vulner-
ability defined at this level?

While modern systems are growing in complexity, it is
possible to build a precise model for vulnerability analy-
sis. Just as abstraction of well-defined components is used
when defining Turing machines, we can use abstraction to
describe system vulnerabilities in a practical and meaning-
ful way.

Our research focuses on building such a model. We then
use this model to address another need – a robust vulnera-
bility classification framework.

Most current classification frameworks classify errors,
bugs, or faults with tend to lead to vulnerabilities. When
these classification schemes are then used by vulnerability

databases, vulnerabilities are often reduced to just one of
these components. This obscures the relationships between
vulnerabilities when multiple errors lead to a single vulner-
ability, or when policy issues and not implementation is-
sues are to blame. Arguably the most important part of the
vulnerability – the associated policy violation – is not even
mentioned.

Our model addresses these issues by providing a vulner-
ability classification framework which integrates important
aspects of a vulnerability and its related policy violations.

The next section introduces our model, beginning with
the definition of a system. We then introduce our vulnera-
bility classification framework. We illustrate the power of
this framework by presenting our initial results on classify-
ing buffer overflow vulnerabilities. Finally, we compare our
work to that of others.

2. Model for Vulnerability Analysis

Our model for vulnerability analysis begins with the
states and transitions of a Universal Turing machine. We
use these elements to define systems, security, policy, vul-
nerabilities, and related concepts. Each level of abstrac-
tion mitigates the complexity of dealing directly with state
space. Similar to how a high-level algorithm for a Turing
machine may be broken down into actual states and tran-
sitions, our vulnerabilities may be broken down into actual
conditions and policy violations existing in the state space.

2.1. Defining Systems

We define security and policy in a context that more
closely matches current vulnerability discussions today. In-
formally, we define a machine as is a set of hardware com-
ponents that, when activated, runs a system. The system
controls the state space, which dictates what actions may
be performed. More precisely:

Definition 2.1.1. Machine. A set of hardware com-
ponents operating together to manipulate and store in-
formation.

Essentially, the machine contains any hardware compo-
nent required to realize a Universal Turing machine. The
possible set of hardware components includes a mother-
board and processor, hard drive, memory, graphics and
sound cards, and other miscellaneous devices.

Each machine has an active machine state. This repre-
sents the finite sequence currently on the tape. More pre-
cisely:

Definition 2.1.2. Machine State. The sequence of
all values stored in permanent or temporary memory
resident on the machine.

Since we assume the tape is finite, the number of pos-
sible sequences on the tape is also finite. We define state
space to include every possible machine state and the pos-
sible transitions between them. More precisely:

Definition 2.1.3. State Space. The tuple S =
(M,T) where M is the set of all possible machine
states for a machine and T = { (u, v) |u, v ∈ M } is
the set of transitions from machine state u to machine
state v.

This is different from a state diagram, which illustrates
the transition function of a Turing machine. The nodes in
a state diagram represent computation states. Each edge is
labeled with a transition that moves between states depend-
ing on the current symbol on the tape. Taking the transition
rewrites the tape, and moves the tape head.

The components of state space are different. Each node
represents a machine state, or possible tape sequence. Tran-
sitions between nodes in state space indicate that it is pos-
sible to change from one tape sequence to another. This
is determined by examining possible configurations of the
Turing machine based on its transition function.

Therefore, the state space provides the possible output
of the machine. The system adds or removes transitions be-
tween nodes in state space.

Definition 2.1.4. System. The set of hardware and
software components that can add or remove transi-
tions in state space.

For example, the system might include hardware security
controls (such as biometric devices), device drivers, operat-
ing systems, and/or applications. These components have
the ability to enable or disable certain actions and abilities

of the user. In relation to Turing machines, the system in-
cludes those harward and software components which im-
plement the transition function.

Using these definitions, we may state a key assumption:

Assumption 2.1.5. Vulnerabilities exist in state
space, but their causes are rooted in the system.

We want to identify the causes of vulnerabilities, and
hence focus on aspects of the system. We use the term con-
dition to describe properties of the system.

Definition 2.1.6. Condition. A property describing
either the transitions or states of the system.

Conditions describe aspects of the system and the state
space at the lowest possible level of abstraction. In this pa-
per, we consider conditions to be primitives.

2.2. Defining Security

Most definitions of security make implicit assumptions
about policy. We make these assumptions explicit, and de-
fine security in the context of a security policy.

Security policy defines what actions should or should not
allowed for a user on a particular system, partitioning the
state space into a set of allowed and disallowed machine
states. More formally:

Definition 2.2.1. Security Policy. The pair P =
(A,D) such that A ⊆ M is the set of allowed states
and D = M − A is the set of disallowed states for a
state space S = (M,T).

If a system is unable to transition to a disallowed state,
we consider it to be secure. Otherwise, the system is non-
secure. More formally, a system is secure only when:

Definition 2.2.2. Secure. For any a ∈ A and
d ∈ D, there exists no transition (a, d) ∈ T where
P = (A,D) is the security policy for state space
S = (M,T).

If we could define policy and security in this manner,
determining if a system is secure would be trivial. We
could simply search through the state space for any un-
wanted transitions and remove them. However, for non-
trivial systems, state space is too large to enumerate and
search. Not only is the size of state space exponential, but
traversal through the possible transitions in state space may
also be exponential. Thus we assume:

Assumption 2.2.3. Anything requiring enumeration
of the state space is impractical.

Moreover, the policy enforced on a particular system
may not capture the intent of the policy makers due to issues
of practicality, configuration, and implementation. This
archetypal notion of security as a partition of state space
is not only impractical, but ineffective in practice.

