
Scope In C

Matt Bishop

Department of Mathematics and Computer Science
Dartmouth College

Hanover, NH 03755

Introduction

The scope of a variable or function is that part of the program in which it can be
referenced. A global variable is one that can be used anywhere in the program; a local
variable is one that can only be used within a particular function.

Figuring out the scope of a variable in C is more complicated than in most other
languages. For one thing, C programs are rarely compiled as a unit; most have sev eral
files of source code, each file being compiled separately and the resulting objects linked
together to form an executable module. Variables can be made global to all functions in
all files, or to the functions in one file only; local variables can be made local to a func-
tion or to a block, and the compiler can be instructed to reserve storage for them which
will remain allocated after the function or block exits. Most languages do not have these
features.

Because of all this complexity, we would do well to review the definition of a few
terms, and how C variables are declared.

Declarations and Definitions

A declaration is a C statement that gives the compiler information about the vari-
able; a definition is a C statement that instructs the compiler to reserve storage. While a
variable may be declared many times throughout a C program, especially if the program
has its source in several files, there can only be one definition. Note also that a definition
is invariably a declaration, although a declaration need not be a definition.

A variable cannot be used unless it has been declared first. Variables may be
declared in three places: at the top level of the program (that is, outside any function), as
a formal parameter to a function, or at the beginning of a block. Each of these has differ-
ent consequences for the scope of the declared variable.

The format of a C variable declaration is:

storage-class type identifier

2

Type is the type of variable, and is one of char, short, int, long, unsigned, float, double,
struct name, or union name. Identifier is the variable name. Storage-class indicates how
the compiler is to allocate storage for the variable; this is the part of the declaration rele-
vant to scope. The storage classes are static, auto, register, and extern. (There is a fifth
keyword, typedef, that for syntactic reasons is considered a storage class; but it plays no
part in anything that follows.)

The class register informs the compiler that the variable will be heavily used, and
the compiler should attempt to keep the variable stored in a register (since register
accesses are almost always quicker and more compact to express than other types of
accesses.) It can only be used to declare parameters to a function or variables defined in a
block, and compilers have a limit on the number of register declarations they will honor.
(Excess register declarations are simply ignored.)

The class static tells the compiler that the storage allocated to that variable is not to
be released until the process exits. Storage for parameters and variables declared at the
top of a block is usually allocated in such a way that it is deallocated when the executing
block or function exits (For example, storage is often created on a stack; when execution
completes, the stack is popped.) The static declaration tells the compiler to allocate per-
manent storage for the variable. As a side effect, if the variable is being defined at the top
level, static informs the compiler not to allow the variable to be accessed from any other
file (this usually involves marking it as local or not putting the name in the symbol table.)
For obvious reasons, variables which are parameters to functions cannot be declared
static.

The class extern indicates that no storage is to be allocated, because the variable is
defined elsewhere; it simply informs the compiler of the type of the variable. In fact, the
compiler does not have to know where the variable’s storage is actually located; extern
variables are usually defined in another file, and the linker patches up the references.
This class is used a great deal, since in C a variable cannot be used until it is declared.
Like static, howev er, extern cannot be used to declare function parameters.

The final class, auto, is rarely (if ever) explicitly stated. It indicates that the storage
allocated is to be released at the end of the block. Hence, the only place it can be used is
in declaring variables at the beginning of blocks. This is the most common declaration
used when defining variables local to a block or function.

Top Lev el Declarations

Variables declared at the top level are called external variables and may be of stor-
age class extern or static. If the storage class is static, the variable may not be accessed
from another file. (Incidentally, functions may be declared static, too.) If the storage
class is extern, the statement is a declaration rather than a definition; the compiler will not
reserve storage for the variable at that point, but when the linker links all the modules of
the program together, there must be storage reserved for that variable in exactly one mod-
ule. If the storage class is omitted, the declaration is a global definition of the variable;
storage is reserved for that variable, and all extern declarations of that variable will refer
to that storage location.

