

Appeared in

Journal of Computer Security

4

 (4) pp. 331-359 (1996). Page 1 of 33

Conspiracy and Information Flow in the Take-Grant
Protection Model

Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA 95616-8562

ABSTRACT

The Take Grant Protection Model is a theoretic model of access control that cap-
tures the notion of information flow throughout the modelled system. This paper an-
alyzes the problem of sharing information in the context of paths along which
information can flow, and presents the number of actors necessary and sufficient to
share information, in this model. The results are applied to information flow in a
network to reduce the size of the set of actors who could have participated in the
theft.

1. Introduction

The nature of access control and information flow are critical to understanding the security

of any system. The Take-Grant Protection Model is a formal model of access control which com-

bines the transfer of rights and the transfer of information to present a cohesive picture of transfers

throughout a system. It differs from other models such as the access control matrix model by spec-

ifying both the sequences of primitive operations making up the body of the commands and the set

of tests upon which the execution of those sequences is conditioned.

This model represents systems as graphs to be altered by specific operations. Developed to

test the limits of the results in [7], the focus of most studies of the Take-Grant Protection Model

has been on characterizing conditions necessary and sufficient for the transfer of rights and infor-

mation, and on the complexity of testing for those conditions in a representation of a system. For

this reason it is in some sense of more “practical” use than other formal systems, in that the security

question is decidable and the study of the complexity of conditions allowing compromise is em-

phasized.

Early work on the Take-Grant Protection Model [9][10] dealt with the transfer of rights as-

suming all active agents in the system would cooperate. Snyder extended these characterizations

to include conditions under which rights could be stolen [14]; Bishop and Snyder introduced the

notion of information flow and formulated necessary and sufficient conditions for information

Appeared in

Journal of Computer Security

4

 (4) pp. 331-359 (1996). Page 2 of 33

sharing [4], and Bishop extended these characterizations to include conditions under which infor-

mation could be stolen [2].

This paper extends those results in the direction suggested by [14] to present a notion of

“conspirators” in the context of information flow. We establish precise bounds on the number of

actors required for information to be transferred from one vertex to another, and contrast these re-

sults with similar results for the transfer of rights.

Applications of the Take-Grant Protection Model to various systems have been explored

[3][8][13][16]. This paper also tries to place its theoretical results into an applied context by ex-

ploring how these results can be used to analyze the actors moving information around a network.

Further applications are of course possible, but using the new results to analyze current models of

disclosure and integrity (for example, those described in [1][5][6][11][12][15]) is itself a separate

paper; it is beyond the scope of the issues addressed here.

We quickly review the basic definitions and relevant results of the Take-Grant Protection

Model [2]. Following that, we present bounds on the number of actors needed for information to

be shared (or stolen). We then briefly compare our results to similar ones for theft of rights. To dem-

onstrate the usefulness of the concepts, we examine an application of this model to the Internet.

Finally, we suggest areas for future research.

2. Basic Definitions and Results

The Take-Grant Protection Model represents a system by a finite, directed

protection graph

.

in which labelled edges represent rights and vertices represent entities. Entities are either

subjects

(represented by

●

)

 or

objects

 (represented by

❍

)

. Vertices which may be either subjects or objects

are represented by

⊗

. Changes to the protection state of the system are represented by changes to

the graph. The rules governing the transfer of rights are called

de jure

 rules and are as follows:

take

: Let

x

,

y

, and

z

 be three distinct vertices in a protection graph

G

0

, and let

x

 be a subject. Let

there be an edge from

x

 to

y

 labelled

γ

 with , an edge from

y

 to

z

 labelled

β

, and .

Then the

take

 rule defines a new graph

G

1

 by adding an edge to the protection graph from

x

 to

z

 labelled

α

. Graphically,

t γ∈ α β⊆

● ⊗ ⊗
x y z

t β
● ⊗ ⊗
x y z

t β

α

|–

Appeared in

Journal of Computer Security

4

 (4) pp. 331-359 (1996). Page 3 of 33

The rule is written “

x

 takes (

α

 to

z

) from

y

.”

grant

: Let

x

,

y

, and

z

 be three distinct vertices in a protection graph

G

0

, and let

x

 be a subject. Let

there be an edge from

x

 to

y

 labelled

γ

 with , an edge from

x

 to

z

 labelled

β

, and

. Then the

grant

 rule defines a new graph

G

1

 by adding an edge to the protection graph

from

y

 to

z

 labelled

α

. Graphically,

The rule is written “

x

 grants (

α

 to

z

) to

y

.”

create

: Let

x

 be any subject in a protection graph G

0

 and let . Create defines a new graph G

1

by adding a new vertex

y

 to the graph and an edge from

x

 to

y

 labelled

α

. Graphically,

The rule is written “

x

 creates (

α

 to new vertex)

y

.

”

remove

: Let

x

 and

y

 be any distinct vertices in a protection graph

G

1

 such that

x

 is a subject. Let

there be an explicit edge from

x

 to

y

 labelled

β

, and let . Then

remove

 defines a new

graph

G

1

 by deleting the

α

 labels from

β

. If

β becomes empty as a result, the edge itself is

deleted. Graphically,

The rule is written “x removes (α to) y.”

Definition. A tg-path is a nonempty sequence v0, …, vn of distinct vertices such that for all i,

, vi is connected to vi+1 by an edge (in either direction) with a label containing t or g.

Definition. Vertices are tg-connected if there is a tg-path between them.

Definition. An island is a maximal tg-connected subject-only subgraph.

With each tg-path, associate one or more words over the alphabet in the obvious way. If the

{ t→, t
←

, g→, g
←

 } path has length 0, then the associated word is the null word ν. The notation t*

means zero or more occurences of the character t, so for example t*g represents the sequence g, tg,

ttg, ….

g γ∈

α β⊆

●⊗ ⊗
y x z

g β

α

|– ●⊗ ⊗
y x z

g β

α R⊆

●
x

● ⊗
x y

α
|–

α R⊆

x y

β
● ⊗

x y
● ⊗

β − α
|–

0 i n<≤

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 4 of 33

Definition. A vertex v0 initially spans to vn if v0 is a subject and there is a tg-path between v0 and

vn with associated word in { t→*g→ } ∪{ ν }.