2.3. Defining Policy

The distinction between intended and implemented pol-
icy is critical in understanding the notion of security. Con-
sider the Linux access control mechanism, which controls
object access based on whether the user is the owner of
the object, belongs to the group which owns the object,
or belongs to neither. Suppose we have two files, file1
and file2, and the three users xander, yasmin, and
zaria. The desired access control policy is to allow all
three users access to file1, but allow only xander and
yasmin to have access to file2. One solution is to cre-
ate two groups and have the files owned by the respec-
tive groups. However, when the number of files and users
increase, this mechanism quickly becomes impractical to
manage. Hence, the implemented policy will reflect what
is feasible given the system controls and may not reflect
the intended policy. The notion of state space is unable to
capture this difference, as the set of allowed states may in-
cludes states which are “allowed by intention” or “allowed
by implementation.”

We need to capture the differences between intended pol-
icy and implemented policy without relying on state space.
For this, we adapt Carlson’s Unifying Policy Hierarchy
Model [10], which presents a hierarchical arrangement of
four different types of policies. At the top of the hierarchy
is the oracle policy, which accurately captures the intent of
the policy makers. More formally:

Definition 2.3.1. Oracle Policy (OP). The function
OP : S ×O×A → {valid, invalid} such that for
any subject s ∈ S, object o ∈ O, and action a ∈ A:

OP(s, o, a) =

valid if action a on object o by
s should be allowed

invalid otherwise

These elements of the sets S, O, or A may reside across
systems or outside any given system. For example, suppose
Xander is assigned the user account xander and Yasmin
is assigned the user account yasmin on some system. Ide-
ally, Xander should not be able to authenticate to the system
as yasmin. Therefore for the person Xander and user ac-
count yasmin we have:

OP(Xander, xander, authenticate) = valid

OP(Xander, yasmin, authenticate) = invalid

Here, the oracle policy must have knowledge of the users
Xander and Yasmin and not just the system-defined user ac-
counts.

We make two assumptions regarding the oracle policy:

Assumption 2.3.2. The oracle policy provides a con-
sistent policy decision for every possible subject, ob-
ject, and action.

Assumption 2.3.3. The oracle policy always exists
for every system.

Both of these claims depend on having access to the pol-
icy makers themselves. Whether the oracle policy is ex-
plicitly specified or intuitively referenced, the policy mak-
ers can always provide a policy decision. In this sense, the
policy makers themselves represent the oracle policy.

Unfortunately, the oracle policy is often the expression
of an ideal, and cannot be implemented precisely due to sys-
tem, procedural, or environmental constraints. The feasible
oracle policy takes these restrictions into account:

Definition 2.3.4. Feasible Oracle Policy (FP). The
function FP : Sx × Ox × Ax → {valid, invalid}
such that for any subject s ∈ Sx, object o ∈ Ox, and
action a ∈ Ax:

FP(s, o, a) =

valid if action a on object o by
s should be allowed

invalid otherwise

where Sx ⊆ S, Ox ⊆ O, and Ax ⊆ A are the finite
sets of subjects, objects, and actions defined by some
system x.

The feasible oracle policy represents the subset of the
oracle policy which is possible and practical to implement.
An inherent policy violation is a disagreement between the
OP and FP:

Definition 2.3.5. Inherent Policy Violation. The
tuple (s, o, a) where s is some subject, o is an ob-
ject, and a is an action such that OP(s, o, a) 6=
FP(s, o, a).

If the subject, object, and action are not defined for FP,
then the function is undefined. This type of inherent policy
violation is often caused by limitations of policy representa-
tion and implementation. Returning to the earlier example,
the system is only aware of user accounts and not the actual
(human) users:

OP(Xander, xander, authenticate) = valid

FP(Xander, xander, authenticate) = undefined

Sometimes, inherent policy violations are caused by envi-
ronmental limitations. For example, an embedded system
with limited performance capability and memory may be
unable to provide the level of security required by the in-
tended policy. In this situation, the feasible oracle policy
captures the tradeoffs required to make the oracle policy
achievable.

The configured policy represents the instantiation of the
feasible oracle policy. Intuitively, it consists of the security
policy defined by the configuration settings of the system:

Definition 2.3.6. Configured Policy (CP). The func-
tion CP : Sx ×Ox ×Ax → {valid, invalid} such
that for any subject s ∈ Sx, object o ∈ Ox, and action
a ∈ Ax:

CP(s, o, a) =

valid
if action a on object o by
subject s is allowed

invalid otherwise

where Sx ⊆ S, Ox ⊆ O, and Ax ⊆ A are the finite
sets of subjects, objects, and actions defined by some
system x.

Note that the FP provides what should be allowed or
disallowed, whereas the CP provides what is allowed or
disallowed (see figure 1). The differences between the FP
and CP are caused by configuration errors, which may arise
from human error or lack of understanding of the access
control features. A configuration policy violation occurs
when the configuration is inconsistent with the FP:

Definition 2.3.7. Configuration Policy Violation.
The tuple (s, o, a) where s is some subject, o is an
object, and a is an action such that FP(s, o, a) 6=
CP(s, o, a).

Finally, implemented policy controls may fail, or may be
bypassed. An example of the latter is when a race condi-
tion allows a user to acquire unauthorized privileges. The
access controls inhibit this delegation of privilege, but the
race condition bypasses these inhibitors. The actual policy
captures this distinction by representing what actions are
actually possible in the system:

Definition 2.3.8. Actual Policy (AP). The function
AP : Sx ×Ox ×Ax → {valid, invalid} such that
for any subject s ∈ Sx, object o ∈ Ox, and action
a ∈ Ax:

AP(s, o, a) =

valid
if action a on object o by
subject s is possible

invalid otherwise

where Sx ⊆ S, Ox ⊆ O, and Ax ⊆ A are the finite
sets of subjects, objects, and actions defined by some
system x.