3

As an example, suppose we have a simple program which prints the integers
between its two command-line arguments. We shall put the main routine in the file
‘‘main.c’’ and the counting routine in the file ‘‘count.c’’. Note that no error checking is
done (it is omitted because we are only interested in the scope of the variables, not
because error checking is not worthwhile!):

/∗ main.c ∗/
#include <stdio.h>

int first, last; /∗ start, end points of counting ∗/

main(argc, argv)
int argc; /∗ argument count ∗/
char **argv; /∗ argument list ∗/
{

/∗
∗ set up the endpoints
∗/

first = atoi(argv[1]);
last = atoi(argv[2]);

/∗
∗ count from first to last
∗/

count();

/∗
∗ exit nicely (0 = success)
∗/

exit(0);
}

4

/∗ count.c ∗/
#include <stdio.h>

extern int first, last; /∗ start, end points of counting ∗/

count()
{

int i; /∗ counter ∗/

/∗
∗ count from first to last
∗/

for(i = first; i <= last; i++)
printf("%d ", i);

}

In ‘‘main.c’’, the definition

int first, last;

instructs the compiler to allocate storage for two integer variables. In ‘‘count.c’’, we need
to use those values. We cannot just re-declare the variables there, however, since that
would produce a conflict (specifically, there would be two variables named first.) So, we
declare the two variables to be extern in ‘‘count.c’’ -- this informs the compiler that the
two variables are integer variables, and that the storage is reserved elsewhere. Then, the
compiler has sufficient information to generate correct references to them, which the
linker will then resolve when the two modules are linked.

Assuming the operating system is UNIX, the way to compile these programs is:

% cc main.c count.c
main.c:
count.c:
%

(the italicized text is what you type.)

Contrast this with what would happen had we defined the two variables first and
last to be static in ‘‘main.c’’:

5

/∗ main.c ∗/
#include <stdio.h>

static int first, last; /∗ start, end points of counting ∗/

main(argc, argv)
int argc; /∗ argument count ∗/
char **argv; /∗ argument list ∗/
{

/∗
∗ set up the endpoints
∗/

first = atoi(argv[1]);
last = atoi(argv[2]);

/∗
∗ count from first to last
∗/

count();

/∗
∗ exit nicely (0 = success)
∗/

exit(0);
}

The keyword static informs the compiler that the variables first and last are to be
available in ‘‘main.c’’, but not in any other file. So, if we tried compiling these files, we
would get:

% cc main.c count.c
main.c:
count.c:
ld. error. undefined: <_last>
ld. error. undefined: <_first>
%

The storage classes register and auto are meaningless when used with variables
declared at the top level, and produce error messages when the file containing them is
compiled.

Recall that an identifier must be declared before it can be used. Sometimes, for
organizational purposes, a variable is defined at the top level but after several functions.
If a function defined earlier in the file references that variable, the variable must be
declared before the function. In this case, the declaration has the storage class extern, just
as though the variable were defined in another file.

Formal Parameters

6

When a function is defined, the order and types of the arguments are given by list-
ing identifiers in parentheses after the function name, and then declaring each before the
block containing the statements making up the function. For example, in our sample pro-
gram, the following

main(argc, argv)
int argc;
char **argv;

identifies main as having two parameters, the first being an integer and the second a
pointer to a pointer to characters. The scope of these variables is the body of the function
in which they are declared. If any of these parameters has the same name as a global,
using the name within the function will refer to the parameter (which is a local variable)
and not the global variable.

If a storage class is specified for these parameters, it must be register. This informs
the compiler that the parameter should be moved from the stack (or wherever the argu-
ments are kept) to a register. As discussed earlier, specifying any of extern, auto, or static
will cause a compiler error.

Variables Declared In A Block

Variable declarations follow the opening brace of a block. These variables are local
to that block; attempting to use them once the block has ended produces an error. Note
that any blocks contained in the block in which the variables are defined may access the
variable.