Definition. A vertex v0 terminally spans to vn if v0 is a subject and there is a tg-path between v0

and vn with associated word in { t→* }.

Definition. A bridge is a tg-path with endpoints v0 and vn both subjects and the path’s associated

word in B = { t→* , t
←

*, t→*g→ t
←

*, t→*g← t
←

* }.

Definition. The predicate can•share(α, x, y, G0) is true for a set of rights α and two vertices x and

y if and only if there exist protection graphs G1, …, Gn such that G0 |–*Gn using only de jure rules,

and in Gn there is an edge from x to y labelled α.

Theorem 1. [10] The predicate can•share(α, x, y, G0) is true if and only if there is an edge from x

to y in G0 labelled α, or if the following hold simultaneously:

(1.1) there is a vertex with an s-to-y edge labelled α;

(1.2) there exists a subject vertex x´ such that x´ = x or x´ initially spans to x;

(1.3) there exists a subject vertex s´ such that s´ = s or s´ terminally spans to s; and

(1.4) there exist islands I1, …, In such that x´ is in I1, s´ is in In, and there is a bridge from Ij

to Ij+1 (1 ≤ j < n).

Definition. The predicate can•steal(α, x, y, G0) is true if and only if there is no edge labelled α from

x to y in G0, there exist protection graphs G1, …, Gn such that G0 |–*Gn using only de jure rules,

in Gn there is an edge from x to y labelled α, and if there is an edge labelled α from s to q in G0,

then no rule in a witness has the form “s grants (α to q) to z” for any z ∈ Gj (1 ≤ j < n).

Theorem 2. [14] The predicate can•steal(α, x, y, G0) is true if and only if the following hold simul-

taneously:

(2.1) there is no edge labelled α from x to y in G0;

(2.2) there exists a subject vertex x´ such that x´ = x or x´ initially spans to x;

(2.3) there is a vertex s with an edge from s to y labelled α in G0;

(2.4) can•share(t, x´, s, G0) is true.

The de facto rules represent paths along which information may flow. We cannot use ex-

plicit edges for this purpose because no change in authority occurs. Hence, we use a dashed line,

labelled by r, to represent the path of a potential de facto transfer (called an implicit edge). Implicit

s G0∈

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 5 of 33

edges cannot be manipulated by de jure rules, since the de jure rules only affect authorities record-

ed in the protection system, and implicit edges do not represent such authority.

The following set of de facto rules was introduced in [4] to model transfers of information:

post: Let x, y, and z be three distinct vertices in a protection graph G0, and let x and z be subjects.

Let there be an edge from x to y labelled α with and an edge from z to y labelled β,

where . Then the post rule defines a new graph G1 with an implicit edge from x to z

labelled r. Graphically,

The rule is written “z posts to x through y.”

pass: Let x, y, and z be three distinct vertices in a protection graph G0, and let y be a subject. Let

there be an edge from y to x labelled α with and an edge from y to z labelled β,

where . Then the pass rule defines a new graph G1 with an implicit edge from x to z

labelled r. Graphically,

The rule is written “y passes from z to x.” .

spy: Let x, y, and z be three distinct vertices in a protection graph G0, and let x and y be subjects.

Let there be an edge from x to y labelled α with and an edge from y to z labelled β,

where . Then the spy rule defines a new graph G1 with an implicit edge from x to z

labelled r. Graphically,

The rule is written “x spies on z using y.”

find: Let x, y, and z be three distinct vertices in a protection graph G0, and let y and z be subjects.

Let there be an edge from y to x labelled α with and an edge from z to y labelled β,

r α∈

w β∈

● ●
x y z

r w

r

|–
● ●
x y z

r w⊗
⊗

w α∈

r β∈

⊗ ● ⊗
x y z

w r

r

|–
⊗ ● ⊗
x y z

w r

r α∈

r β∈

● ⊗
x z

r r

r

●
y ● ⊗

x z

r r
●
y

|–

w α∈

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 6 of 33

where . Then the findrule defines a new graph G1 with an implicit edge from x to z

labelled r. Graphically,

The rule is written “x finds from z through y.”

Whether these rules capture all ways in which information may leak is an open question;

ultimately, the answer depends on how the system being modelled controls that information flow.

The above rules appear to capture the most common techniques, and have been used in tthe past,

so for consistency we shall use them here.

Definition. The predicate can•know(x, y, G0) is true if and only if there exists a sequence of pro-

tection graphs G0, …, Gn such that Gn is derived from G0 by rule applications, and in Gn there is

an edge from x to y labelled r or an edge from y to x labelled w, and if the edge is explicit, its source

is a subject.

Definition. An rwtg-path is a nonempty sequence v0, …, vn of distinct vertices such that for all i,

, vi is connected to vi+1 by an edge (in either direction) with a label containing t, g, r or w.

With each rwtg-path, associate one or more words over the alphabet { t→, t
←

, g→, g
←

 , r→,

r
←

, w
→

, w
←

 } in the obvious way.

Definition. A vertex v0 rw-initially spans to vn if v0 is a subject and there is an rwtg-path between

v0 and vn with associated word in{ t→*w
→ } ∪{ ν }.

Definition. A vertex v0 rw-terminally spans to vn if v0 is a subject and there is an rwtg-path between

v0 and vn with associated word in { t→* r→ }.

Definition. A connection is an rwtg-path with v0 and vn both subjects and the path’s associated

word in C= { t→*r→, w
←

 t
←

*, t→*r→, w
←

 t
←

*}.

The next result [4] characterizes the set of graphs for which can•know is true:

w β∈

⊗ ●
x z

w w

r

●
y

⊗ ●
x z

w w
●
y

|–

0 i n<≤

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 7 of 33

Theorem 3. [4] The predicate can•know(x, y, G0) is true if and only if there exists a sequence of

subjects u1, …, un in G0 (n ≥ 1) such that the following conditions hold:

(3.1) u1 = x or u1 rw-initially spans to x;

(3.2) un = y or un rw-terminally spans to y;

(3.3) for all i, 1 ≤ i < n, there is an rwtg-path between ui and ui+1 with associated word in

.