Differences between the CP and AP indicate the policy
configuration constraints were somehow subverted. This re-
sults in a runtime policy violation:

Definition 2.3.9. Runtime Policy Violation. The
tuple (s, o, a) where s is some subject, o is an ob-
ject, and a is an action such that CP(s, o, a) 6=
AP(s, o, a).

For example, suppose Xander is allowed access to a file
readme.txt. However, Yasmin runs a denial of service
attack that blocks Xander’s access. The result is:

CP(xander, readme.txt, read) = valid

AP(xander, readme.txt, read) = invalid

In general, a policy violation occurs whenever adjacent lev-
els of the hierarchy disagree.

Definition 2.3.10. Policy Violation. The tuple
(s, o, a) where s is some subject, o is an object, and
a is an action such that an inherent, configuration, or
runtime policy violation exists.

Figure 1 summarizes the different levels of the policy hi-
erarchy. By defining policy using this hierarchy, we remove
our dependency on state space and capture the differences
between the notion of intent (OP), feasibility (FP), config-
uration (CP), and possibility (AP). However, we have said
nothing on the implementation of these functions. In fact,
we rely on the following assumption:

Assumption 2.3.11. These functions may be approx-
imated by an administrator or field expert.

Since the configured policy is given by the system con-
figuration, it may be automated. However, given the nature
of the OP and FP, these functions may not be automated.
Also, the functionality of the actual policy is too complex
in practice to automate.

If we could fully automate the decisions made by the AP,
we would be able to easily find vulnerabilities. We know
this is not the case. Instead, we must depend on experts
to analyze systems for vulnerabilities and approximate the
actual policy.

For example, an expert can use a tool such as CQUAL
to search for user/kernel pointer bugs in source code [20].
Each potential bug can be throughly analyzed to deter-
mine if there is a security risk (i.e. potential policy viola-
tion). Some user/kernel bugs may result in crashing the sys-
tem, resulting in an actual policy that denies access. Other

user/kernel bugs have the potential for privilege escalation,
resulting in an actual policy that grants access otherwise de-
nied in the configured policy.

2.4. Defining Vulnerabilities

Using our policy hierarchy, we can precisely define the
notion of a vulnerability. A vulnerability exists whenever a
policy violation exists. Consider our earlier example where
a denial of service caused:

CP(xander, readme.txt, read) = valid

AP(xander, readme.txt, read) = invalid

Now consider the conditions that allow such violations to
exist. For this example, the conditions include whatever at-
tributes of the system allowed Yasmin to launch a denial
of service attack. In an earlier example of an inherent pol-
icy violation, the user Xander was able to authenticate to
the user account yasmin. The conditions in this situation
describe the inability of FP to determine the human user
authenticated on the system user account. In fact, there
must always be some bug, configuration error, environmen-
tal fault, or technology constraint that allows policy viola-
tions to occur. This leads to the following definition:

Definition 2.4.1. Vulnerability. The tuple V =
(N,P) where N is the nonempty set of conditions
that enables the nonempty set of policy violations P
for some system x.

We are less interested in issues of policy representation
or configuration mistakes than in issues where the imple-
mented policy fails. Therefore, we define a more specific
type of vulnerability:

Definition 2.4.2. Runtime Vulnerability. The vul-
nerability R = (N,P) where N is the nonempty set
of conditions that enables the nonempty set of runtime
policy violations P for some system x.

Now we may describe our example more precisely. The
runtime vulnerability in this case would be R1 = (N1, P1)
where the set N1 describes the conditions on the system
that allowed the denial of service to occur, and P1 =
{(xander, readme.txt, read)} describes the resulting run-
time policy violation.

Notice that a runtime vulnerability is directly tied to
a specific system and policy. The set of conditions de-
scribe properties of a specific system. Therefore the run-
time vulnerability may not apply to systems with differ-
ent hardware or software. Even on systems with iden-
tical hardware and software, the set of users (and hence
policy violations) may be different. For example, the

same set of conditions N1 may cause the policy violation
(yasmin, readme.txt, read) on a different system.

We do not want to define a separate vulnerability for ev-
ery possible system and every possible policy on that sys-
tem. This brings us to the core of our model: characteristics
and symptoms.

2.5. Defining Characteristics

The above definitions depend on the perfect knowledge
assumption:

Assumption 2.5.1. The Perfect Knowledge As-
sumption. We know the following:

1. The nonempty set of systems
X = {x1, x2, . . . , xn}.

2. For every system xi ∈ X:

(a) The set of all possible conditions Nxi

(b) The set of all possible runtime policy vio-
lations Vxi

3. For any runtime vulnerability
Rxi = (Nxi , Vxi):

(a) The set of conditions Nxi ⊆ Nxi

(b) The set of runtime policy violations
Vxi

⊆ Vxi

In reality, the perfect knowledge assumption is imprac-
tical. We want to analyze vulnerabilities for a general,
loosely defined set of systems. For example, we may be
interested in analyzing vulnerabilities in Windows XP, no
matter what hardware configuration the system may have.
We have already mentioned that enumeration of the pos-
sible conditions and runtime policy violations is also im-
practical. Therefore, we address the impracticality of the
perfect knowledge assumption by adding a new layer of ab-
straction. We call this new abstraction a characteristic:

Definition 2.5.2. Characteristic. The set of sets of
conditions C = {N1, N2, . . . Nn} where each Ni ∈
C defines the set of conditions represented by C on
system i.