Any of the four storage classes may be used in block declarations. If none is given,
auto is assumed. If register is used, the compiler will attempt to keep the variable in a
register; this makes use of the variable faster. If static is used, the variable will retain its
value across new inv ocations of the same block. For example, the program

/* staticdemo.c */
main()
{

demo();
demo();

}
demo()
{

static int timescalled = 0;

timescalled++;
printf("demo has been called %d times\n",

timescalled);
}

produces the output

7

demo has been called 1 times
demo has been called 2 times

Of course, the variable cannot be referenced from outside the block. If extern rather than
static is used, no storage is generated, and the compiler and linker expect the variable to
be defined elsewhere.

If a variable is declared in a block, and it has the same name as another variable
declared in an outer block, a global variable, or a parameter, references to that variable
name will access the innermost definition. For example, the following program:

main()
{

int i = 1;
printf("i = %d at level 1\n", i);
{

int i = 2;
printf("i = %d at level 2\n", i);

}
printf("i = %d at level 1\n", i);

}

produces the output

i = 1 at lev el 1
i = 2 at lev el 2
i = 1 at lev el 1

How To Figure Out Which Variable You Are Talking About

One of the most common complaints from people learning C is that they get con-
fused about which variable is being used. In C, however, this is very easy to determine, if
you remember that every variable must be declared before it is used.

When you find a statement containing a variable, and want to find the variable’s
declaration, locate the beginning of the block in which the statement occurs. If the vari-
able is not defined there, look for the beginning of the next outermost block. Continue
this procedure until you reach the outermost block. If the variable is not defined there, it
is either a parameter or a global of some type. As you are now at the outermost block,
you should be able to find the function name and parameter list immediately before the
block. If the variable is not listed as a parameter, it is a global. (Be sure you check the
parameter list rather than the declarations, since a parameter listed but not declared is an
integer.) Start at the function name and move backwards through the file, towards the
top. Look only at the top-level declarations, not in any functions. If the variable is not
defined within that file, check any included files for its declaration. If you still have not
located the variable’s declaration, the variable is an undefined variable. The algorithm
below summarizes this procedure:

8

while(in a block){
find the top of the current block
if (var is declared there)

exit /* found it! */
go to next outer block

}
if (var in function parameter list)

exit /* found it! */
while(not at top of the file){

if (at #include line)
look in #include-ed file

else if (function definition)
skip to before the function

else if (var is declared)
exit /* found it */

else
go to previous line in file

}
/* not found -- var is undeclared variable */

As an example, here is a very simple program:

1 #include <stdio.h>

2 int var = 0;

3 main(argc, argv)
4 int argc;
5 char **argv;
6 {
7 int i = 1;

8 printf("at level 1: i = %d, var = %d\n", i, var);
9 {

10 int i = 2;

11 printf("at level 2: i = %d, var = %d\n", i, var);
12 }
13 printf("back at level 1: i = %d, var = %d\n", i, var);
14 }

To find out which variable i the i in line 11 refers to, begin there, and move to the top of
the block containing it (line 9). Check the list of variables declared for that block. In this
case, an i is defined there (line 10). This is the desired i.

How about the i in line 13? The top of the block containing that statement is at line
6; looking at the list of variables immediately following, we find the appropriate defini-
tion at line 7.

9

For a more complicated case, consider the variable var on line 11. We find the
beginning of the block at line 9; checking the variable declarations there, we do not find
one for var. This block is contained in another, which begins at line 6; checking the dec-
larations within that block, we still do not see any for var. Since this is the outermost
block, we next check the parameter list for the function (line 3) to see if var is defined
there. It is not. Hence, it must be defined globally. Moving backwards towards the top,
we find the definition we seek at line 2.

The rule for locating function declarations is the same as for variable declarations,
with one modification. If at the end of the algorithm, the the function declaration has not
been found, it is to be taken as a function returning an integer and declared extern. Thus,
ev ery function has an implicit declaration.

Conclusion

The basic rules of scope are:

• Variables declared outside functions may be used from the declaration on, throughout
the file.

• Variables declared as parameters may be used within that function definition.

• Variables declared at the beginning of a block may be used within that block and any
enclosed blocks.

• Variables declared in blocks take precedence over variables declared as parameters,
which in turn take precedence over global variables.

This summarizes all one needs to know about C scope.