Lemma 4. [2] If two subjects x and y in G0 are connected by a bridge, then can•know(x, y, G0) and

can•know(y, x, G0) are true.

Lemma 5. [2] Let a subject x be connected by a bridge to another subject y. If either x or y does not

act, no sequence of graph transformations can add an implicit or explicit edge from x to y.

Lemma 6. [4] If two subjects x and y in G0 are connected by a connection, then can•know(x, y, G0)

is true.

Definition. The predicate can•snoop(x, y, G0) is true if and only if can•steal(r, x, y, G0) is true or

there exists a sequence of graphs and rule applications G0 |–ρ1…|–ρn Gn for which all of the fol-

lowing conditions hold:

(a) there is no explicit edge from x to y labelled r in G0;

(b) there is an implicit edge from x to y labelled r in Gn; and

(c) neither y nor any vertex directly connected to y in G0 is an actor in a grant rule or a de

facto rule resulting in an (explicit or implicit) read edge with y as its target.

Theorem 7. [2] For distinct vertices x and y in a protection graph G0 with explicit edges only, the

predicate can•snoop(x, y, G0) is true if and only if can•steal(r, x, y, G0) is true or all of the follow-

ing conditions hold:

(7.1) there is no edge from x to y labelled r in G0;

(7.2) there is a subject vertex w1 such that w1 = x or w1 rw-initially spans to x in G0;

(7.3) there is a subject vertex wn such that wn ≠ y, there is no edge labelled r from wn to y in

G0, and wn rw-terminally spans to y in G0; and

(7.4) can•know(w1, wn, G0) is true.

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 8 of 33

3. Conspiracy in a Single-Path Graph

Given that we can determine whether knowing (that is, the sharing of information) is pos-

sible in a Take-Grant graph, how many vertices must cooperate in the sharing? The answer to this

question will give us an answer to a more interesting one involving snooping, namely how many

actors are necessary to steal information.

Before we tackle these questions in all their generality, let us restrict our attention for the

remainder of this section to a specific type of graph. Let G be a graph with vertices x, y, with

can•know(x, y, G) true, and containing only those vertices and edges needed to witness this pred-

icate. Thus, G is composed of the vertices and edges of the path along which information is to be

propagated or rights transferred. Let the set of (subject and object) vertices

V = { zi | x = z0, z1, …, zm, y = zm+1 }

Clearly each edge zizi+1, where { zi, zi+1 } ⊆ V, is an rwtg-path of length 1; as can•know(x, y, G)

holds, there are subject vertices vi, 0 ≤ i ≤ n ≤ m, in this set. Consider the rwtg-paths between these

subjects; by Theorem 3, the words associated with these paths are in , if y is not a subject

then there is an rw-terminal span from a subject vn to y, and if x is not a subject, then there is an

rw-initial span from v0 to x.

The following definitions capture the notion of the “reach” of a vertex:

Definition. A terminal access set T(y) is defined as the set containing y and all vertices to which y

terminally or rw-terminally spans.

Definition. An initial access set I(y) is defined as the set containing y and all vertices to which y

initially or rw-initially spans.

Here, T(y) is the maximal set of vertices from which y can obtain information, and I(y) is

the maximal set of vertices to which y can pass rights or information. Note that these sets are not

necessarily identical, because while a bridge between subjects allows the symmetrical transfer of

rights, a connection allows only a one-way transfer of information. This adds significant complex-

ity to the conspiracy problem.

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 9 of 33

Definition. A subject x is an information gate if any one of the following conditions holds:

(i) x = v0, the only word associated with the edge v0v1 is
←
g or

←
t and there are no other edg-

es incident to x;

(ii) x = vi, there are exactly two edges incident upon x, and the word associated with the path

vi-1vivi+1 is in the set{
→←
t t,

→←
g g,

→←
 t w,

→←
g w,

→←
 r t,

→←
 r g }; or

(iii) x = vn+1, the only word associated with the edge vnvn+1 is
→
g or

→
t , and there are no other

edges incident to x.

For an information gate x, T(x) = I(x) = { x }. The idea is that information can be passed

into an information gate, or out of an information gate, without the gate taking any action, but in

order for information to be passed through a gate (that is, both in and out), the information gate

must be active in a rule application. Note that the information gate need not apply the rule; if it does

not, it must then be a subject in a de facto rule, because unless the subjects shown in those rules

act, information cannot flow along the implicit edge. This is a subtlety not evident when dealing

with conspiracies in graphs using only de jure rule sets, and although the information gate is anal-

ogous to a sink in [14], the difference in definition is substantial and reflects the difference between

information and rights transfer.

Definition. An access set cover for a protection graph G with foci v1, …, vn is a family of sets I(v1),

T(v1), …., I(vn), T(vn) where for 2 ≤ i ≤ n, there exists a j ≤n such that{ vi-1, vi } ⊆ I(vj)∪T(vj).

Clearly, this family is a covering set for G. If the cover minimizes n over all possible access set

covers, it is said to be a minimal cover.

Notice that the set of actors needed to implement can•know generates a cover for G. In fact,

Lemma 8. A minimal set of actors v1, …, vn in a sequence of rule applications producing a witness

to can•know(x, y, G) generates an access set cover for G.

Informal Proof: If this lemma is false, there is a set of actors in a witness to can•know(x, y, G)

which does not produce an access set cover for G. Let vk be one vertex not in any element of the

access set cover. Then neither information nor rights is transferred through vk, and hence it can be

deleted from the set of actors, showing that set is not minimal.

Proof: Let ρ1, …, ρm be a set of rules required for a minimal set of actors v1, …, vn to produce a

witness to can•know(x, y, G). Without loss of generality we may take ρ1, …, ρm to be the shortest

sequence of rule applications for that particular set of actors. Let the access sets I(v1), T(v1), ….,

I(vn), T(vn) with foci v1, …, vn be defined on G. Suppose z ∉ I(vi) and z ∉ T(vi) for all i. By The-

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 10 of 33

orem 3 and the definition of T, no actor can receive information from vi, and by definition of I, z

cannot pass on information from any other actor; hence z and its incident edges may be deleted

without affecting rules ρ1, …, ρm. But this violates condition (3.3) of Theorem 3, as the graph is

no longer connected, which in turn means that can•know(x, y, G) is false. This contradicts the ini-

tial assumption that can•know(x, y, G) is true. This proves the claim. ■

We next make formal our claim that information gates must act for information to be passed

along their incident edges.