Each system has its own set of conditions which describe
it. A characteristic is an abstraction of related sets of con-
ditions across different systems. We say that characteristic
C imposes the set of conditions Ni on system i. For ex-
ample, suppose our characteristic is [password based
authentication]. This will result in different condi-
tions on a Microsoft Windows system versus a Linux sys-
tem.

Policy Domain Decision
Level Type Restrictions Type

1 OP: Oracle Policy None Should Be Allowed
2 FP: Feasible Oracle Policy System-Defined Should Be Allowed
3 CP: Configured Policy System-Defined Is Allowed
4 AP: Actual Policy System-Defined Is Possible

Figure 1. Our adaptation of the Unifying Policy Hierarchy. Each level has either different domain
restrictions on the possible subjects, objects, and actions or makes different types of policy deci-
sions.

However, characteristics still require enumeration of
conditions, something we want to avoid. The system ora-
cle helps alleviate this:

Definition 2.5.3. System Oracle. The function
F : C × X → N where C ∈ C is a characteristic
description, x ∈ X is a system, and N ∈ N is a set
of conditions such that F(C, x) = N indicates that C
imposes the set of conditions N on system X .

Instead of attempting to find the set of conditions asso-
ciated with a characteristic, we can focus on providing a
description of that characteristic. The system oracle takes
this description, and provides the associated set of condi-
tions for a particular system. We can simplify the process
even further with the vulnerability indicator function:

Definition 2.5.4. Vulnerability Indicator Function.
The function I : R × C × X → {valid, invalid}
where R = (N,P) ∈ R is a runtime vulnerability,
C ∈ C is a characteristic, and x ∈ X is a system such
that:

I(R,C, x) =

{
valid if F(C, x) ⊆ N

invalid otherwise

The vulnerability indicator function provides a yes or
no answer to whether a given characteristic describes some
subset of conditions for a given vulnerability on a specific
system. Using the vulnerability indicator function, we never
have to enumerate conditions of a system or of a character-
istic.

The implementation of the system oracle and vulnerabil-
ity indicator function still depend on conditions. It is here
we bring in the expertise of those working in the field:

Assumption 2.5.5. The system oracle and vulnera-
bility indicator function may be approximated by an
expert in the field.

Given a well-defined characteristic, an expert should be
able to determine if that characteristic applies to a particular

system. In fact, we argue that this is precisely what occurs
currently when analyzing vulnerabilities. Given a descrip-
tion of a vulnerability and its “properties,” security experts
decide if that vulnerability applies to particular systems and
take appropriate action. By restating this phenomena in a
precise model, we can see where ambiguity and judgement
calls are introduced into the process of vulnerability analy-
sis.

For example, consider the login vulnerability in UNIX
Version 6. It was possible to overflow the input buffer for
the password, overwriting the retrieved password hash used
for validation. This allowed an adversary to input his/her
own password and hash combination in the password buffer,
overwriting the valid hash and gaining access to the system.
We describe this data buffer overflow with four characteris-
tics:

BUF1: The length of an input string may be longer
than the destination buffer.

BUF10: The input string may contain data of the
same type as the variable var.

BUF11: Input may modify the data of var without
being countered.

BUF12: The variable var determines which execu-
tion path is taken at a future point in the execution of
the process.

An expert with the UNIX operating system could exam-
ine the source code for the corresponding characteristics.
The characteristic BUF1 captures the overflowing of the
password input buffer. This is represented in the code by
the lack of bounds checking for the length of the user-input
password. Characteristics BUF10 and BUF11 capture the
overwriting of the password hash. In the code, the program
retrieves the password hash for the given account and stores
it adjancent to the buffer for the user-input password. This
allows the overflow of the user-input password to overwrite
the hash. Finally, the login program uses this hash and com-
pares it to the hash of the user-input password. Since the
hash has been overwritten, the user is authenticated. This is

functionality is captured by characteristic BUF12.
Notice the shift in focus from, for example, the Open

Vulnerability and Assessment Language (OVAL) [4]. The
OVAL Language focuses on determining the presence of
vulnerabilities based on the configuration of a given sys-
tem, including criteria such as the operating system version,
presence of patches, installed applications, and so on. Our
focus is on providing characteristics which describe aspects
of the code, independent of version numbers.

Our approach is not unrelated however. Our characteris-
tics may be used to determine which versions of an operat-
ing system are vulnerable. For example, the characteristics
for the login vulnerability only existed in UNIX Version
6. Once that is determined, an OVAL Definition could be
created for use by system administrators.

2.6. Defining Symptoms

We use symptoms to avoid having to enumerate all pos-
sible runtime policy violations.

Definition 2.6.1. Symptoms. An abstraction of run-
time policy violations.

For example, let the symptom [denial of
service] represent all policy violations (s, o, a) such
that CP(s, o, a) = valid but AP(s, o, a) = invalid.
This captures the case when subject s has action a on object
o blocked. The symptom [privilege escalation]
could be defined similarly to represent all policy vio-
lations (s, o, a) such that CP(s, o, a) = invalid but
AP(s, o, a) = valid. This captures the case when subject
s gains the ability to perform action a on object o.

We can also create symptoms which depend on the num-
ber or severity of violations that occur. For example, a
system-wide denial of service could be defined for the case
when every privilege which is valid in the CP becomes in-
valid in the AP. Likewise, escalation of privileges to root
could be represented by the case where for a single subject,
every invalid privilege in CP becomes valid in the AP.

For every discussion on characteristics, there is a similar
discussion for symptoms. Most of our focus in this paper on
characteristics, but symptoms play an essential part in our
model.

2.7. Defining Abstractions

We are close to describing vulnerabilities in terms of
characteristics and symptoms. However, we also need a
meaningful way to compare vulnerability abstractions. The
universal characteristic set provides the basis for such a
comparison:

Definition 2.7.1. Universal Characteristic Set. The
fixed, nonempty set U of characteristics under consid-
eration.