Lemma 9. If vertex vi is an information gate, and in a witness to can•know(x, y, G) an explicit or

implicit edge is constructed between some vertex vk, k < i, and another vertex vl, i < l, then the ver-

tex vi must be an actor.

Informal argument: Assume the witness is the shortest witness tocan•know(x, y, G) . The vertex vi

cannot be involved in a de jure rule, nor in a de facto rule, and hence can be deleted from the witness

and the set of actors. This contradicts the assumption that the witness is the shortest one.

Proof: We demonstrate this for the case of vi’s incident edges being
→
t and

←
r; the proof for the

other cases is similar. (The Appendix contains some useful witnesses, and proof of inability to sup-

ply other witnesses, for these proofs.)

First, by condition (3.3) of Theorem 3, vi must be a subject, for if not, can•know(x, y, G) is

false because the paths through that information gate are neither bridges nor connections. So, as-

sume vi is not an actor, and consider the effects of this on a set of rule applications ρ1, …, ρm re-

quired for a minimal set of actors to produce a witness showing that can•know(x, y, G) holds.

Without loss of generality we take ρ1, …, ρm to be the shortest sequence of rule applications for

that particular set of actors.

No rule is of the form “z takes (α to y) from vi” for any z in G, since vi has no edges going

from it to any other vj ∈ V, and by the nature of the de jure rules can never be assigned any. As the

number m of rules applied is minimal, no rules of the form “z takes (t to vi) from y” or “vi-1 grants

(t to vi) to z” for any vertex z in G are ever executed since the t right so assigned could not be used.

Hence no de jure rule involves vi.

Now consider the de facto rules. Clearly, only information passing through vi is relevant;

hence, information will never be written into vi and not later read (because then the rule could be

deleted, contradicting the minimality of m), or read before any information is written into it (which

makes sense only if vi = vn+1, in which case there are two incident edges to vn+1, and so it is not an

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 11 of 33

information gate, contradiction). The post, pass, and find rules could not be used as vi has no inci-

dent write edges, and the spy rule could not be used because vi would have to act, contradicting

assumption. Hence no de facto rule involves vi.

Combining these, if vi is not an actor, it and its incident edges can be deleted from G; but

this contradicts the minimality of m. This proves the lemma. ■

With these two lemmata we are able to obtain a lower bound on the number of actors needed

to share information.

Theorem 10. Let 2k be the number of access sets in a minimal cover of G, and let l be the number

of information gates. Then k+l actors are necessary to produce a witness to can•know.

Informal argument: The focus of each (initial and terminal) access set can obtain (or pass on) in-

formation or rights to those vertices in that access set. The information gates must act to pass in-

formation along. Hence the number of actors needed is the sum of the number of access set foci

and the number of information gates.

Proof: Let ρ1, …, ρm be a set of rules required for a minimal set of actors v1, …, vn to produce a

witness to can•know. Without loss of generality we take ρ1, …, ρm to be the shortest sequence of

rule applications for that particular set of actors. Let the access sets I(v1), T(v1), …., I(vn), T(vn)

with foci v1, …, vn be defined on G. By Lemma 8, I(v1), T(v1), …., I(vn), T(vn) at least cover G.

Without loss of generality, take the vertices v1, …, vl to be the information gates. By Lemma 9,

every one of these must be an actor. Then each of I(v1), T(v1), …., I(vl), T(vl) is a singleton set, and

its focus is a member of its adjacent access sets. Thus the other access sets I(vl+1), T(vl+1),….,

I(vl+k), T(vl+k) (where k + l = n) constitute an access set cover for G, and their foci must also be

actors. This proves the theorem. ■

To derive an upper bound we shall find two more results useful:

Lemma 11. Let I(v1), T(v1), …., I(vn), T(vn) be a minimal set access cover for G0 ordered by in-

creasing indices of v (that is, along the path from x to y). If can•know(vi+1, y, G) is true, then for

some index m there exists a graph Gm such that can•know(vi, y, G) is true and all rules in the der-

ivation sequence G0 |–* Gm are initiated by vi, vi+1, and perhaps z = T(vi) ∩ I(vi+1).

Proof: Recall that we are assuming throughout this section that can•know(x, y, G) is true. Consider

the spans to z from vi and vi+1. By the series of witnesses presented in the Appendix, in all cases

the vertices acting in the rule applications witnessing can•know(x, y, G) are vi, vi+1, and occasion-

ally z. ■

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 12 of 33

Corollary 12. For adjacent access sets, information can be transferred from vi to vi+1 with no other

actors unless there are consecutive edges with their only associated word in the set {
→←
t t ,

→←
gg,

→←
t w,

→←
g w,

→←
 r t,

→←
 r g }; in this case additional actions performed by z = T(vi) ∩ I(vi+1) are

sufficient.

Proof: By inspection of the witnesses to the preceding lemma. ■

We can now use these two results to obtain an upper bound on the number of vertices which

must act to share information:

Theorem 13. Let v1, …, vk be foci of an access set cover of G and let G have l information gates.

Then k+l actors suffice to generate an (implicit or explicit) read edge from x to y in G.

Informal argument: For v1 to pass information to x, and vk to obtain information from y, both v1

and vk must act; x and y will need to act also if they are information gates. Each focus will need to

act to pass information along, as will information gates. Summing these numbers gives the desired

result.

Proof: Let I(v1), T(v1), …., I(vk), T(vk) be a minimal set access cover for G0 with vertices x ∈ I(v1)

and y ∈ T(vk). Consider first y and vk. Three cases arise:

• vk = y. Then can•know(vk, y, G) is trivially true.

• vk terminally spans to y. By condition (3.3) of Theorem 3, this means y is a subject, so

apply Lemma 4 to get the desired result. Note that y is an information gate in this case.

• vk rw-terminally spans to y. Apply the take rule repeatedly to get an explicit edge; this

gives the desired result.

In all cases where can•know(vk, y, G) is true, the only actors are the focus of T(vk) and, pos-

sibly, the vertex y; in addition, y acts only if it is an information gate. Applying Corollary 12 in-

ductively, we have that whenever can•know(vi, y, G) is true for i = 1, …, k, the only actors are the

foci of the relevant access sets and the information gates. So, we now consider how information is

transferred from v1 to x. Again, three cases arise:

• v1 = x. We are done.

• v1 initially spans to x. By condition (3.3) of Theorem 3, this means x is a subject, so

apply Lemma 4 to get the desired result. Again, x is an information gate in this case.

• v1 rw-initially spans to x. Apply the take rule repeatedly to get an explicit write edge;

then v1 applies the post rule to obtain the desired result.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 13 of 33

Again, notice the only actors are the foci of the access sets and (where present) the infor-

mation gates. This proves the claim. ■

As one would expect, these bounds are similar to the ones on the number of conspirators

necessary and sufficient to steal rights. The difference lies in the definitions of “access set” and “in-

formation gate;” these include at least as many vertices in the can•snoop case as in the can•steal

case. However, given a specific protection graph, computing the numbers k and l is of complexity

comparable to the complexity of computing them in the can•steal case, since only a small number

of new conditions in the definitions of “access set” and “information gate” must be tested.

At this point, let us take stock of what we have done by working a simple example. Consider

the protection graph G in Figure 1.. Taking u1 = p, u2 = x, u3 = z, and u4 = s, we see that the pred-

icate can•know(p, q, G) is true by Theorem 3. (Incidentally, so is can•snoop(p, q, G); in the con-

ditions to Theorem 7, take x = x´ = p, y´ = z, and y = q.) The graph is a single path graph of the

variety we have been discussing, since information flows from p to q along the (sole) path between

them. The following witness to can•know(p, q, G) demonstrates this:

(1) z takes (r to q) from s.

(2) x grants (r to y) to p.

(3) p and z use the post rule through y to add an implicit edge from p to z.

(4) p and z use the spy rule to obtain an implicit r edge from p to q through z.

In this graph, the only information gate is p (by condition (i) of the definition of information

gate). The access sets of the four subjects are:

I(p) = { p } T(p) = { p } I(z) = { y, z} T(z) = { q, s, z}

I(x) = { p, x } T(x) = { x, y } I(s) = { s } T(s) = { q, s }

It is clear that these four access sets form a cover for G; it is equally clear that the sets I(x),

T(x), I(z), and T(z) form a minimal access set cover for G. Applying Theorem 10, k = 2 and l = 1,

●

● ❍ ●

●
p s q

x y z

g t

r

r

w

Figure 1. Sample Take-Grant protection graph demonstrating conspiracy in a single path graph.

❍

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 14 of 33

so a minimum of 3 actors are necessary for information to flow from p to q; similarly, by Theorem

13, 3 actors are sufficient. This agrees exactly with the witness presented above, which in fact used

a minimal number of actors (p, x, and z).

4. Conspiracy in a General Graph

In the previous section, we restricted our attention to graphs in which can•know is true, and

the only edges in the graph were those along which either rights or information were transferred.

We shall now ease the latter restriction, and consider any valid Take-Grant protection graph in

which the predicate can•know is true. Our goal is to derive a bound on the number of actors needed

to produce a witness to can•know. We shall take the approach suggested by [14], again with suit-

able modifications.

In order to do this, we shall develop an analogue to the protection graph called an acting

graph. Basically, this graph will consist of vertices corresponding to access sets in the original

graph with edges corresponding to paths along which the focus of each access set can pass infor-

mation by acting alone (that is, no other subject will have to act in a rule application to help the first

transmit the information). In other words, this graph connects all actors with other subjects to

which they can pass, or from which they can receive, information.

Given a protection graph G with subject vertices v1, …, vn, we need to generate an acting

graph G´ with vertices u1, …, un. Each ui has associated with it the access sets I(vi) and T(vi). Con-

sider now under what circumstances information can be passed from a member of one access set

to a member of another.

Let y be a vertex in an access set with focus x. There are five reasons y may be in that set:

• y = x;

• x initially spans to y;

• x terminally spans to y;

• x rw-initially spans to y; or

• x rw-terminally spans to y.

Define the set ∆(x, x´) to be all vertices in I(x) ∩ T(x´) except those vertices y which are

information gates and the only reason y is in both I(x) and T(x´) is that the words associated with

the paths xy and x´y are those that make y an information gate. This means the set ∆ includes only

those vertices to which the foci can pass information (or from which they can receive information)

with the foci being the only actors.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 15 of 33

To complete the construction of the acting graph G´, we add a directed edge between ui and

uj when ∆(vi, vj) ≠ ∅. (This corresponds to a bridge or connection existing between vi and vj in G.)

We also define two special sets; let

Ix = { ui | vi = x or vi rw-initially spans to x }

and

Ty = { ui | vi = y or vi rw-terminally spans to y}

Since we intend to use the acting graph to derive a bound, we must first show that it accu-

rately preserves the notion of sharing information.

Theorem 14. can•know(x, y, G) is true if and only if there is a path from some vertex ua ∈ Ix to

some vertex ub ∈ Ty.

Proof: (⇒) Let vi be the vertex in G corresponding to the vertex ui in G´ (for i = 1, …, n). We must

consider two cases involving any vertex z in the definition of ∆ above.

First, we restrict z to being an object in T(vi) ∩ I(vj). Note that the subjects in G correspond

to vertices in G´, and the edges between the vertices in G´ correspond to words in in G,

along which information flows from vi to vj. So, applying Theorem 3, as can•know(x, y, G) is true,

some ua ∈ Ix is connected to some ub ∈ Ty.