The universal characteristic set does not necessarily in-
clude every possible characteristic. It is the set of charac-
teristics tailored for a specific situation, and may grow or
shrink as interests change. However, when this happens,
the maximal characteristic set for a vulnerability must also
change:

Definition 2.7.2. Maximal Characteristic Set. The
set of characteristics Mc ⊆ U for a runtime vulner-
ability R = (N,P) on some system x such that for
every characteristic C ∈ U: if I(R,C, x) = valid,
then C ∈ M .

This set includes all characteristics from the universal set
which apply to a specific runtime vulnerability. Therefore a
runtime vulnerability abstraction is given by:

Definition 2.7.3. Runtime Vulnerability Abstrac-
tion. The tuple A = (Mc,Ms) where Mc is the max-
imal characteristic set and Ms is the maximal symp-
tom set for some runtime vulnerability R.

Whenever the vulnerability abstractions are the same for
any two runtime vulnerabilities under the same universal
sets, we consider those vulnerabilities equivalent:

Definition 2.7.4. Runtime Vulnerability Equiva-
lence Class. The set of runtime vulnerabilities
R = {R1, . . . , Rn} under a universal set U such that
A = (Mc,Ms) is the runtime vulnerability abstrac-
tion for each pair Ri, Rj ∈ R.

For example, consider a simple buffer overflow which
exists in multiple versions of a web server. The conditions
and policy violations may change depending on the sys-
tem in question, causing multiple runtime vulnerabilities.
However, if every one of these runtime vulnerabilities have
the same abstraction, then we say they belong to the same
equivalence class. This allows us to treat runtime vulnera-
bilities across different systems as a single, more abstract,
vulnerability.

With this we are finally able to describe vulnerabilities
without requiring detailed knowledge of state space, condi-
tions, or policy configurations. Most notions of a vulnera-
bility used today are equivalent to our notion of a runtime
vulnerability equivalence class. This is important because it
preserves the established intuition of other models. In addi-
tion, the model presented here allows us to identify where
and how ambiguity may be introduced into our vulnerabil-

ity descriptions. This is key to being able to mitigate the
negative impacts caused by ambiguity.

3. Tree Approach to Classification

Classification schemes have been used since the mid
1970s to better understand and analyze vulnerabilities.
However, many of these classification schemes do not clas-
sify vulnerabilities. Instead, they focus only on errors,
faults, flaws, or bugs that tend to lead to a vulnerability.

For example, many buffer overflow bugs lead to a vul-
nerability. Such vulnerabilities are then classified as buffer
overflow vulnerabilities. However, not all buffer overflow
bugs lead to vulnerabilities and some bugs lead to much
more severe vulnerabilities than others. There must be
some other characteristic missing from these classification
schemes which allow a buffer overflow bug to become a se-
rious security issue.

It is for this reason we propose a different approach: us-
ing our abstraction of a vulnerability into maximal char-
acteristic and symptom sets as a foundation for classifica-
tion. Using characteristics, we can capture more than just
the originating software bug. Using symptoms, we can de-
scribe the difference between a vulnerability which leaks
information versus one that leads to a privilege escalation.

Our classification framework consists of four main ele-
ments: the universal characteristic/symptom sets, the mas-
ter classification tree, the maximal characteristic/symptom
set for a runtime vulnerability abstraction, and finally the
vulnerability classification tree.

3.1. Classification Components

We have already introduced the concepts of the universal
characteristic set. The master characteristic tree builds on
this set:

Definition 3.1.1. Master Characteristic Tree. A
rooted tree C where each leaf node represents a char-
acteristic and each parent node represents a class of
characteristics.

There is a similar master symptom tree. Combined, these
trees give us the master classification tree:

Definition 3.1.2. Master Classification Tree
(MCT). A rooted tree T = C ∪ S where C is the mas-
ter characteristic subtree and S is the master symptom
subtree.

The MCT provides all of the possible classes in our
classification scheme. The vulnerability classification tree

(VCT) provides the classification for any given vulnerabil-
ity. The simplest way to define the VCT is as follows:

Definition 3.1.3. Vulnerability Classification Tree
(VCT). A subgraph V ⊆ T of the master classi-
fication tree for a runtime vulnerability abstraction
A = (Mc,Ms) such that if the characteristic node
c ∈ T and c ∈ Mc then c ∈ V along with its ances-
tors and if the symptom node s ∈ T and s ∈ Ms then
s ∈ V along with its ancestors.

Any characteristic that is both in the MCT and the max-
imal characteristic set is added to the VCT along with all
of its ancestors. The same occurs for symptoms. The inner
nodes of the VCT give the classes which describe the vul-
nerability. See figure 2 for an example of what the MCT
and VCT look like.

This allows a vulnerability to belong to multiple classes
at once. There will be classes which describe the char-
acteristics of the vulnerability and classes which describe
its possible symptoms. Some classes will even be abstrac-
tions of others, with the most abstract class being runtime
vulnerability.

The process of determining if a node from the MCT is
included in the VCT may be made more sophisticated. Our
results section gives an example of this.

3.2. Classification Framework

We present a framework for classification. This pro-
vides how to classify a vulnerability based on its abstrac-
tion. However, to use this framework, a universal character-
istic and symptom set must first be defined. Once we have
these universal sets, we can begin building the master clas-
sification tree. This tree adds a hierarchy of abstraction on
top of the universal sets.

At this point we can begin to classify vulnerabilities. We
compare the maximal characteristic and symptom set for the
vulnerability abstraction with our master classification tree.
The nodes of the vulnerability classification tree provide the
vulnerability’s classification.

Given the perfect knowledge assumption, our classifica-
tion is primitive and repeatable. Under this assumption, the
system oracle and vulnerability indicator function perfectly
determine the maximal sets for our vulnerability abstrac-
tion. From there, classification is automatic based on our
master classification tree.

However, we cannot make the perfect knowledge as-
sumption in practice. Even creating “meaningful” charac-
teristics is a challenging obstacle. For example, [machine
has power] is a valid characteristic, but in most cases it
adds little to the vulnerability’s classification.

Figure 2. Representation of the master classification tree T and vulnerability classification tree V.

Despite these obstacles, we can still strive for repeata-
bility by making sure our characteristics are well-defined,
making our approximation of the system oracle consistent.
Therefore characteristic descriptions must include how to
determine if the characteristic is applicable, and what point
of view is being taken.

Classification is layered, and needs to be only as detailed
as necessary. The framework is also extensible. As tech-
nologies improve we may add new characteristics to our
universal set, and new sub-trees to our master classification
tree. We may even leave certain classes undefined, to be
filled in with specific characteristics at a later date. This
flexibility allows the classification scheme to be built itera-
tively.

4. Classification Results

We have applied our model and framework to two areas:
buffer overflow vulnerabilities and network protocol vulner-
abilities [9, 31]. We present a summary our buffer overflow
results here.

4.1. Buffer Overflow Classification

We were able to identify 13 characteristics and four dif-
ferent types of buffer overflow vulnerabilities. The core
characteristic to any buffer overflow vulnerability is BUF1:

BUF1: The length of an input string may be longer
than the destination buffer.

The characteristic BUF1 captures all buffer overflow
bugs and exists in all buffer overflow vulnerabilities. How-
ever, a vulnerability requires more than BUF1 to violate
policy. Consider the class of executable buffer overflow vul-
nerabilities. The idea is to overflow a buffer, often allocated
on a stack, such that the return address or function pointer
is altered to redirect the program flow to malicious code

stored in the input payload. For example, the fingerd
vulnerability exploited by the 1988 Internet Worm was an
executable buffer overflow [1]. Successful exploitation of
these vulnerabilities also require the following characteris-
tics to exist:

BUF2: The input string many contain addresses.

BUF3: The input string may contain instructions.

BUF4: Input may modify the stored return address
without being countered.

BUF5: The process may jump to memory on the
stack.

BUF6: The process may execute instructions stored
in the stack.

However, some executable buffer overflow vulnerabili-
ties involve memory on a heap. Therefore we need to define
additional characteristics:

BUF7: Input may modify the function pointer vari-
able without being countered.

BUF8: The program may jump to the heap.

BUF9: The program may execute instructions stored
in the heap.

Some vulnerabilities, like the login vulnerability de-
scribed earlier, are data buffer overflow vulnerabilities. This
introduces the following characteristics:

BUF10: The input string may contain data of the
same type as the variable var.

BUF11: Input may modify the data of var without
being countered.

BUF12: The variable var determines the future exe-
cution path taken by the process.

Finally, some data buffer overflows are indirect – chang-
ing the value of a pointer instead. The value of the variable
referenced by the pointer then alters program flow. To cap-
ture this we need to add the following characteristics to our
set:

BUF13: Input may modify the address stored in a
variable ptr without being countered.

BUF14: The value of the variable pointed to by ptr
determines the future execution path taken by the pro-
cess.

The characteristics BUF1 through BUF14 make up our
universal characteristic set. We use our universal character-
istic set to create our master characteristic tree, as show in
figure 3.

When we classify vulnerabilities using this tree, we use
a more sophisticated version of the master classification
tree. This introduces the concepts of a simple-class versus
a super-class. A simple-class is a node in our tree which
contains only characteristics. A super-class is a node which
contains other simple-class or super-class nodes. For ex-
ample, “direct executable” is a simple-class but “executable
buffer overflow” is a super-class.

This distinction is important for determining our vulner-
ability classification tree. A simple-class is only included
if all the contained characteristics are in the maximal char-
acteristic set. Specifically, the simple-class C is only in-
cluded in the VCT if C ⊂ Mc for a vulnerability abstraction
A = (Mc,Ms). Then, any ancestor of the simple-class is
added to the VCT. For the login data buffer overflow, the
VCT would contain classes “buffer overflow vulnerability,”
“data buffer overflow,” and “direct data.”

We chose this approach because the characteristics for
each simple-class are both necessary and sufficient for the
buffer overflow to be exploitable [9]. For example, con-
sider the panic() overflow in the Linux kernel [3]. In
the implementation of panic() there is an unbounded
vsprintf() call resulting in a buffer overflow on the
stack. This overflow involves characteristics BUF1 through
BUF3. However, the panic() function never returns mak-
ing it unclear whether this overflow can result in a change
of program flow. Since this overflow does not include all
the characteristics of a direct executable buffer overflow, it
is not considered a buffer overflow vulnerability.

This allows us to differentiate between bugs and vulner-
abilities. It is always good practice to fix all known bugs.
However, it may be unnecessary to immediately push out a
major kernel revision over a bug versus a dangerous vulner-
ability.

We are also able to see which characteristics are com-
mon across different types of buffer overflows. Mant vul-
nerabilities require the input to contain intructions. This

characteristic could be disabled by architectures which use
segmentation to separate instructions and data.

Since these characteristics are designed to be necessary
and sufficient, they also provide possible vectors for defense
and prevention of buffer overflow vulnerabilities. This al-
lows us to also classify the defenses against these vulnera-
bilities. BUF1 defenses include range-checking, bounds-
checking, and hardware segmentation [29, 23, 25, 27].
Products like StackGuard and PointGuard are BUF4 and
BUF7 defenses [13, 12].