Next, assume z is a subject in T(vi) ∩ I(vj). Let z be associated with ua. As z is a focus (since

it is an information gate, and therefore the focus of an access set), it clearly has reason to be in I(z)

and T(z); so {z} ⊆ ∆(vi, z) and {z} ⊆ ∆(z, vj). Hence, by construction of G´, there are paths between

ui and ua, and ua and uj, so there is still a path between ui and uj (going through ua). Hence ui and

uj are connected.

(⇐) Assume there is a path from ua to ub with ua = u´1, …, u´n = ub. By construction, ui+1 can

pass information to ui, so by induction ua can receive information from ub. Also, as ub ∈ Ty, ub can

obtain information from y, and as ua ∈ Ix, ua can pass information to x. This means that

can•know(x, y, G) is true. ■

We may now state and prove the desired result.

Theorem 15. Let n be the number of vertices on the shortest path from an element ua ∈ Ix to an

element ub ∈ Ty in an acting graph G´. Then n actors are both necessary and sufficient to produce

a witness to can•know(x, y, G).

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 16 of 33

Proof: (Necessity) Let ua = u´1, …, u´n = ub be vertices along a shortest path from ua to ub, and let

v´i be the vertex in G corresponding to the vertex u´i in G´ (for i = 1, …, n). If there exist only rwtg-

paths in G from v´i to v´i+1 (1 ≤ i < n), the v´i are foci of an access set cover for the path. By con-

struction of G´ there are no information gates and if ua is not associated with x, then the subject

associated with ua rw-initially or initially spans to x. A similar argument holds for ub and y. By

Theorem 10, n actors are necessary.

Now suppose there is an (induced) path in G´ that is not in G. Even though redundant rule

applications may occur, clearly duplicated vertices along a span affect the claim only if they reduce

the number of required actors. We show this is not possible by contradiction. Suppose that actors

u´1, …, u´i-1, u´i+1, …, u´n could produce a witness. Then there is a vertex z ∈ T(vi-1) ∩ I(vi+1).

As the u´i are on the shortest path, there is no path between u´i-1 and u´i+1, so z is neither v´i-1 nor

v´i+1, and further z ∉ ∆(vi-1,vi+1). Hence if z is an object, there is no word in between the

vertices vi-1 and vi+1, so can•know is false by Theorem 3, whence u´1, …, u´i-1, u´i+1, …, u´n can-

not produce a witness. On the other hand, if z is a subject, it must be an information gate, in which

case it must be an actor. In either case, the vertices u´1, …, u´i-1, u´i+1, …, u´n cannot produce a

witness without another vertex being added.

(Sufficiency) First, as x and y are distinct, and all the v´i corresponding to the u´i on the shortest

path distinct, all spans between these vertices allow the appropriate sequence of rule applications

exhibited in the Appendix to be applied, provided the foci of the access sets differ from their com-

mon elements. By inspecting the sequences, whenever a focus and a common element do coincide

the rule whose application is prevented either provides a right already possessed, a right used in the

subsequent rule application to acquire a right already possessed, or an implicit edge where one al-

ready exists. In these cases the rule application is unnecessary. Noting this, we need only induct on

the spans corresponding to the edge of the shortest path using Lemma 11 to obtain the result. ■

In this section and the previous section, we very deliberately defined terms to capture the

ability of a single node to pass information, or to prevent it from being passed; we then abstracted

the instantiation of these terms to an acting graph. This is a generalization of Snyder’s conspiracy

graph, the derivation of which is similar but does not reflect information flows [14].

Let us apply these results to a simple protection graph. In Figure 2a, there are no informa-

tion gates, and the access sets of the subjects are:

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 17 of 33

I(p) = { p } T(p) = { p, a } I(e) = { d, e, j } T(e) = { e, q}

I(b) = { a, b} T(b) = { b } I(h) = { f, h } T(h) = { h, i}

I(c) = { b, c} T(c) = { c, d } I(f) = { f} T(f) = { f, s}

I(d) = { d} T(d) = { d } I(s) = { s} T(s) = { s}

From these, we can construct ∆(x, y) for each pair of subjects x and y; the nonempty ones are:

∆(p, b) = { a } ∆(d, e) = { d }

∆(b, c) = { b } ∆(h, f) = { f }

∆(c, d) = { d } ∆(f, s) = { s }

∆(c, e) = { d }

The resulting acting graph is shown in Figure 2b. By Theorem 3, can•know(p, q, G) is true

(take n = 5, x = u1 = p, u2 = b, u3 = c, u4 = d, and u5 = e). Also, in G´, e ∈ Tq and p ∈ Ip, so some

element of Ip is connected to some element of Tq. This illustrates Theorem 14.

The following sequence of rule applications is a witness to can•know(p, q, G):

(1) e and c use the post rule through d to add an implicit read edge from c to e;

(2) c uses the pass rule to add an implicit read edge from b to e;

(3) b and p use the post rule through a to add an implicit read edge from p to b;

(4) p and b use the spy rule to add an implicit read edge from p to e;

(5) p and e use the spy rule to add an implicit read edge from p to q.

Figure 2b. The associated acting graph. For simplicity vertices are named as in the regular
graph.

●

● ● ●

● ● ●

●

❍

❍ ❍

❍

p a b c d

e
q

jihfs

r w w

w

w
ww

r

r

rr

Figure 2a. A sample Take-Grant protection graph to demonstrate conspiracy in a general graph.

●

● ● ●

● ● ●

●

p b c d

e

hfs

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 18 of 33

Four vertices (b, c, e, and p) act in this witness, and indeed the shortest path in G´ between

p and e contains four vertices. This illustrates Theorem 15.

Consider now s and q. According to Theorem 14, as they are not connected in G´,

can•know(s, q, G) should be false. As there is no rwtg-path from h to e with associated word in

, condition (3.3) of Theorem 3 fails, so can•know(s, q, G) is indeed false.

Finally, let us consider just the top part of this graph (from p to q), which is a single-path

graph of the sort discussed in the previous section. There are no information gates, and the access

sets with foci p, b, c, and e provide a complete cover for the subgraph. Hence by Theorem 10 and

Theorem 13, four actors are necessary and sufficient to witness can•know(p, q, G), and our witness

confirms this.