This approach is compatible with other defense classifi-
cations. For example, the class of defenses characterized as
“writing correct code” in Cowan’s work maybe restated as
BUF1 defenses [14].

5. Related Work

The definition of a vulnerability used by CVE is similar
to our own in that it depends on policy, but separates the
terms universal vulnerability from that of an exposure with
a vague line separating which policies are more “universal”
than others [2].

Other policy frameworks include those by Dobson and
McDermind, Schneider, and Sterne [15, 26, 28]. However,
we chose to adapt the Unifying Policy Hierarchy model due
to its similar layered approach and formalism [10].

There are several attack models which are closely related
to our work. For example, the work by Alves-Foss defines
a “System Vulnerability Index” that combines a number of
factors to determine how vulnerable a system is to attack.
The work by Howard et al provides the concept of an “at-
tack surface” and uses a three-dimensional model to study
the vulnerability of a system. However, our focus is on
modeling and classifying vulnerabilities, and less on mea-
suring the vulnerability of a system. Fithen et al provide a
graph-based methodology to analyze specific preconditions
and postconditions, very similar to our approach [17]. Our
model differs in that it focuses on multiple layers of abstrac-
tion while utilizing the Universal Turing machine model to
allow vulnerabilities to be reduced to conditions and policy
violations, or abstracted to characteristics and symptoms.

Many of the early classification schemes focus on bugs,
faults, flaws, or errors which commonly lead to vulnera-
bilities. This includes the RISOS [5], PA [19], Landwehr
[22] schemes as well as others [16, 24]. The Taxonomy of
Security Faults by Aslam is a modern example of bug clas-
sification [6, 7]. Our work differs from these schemes in
that we characterize more than just the underlying software
bug. We try to also capture those conditions which turn a
bug into a vulnerability, and the policy violations that result.

Other schemes, such as that by Cohen, Howard, and We-
ber focus less on system vulnerabilities and more on attacks,
computer incidents, and intrusions [11, 18, 30]. We limit

Figure 3. Example master characteristic tree for buffer overflow vulnerabilities.

our model and classification framework to runtime vulnera-
bilities, and do not currently attempt to characterize network
attacks.

Krsul presents a formal vulnerability classification
scheme based on the assumptions made by programmers
[21]. His work also attempts to classify vulnerabilities, not
errors. However, his approach and classification character-
istics vary widely from our approach.

Our use of characteristics and goals for classification
come directly from “Vulnerability Analysis: An Extended
Abstract” by Bishop [8]. However, we attempt to further de-
velop and formalize the notions provided in Bishop’s previ-
ous work by providing not just a classification scheme, but
also a precise model for vulnerability analysis in general.

6. Conclusion

Vulnerabilities will likely always exist, if for no other
reason than fallible humans will misconfigure or make er-
rors in the design, implementation, deployment, or mainte-
nance of systems. This model and classification framework
is an effort to increase our understanding of vulnerabilities,
and how to defend against them.

We base our model on the components of a Universal
Turing machine – and show how security may be defined
in terms of states and transitions. However, the state dia-
gram for a Universal Turing machine is often too complex
to specify. Instead, we describe Turing machines in terms
of high-level algorithms.

We use a similar approach to mitigate the complexity of
state space. To do this, our model must first distinguish
between vulnerabilities arising from imprecision introduced
by the system model (inherent policy violations), errors in
configuration (configuration policy violations), and errors
in implementation (runtime policy violations) by using the
Unifying Policy Hierarchy [10].

We then introduce characteristics and symptoms to de-
scribe runtime vulnerabilities. This allows us to describe
vulnerabilities in a system- and policy-independent way.

Finally, we provide an extensible vulnerability classifica-

tion framework and show its application to buffer overflow
vulnerabilities. We discuss several of the necessary and suf-
ficient characteristics for different types of buffer overflow
vulnerabilities, and how their classification also provides us
potential defense vectors.

As a result of our work, we better understand what dif-
ferentiates bugs from vulnerabilities, where vulnerabilities
arise in the system, where and how vulnerability analysis
introduces ambiguity, and have a method of classifying vul-
nerabilities which also provide potential defenses against
them.

References

[1] BSD fingerd buffer overflow vulnerability. Online at
http://www.securityfocus.com/bid/2/info.

[2] Common vulnerabilities and exposures (CVE). Online at
http://cve.mitre.org/about/terminology.html.

[3] Linux kernel panic() overflow. Online at
http://osvdb.org/displayvuln.php?osvdb id=7423.

[4] Open vulnerability and assessment language (OVAL). On-
line at http://oval.mitre.org/index.html.

[5] R. P. Abbott, J. S. Chin, J. E. Donnelley, W. L. Konigsford,
S. Tokubo, and D. A. Webb. Security analysis and enhance-
ments of computer operating systems. Technical Report NB-
SIR 76-1041, Institute for Computer Sciences and Technol-
ogy at the National Bureau of Standards, April 1976.

[6] T. Aslam. A taxonomy of security faults in the unix operat-
ing system. Master’s thesis, Purdue University, 1995. Avail-
able online at ftp://ftp.cerias.purdue.edu/pub/papers/taimur-
aslam/aslam-taxonomy-msthesis.ps.Z.

[7] T. Aslam, I. Krsul, and E. H. Spafford. A taxon-
omy of security faults. In Proceedings of the Na-
tional Computer Security Conference, 1996. Avail-
able online at ftp://ftp.cerias.purdue.edu/pub/papers/taimur-
aslam/aslam-krsul-spaf-taxonomy.ps.