5. Comparison with Results for Theft of Rights

The similarity of the definitions of can•steal and can•snoop lead to the question of the re-

lationship of these de jure and de facto results with the analogous de jure results in [14]; specifi-

cally, how different are the definitions, theorems and proofs, and how much more (or less) complex

is it to determine bounds on the number of actors needed to steal information as opposed to steal

rights?

The fundamental difference in the results presented here is the addition of extra conditions

presenting more ways in which conspiracy can occur; for example, the de jure analogue to access

set requires only that the focus initially or terminally span to every vertex in the set whereas here,

we add those vertices to which the focus also rw-initially or rw-terminally spans. Most of the def-

initions in this work follow directly from their analogues; however, the changes add complexity to

both the statements of the theorems and to the proofs. For example, the key theorem in [14] (The-

orem 2 in this paper), which states necessary and sufficient conditions for rights to be stolen, re-

quires checking for only three (simple) conditions; the analogue of that theorem for information

transfer, Theorem 7, requires four (more complex) conditions to hold. The key construct in [14],

the conspiracy graph, connects foci of access sets with edges showing paths along which rights can

be transferred; the acting graph augments this to include a path along which information can be

transferred as well.

The key difference in the conspiracy results lies in the acting graph. As rights can be trans-

ferred in either direction along a bridge, a conspiracy graph has undirected edges, because the ver-

tices at the end of the path can share rights with one another. However, over a connection,

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 19 of 33

information can be transferred in one direction only; hence an acting graph has directed edges to

represent the direction along which the information can flow. Note that if the connection between

two vertices in a protection graph is a bridge, the corresponding edge in the acting graph will be

bidirectional, to represent that information can be transferred in either direction over a bridge.

Consider a Take-Grant protection graph G in which the predicates can•steal(r, x, y, G) and

can•snoop(x, y, G) are true. Let AR(y) be the set of nodes containing y and those nodes to which y

initially or terminally spans, and let a tg-sink be a vertex with exactly two incident edges, both in-

coming and both labelled t or both labelled g. In [14], Snyder shows that a conspiracy graph can

be constructed in a manner similar to the construction of an acting graph in section 4. Note that

AR(y) ⊆ I(y) ∪T(y), and that a tg-sink is also an information gate. Hence, the conspiracy graph as-

sociated with G will be a (possibly improper) subgraph of the graph produced by replacing edges

in the acting graph of G with undirected edges. So, in no case will stealing information require

more conspirators than stealing rights; and if the acting graph contains a shorter path between the

vertices associated with x and y than does the conspiracy graph, stealing information will require

fewer conspirators.

6. Applications

We can apply our results to a realistic situation by considering the flow of information

throughout a small local area network using the TCP/IP protocol suite. We focus on the use of the

File Transfer Protocol, or ftp. We state the problem quite simply: a computer (subject) p has a file

x containing private information. A copy of it is found on computer y. Our question is whether the

file could have been transferred using a series of ftp connections, and if so, how many conspirators

were necessary and sufficient?

First, we make several simplifying assumptions:

1. All ftp connections and accesses are anonymous. (This ability is a feature of the stan-

dard protocol.) Were this assumption not made, we would need to track user identi-

ties and authorities; while this is straightforward, it adds complexity which detracts

from the issue under study, which is the abstraction of the network into a Take-Grant

style model.

2. The network is not fully connected; again, this models real local area networks, on

which many hosts choose not to provide ftp connections.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 20 of 33

3. Only hosts directly connected to the network are involved. We will relax this assump-

tion with the introduction of proxy servers later.

6.1. Basic Abstraction

The ftp protocol requires that objects be placed in a central area; anonymous accesses using

that protocol give the remote user the ability to read (and hence download) those objects. Further,

even though access may be granted, the grantor has the power to turn off all access at any time. This

means all transfers of information are to be along implicit edges, which dictates the following ab-

stract representation:

1. All hosts are represented as subject vertices, and all files as object vertices;

2. Permission for an entity on host x to retrieve files from host y via anonymous ftp is rep-

resented by an explicit edge labelled r (read) from x to y.

3. Accessibility of a file f on host x to anonymous ftp is represented by an explicit read

edge from x to f.

This means that the ability to transfer file f from host x to y will be represented by an im-

plicit edge from y to f. As in other de facto situations, this does not mean that the transfer must take

place or has taken lace; it merely indicates a path along which the transfer could, or could have,

taken place. Hence our interest.

6.2. Basic Examples

Consider first a situation in which there are four sites offering anonymous ftp for reading

only (no writing): p, q, s, and v. The file f contains proprietary data and resides on p. The hosts p,

q, and s are fully connected, but v can only access s. In the course of a police investigation into

industrial espionage, a copy of file f is found on host v. The question is, which hosts could have

conspired to put it there?

The abstraction of this situation is in Figure 3a. We wish to know the sets of conspirators

who may have copied f. So, we apply the technique of the earlier section.

The access sets for the subjects involved are:

I(p) = { p } T(p) = { p, q, s } I(s) = { s } T(s) = { p, q, s }

I(q) = { q } T(q) = { p, q, s } I(v) = { v } T(v) = { s, v }

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 21 of 33

From this, we construct the sets ∆(a, b) for each pair of vertices a and b:

∆(p, q) = { p } ∆(p, s) = { p } ∆(p, v) = ∅

∆(q, p) = { q} ∆(q, s) = { q} ∆(q, v) = ∅

∆(s, p) = { s} ∆(s, q) = { s} ∆(s, v) = ∅

∆(v, p) = ∅ ∆(v, q) = ∅ ∆(v, s) = ∅

The acting graph is shown in Figure 3b. We note that If = { p } and Tf’ = { v }. By Theorem 15,

the minimum number of actors necessary and sufficient to move the information from p to v is 3.

Noting also that the acting graph captures the paths along which the information is transferred, this

means that p, s, and v are the conspirators for the witness to this transfer.

6.3. General Example

We now present a more sophisticated example, in which many connections are one-way,

and examine how many conspirators are needed to move information. Consider the situation in Fig-

ure 4a. Note that here rights for anonymous ftp are constrained; some uploading (w rights) as well

as downloading (r rights) is allowed, and not all the vertices are directly connected. As before, x is

the file the contents of which is secret, but during an investigation, two copies x’ and x’’ have been

found on competitors’ hosts. The problem is to find a lower bound on the number of hosts involved

in the transfer.