[8] M. Bishop. Vulnerability analysis: An extended ab-
stract. In Recent Advances in Intrusion Detection
(RAID), pages 125–136, September 1999. Available
online at http://nob.cs.ucdavis.edu/∼bishop/papers/1999-
vulclass/1999-vulclass.pdf.

[9] M. Bishop, D. Howard, S. Engle, and S. Whalen. A taxon-
omy of buffer overlow vulnerabilities, 2006. Submitted and
undergoing revision.

[10] A. Carlson. The unifying policy hierarchy model. Master’s
thesis, University of California at Davis, 2006.

[11] F. Cohen. Information system attacks: A preliminary clas-
sification scheme. Computers and Security, 16(1):29–46,
1997. Available online at http://dx.doi.org/10.1016/S0167-
4048(97)85785-9.

[12] C. Cowan, S. Beattie, J. Johansen, and P. Wagle. Pointguard:
Protecting pointers from buffer overflow vulnerabilities. In
Proceedings of the 12th USENIX Security Symposium, pages
91–104, August 2003.

[13] C. Cowan, C. Pu, D. Maier, H. Hinton, J. Walpole, P. Bakke,
S. Beattie, A. Grier, P. Wagle, and Q. Zhang. Stackguard:
Automatic adaptive detection and prevention of buffer over-
flow attacks. In Proceedings of the 7th USENIX Security
Symposium, pages 63–77, January 1998.

[14] C. Cowan, P. Wagle, S. Beattie, and J. Walpole. Buffer
overflows: Attacks and defenses for the vulnerability of the
decade. In DARPA Information Survivability Conference
and Expo (DISCEX), January 2000.

[15] J. E. Dobson and J. A. McDermid. A framework
for expressing models of security policy. In Pro-
ceedings of IEEE Symposium on Security and Pri-
vacy, pages 229–239, May 1989. Available online at
http://ieeexplore.ieee.org/iel2/243/1514/00036297.pdf.

[16] A. Endres. An analysis of errors and their
causes in system programs. ACM SIGPLAN No-
tices, 10(6):327–336, 1975. Available online at
http://portal.acm.org/citation.cfm?id=390016.808455.

[17] W. L. Fithen, S. V. Hernan, P. F. O’Rourke, and D. A.
Shinberg. Formal modeling of vulnerability. Bell Labs
Technical Journal, 8(4):173–186, 2004. Available online at
http://dx.doi.org/10.1002/bltj.10094.

[18] J. D. Howard. An Analysis of Security Incidents on
the Internet 1989 - 1995. PhD thesis, Carnegie
Mellon University, 1998. Available online at
http://www.cert.org/research/JHThesis/Start.html.

[19] R. B. II and D. Hollingworth. Protection anal-
ysis: Final report. Technical Report ISI/SR-78-
13, Information Sciences Institute at the University of
Southern California, May 1978. Available online at
http://csrc.nist.gov/publications/history/bisb78.pdf.

[20] R. Johnson and D. Wagner. Finding user/kernel pointer bugs
with type inference. In Proceedings of the 13th USENIX Se-
curity Symposium, pages 119–134, August 2004. Available
online at http://www.cs.umd.edu/∼jfoster/cqual/.

[21] I. Krsul. Software Vulnerability Analysis. PhD the-
sis, Purdue University, 1998. Available online at
ftp://ftp.cerias.purdue.edu/pub/papers/ivan-krsul/krsul-phd-
thesis.pdf.

[22] C. E. Landwehr, A. R. Bull, J. P. McDermott,
and W. S. Choi. A taxonomy of computer pro-
gram security flaws. ACM Computing Surveys,
26(3):211–254, September 1994. Available online at
http://doi.acm.org/10.1145/185403.185412.

[23] K. Lee and S. Chapin. Type-assisted dynamic buffer over-
flow detection. In Proceedings of the 11th USENIX Security
Symposium, pages 81–88, 2000.

[24] T. J. Ostrand and E. J. Weyuker. Collecting and cate-
gorizing software error data in an industrial environment.

Journal of Systems and Software, 4(4):289–300, November
1984. Available online at http://dx.doi.org/10.1016/0164-
1212(84)90028-1.

[25] O. Ruwase and M. Lam. A practical dynamic buffer over-
flow detector. In Proceedings of the 2004 Symposium on
Network and Distributed System Security (NDSS), pages
159–169, February 2004.

[26] F. B. Schneider. Enforceable security policies. ACM
Transactions on Information and System Security (TIS-
SEC), 3(1):30–50, February 2000. Available online at
http://doi.acm.org/10.1145/353323.353382.

[27] Z. Shao, Q. Zhuge, Y. He, and E. Sha. Defending embedded
systems against buffer overflow via hardware/software. In
Proceedings of the 19th Annual Computer Security Applica-
tions Conference, page 352, December 2003.

[28] D. F. Sterne. On the buzzword ‘security pol-
icy’. In Proceedings of IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 219–230, May 1991. Available online at
http://ieeexplore.ieee.org/iel2/349/3628/00130789.pdf.

[29] D. Wagner, J. S. Foster, E. A. Brewer, and A. Aiken. A
first step towards automated detection of buffer overrun vul-
nerabilities. In Proceedings of the Network and Distributed
System Security (NDSS) Symposium, February 2000.

[30] D. Weber. A taxonomy of computer intrusions. Master’s the-
sis, Massachusetts Institute of Technology, 1998. Available
online at http://hdl.handle.net/1721.1/9861.

[31] S. Whalen, S. Engle, and M. Bishop. Protocol vulnera-
bility analysis. Technical Report CSE-2005-4, UC Davis
Department of Computer Science, May 2005. Avail-
able online at http://www.cs.ucdavis.edu/research/tech-
reports/2005/CSE-2005-4.pdf.