Figure 3b. The corresponding acting graph. For simplicity, vertices are named as in the regular
graph.

●

●

●

●❍

❍

r
r

r

r

rr

r

r
r

f

p q

s

v f’

Figure 3a. The graphical representation of the network configuration. Here, f’ is the illegitimate
copy of the file f.

●

●

●

●
p q

s
v

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 22 of 33

As before, we build our access sets:

I(p) = { p } T(p) = { x } I(z) = {z, y} T(z) = { z, v, x’ }

I(q) = { q, y } T(q) = { p, q, v, y } I(v) = { v} T(v) = { p, v }

I(s) = { s} T(s) = { q, s, x’’ } I(y) = { s, y } T(y) = { s, y }

From this, we construct the sets ∆(a, b) for each pair of vertices a and b. The non-empty sets are:

∆(p, q) = { p } ∆(p, v) = { p } ∆(q, s) = { q } ∆(q, y) = { y }

∆(s, y) = { s } ∆(z, q) = { y } ∆(z, y) = { y }

∆(v, q) = { v } ∆(v, z) = { v } ∆(y, q) = { y } ∆(y, s) = { s}

The acting graph is shown in Figure 3b.

Consider the information flow from x to x’. In this case, Ix = { p } and Tx’ = { z }. The path

between p and z has three vertices (p, v, and z) in Figure 3b. So, by Theorem 15, the minimum

number of actors necessary and sufficient to move the information from x to x’ is 3 (with p, v, and

u being the three actors)

Next, let us look at the information flow from x to x’’. Here, Ix = { p } and Tx’’ = { s }. As

before, the path between p and s has three vertices (p, q, and s) in Figure 3b. So the minimum num-

● ● ●

●

●

●
❍

❍

❍

p

x

q s
x’’

y

x’
z

v

r
r

r

r

r

rw

w

r

r

rw

r

Figure 4a. The graphical representation of the network configuration. Here, x’ and x’’ are the ille-
gitimate copies of the file x.

● ●
●

●

●

●

p q
s

y

z
v

Figure 4b. The corresponding acting graph. For simplicity, vertices are named as in the regular
graph.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 23 of 33

ber of actors necessary and sufficient to move information from x to x’’ is also 3 (with p, q, and s

being the actors).

Note that this does not mean that the particular actors must have been involved in the trans-

fer of information; it simply means that they could have been. Specifically, information may have

been transferred along any directed path in the acting graph. In this particular example, the two enu-

merated paths were the shortest, but longer paths may have been used. Information can flow from

x to x’’ along the path pvqys; if this had occurred, 5 actors would be involved.

6.4. Proxies

A proxy is a system through which all requests for ftp access is filtered; such programs are

most often found on firewalls. They act as though the files were stored on the firewall, passing com-

mands on to the real ftp server. The remote host never sees the host behind the proxy.

An example configuration is in Figure 5a. Here, vertex c is the proxy, and it has authority

to access any file set up for retrieval in the local area network (here, composed of hosts represented

by vertices d and e). As this authority depends only on the existence of the target file, and not on d

or e passing the information to the proxy, the rights of c over d and e are represented by take edges.

(An alternate situation is where d or e would need to co-operate with c to make the file available to

hosts outside the local area network. In this case, the edges between c and d and c and e would be

read edges. We use the take form to illustrate a situation involving de jure and de facto rules.)

As before, we build our access sets:

I(a) = { a } T(a) = { a, c } I(d) = { d } T(d) = { d, f }

I(b) = { b } T(b) = { b } I(e) = { e } T(e) = { e, g }

I(c) = { c, b } T(c) = { c }

From this, we construct the sets ∆(a, b) for each pair of vertices a and b. The non-empty sets are:

∆(c, a) = { c } ∆(c, b) = { b }

The acting graph is shown in Figure 3b. The relationships between the objects and subjects

is summarized by Tf = { d, c }, Tg = { e, c }, Ih = { a }, and Ih’ = { c }. Now consider two cases.

If h’ is a copy of f, we note that c is in both Tf and Ih’. Hence there is a single vertex on the path

between an element of Tf and an element of Ih’, and there are no information gates. So by Theorem

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 24 of 33

15, the minimum number of actors necessary is 1, and the following witness to can•know(h’, f, G)

substantiates this result:

(1) c takes (r to f) from d;

(2) c uses the pass rule to add an implicit read edge from h’ to f.

Similarly, if h is a copy of f, the shortest path between an element in Tf and an element in

Ih contains 2 vertices (a and c). So we need at least two actors to witness can•know(h, f, G). A

witness to this is:

(1) c takes (r to f) from d;

(2) a and c use the spy rule to add an implicit read edge from a to f

(2) a uses the pass rule to add an implicit read edge from h to f.

Clearly, a and c must act. Note that this is clear by inspection of the graph. Since there is

only an incoming write edge to h, only the find or post rule can add an outgoing implicit read edge.

As the write edge comes from a, and as a has no incident take or grant edges, a must act in a find

or post rule. As a has no incident take or grant edges, no explicit edges can be added to a by another

vertex. Further, as a has no read edges to f, by inspection of the de jure and de facto rules, at least

one other vertex must be an actor to provide an implicit read edge from a to f. Hence at least two

vertices must be involved. By Theorem 15, 2 vertices are also sufficient.

●

●

❍

b e
r

r
●

❍●

●
a c

d
f

g

r

w

t

t

Figure 5a. An ftp proxy server guarding access to files on a local network. Here, d and e are on the
local area network guarded by proxy c, and a and b are on other networks connected to the local
area network. Note that b has writing enabled for anonymous ftp (the write edge from c to h’).

●

●b e

●

●

●a

c

d

Figure 5b. The corresponding acting graph. For simplicity, vertices are named as in the regular
graph.

❍h
w

❍h’
r

w

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 25 of 33

7. Conclusion

This paper has explored several aspects of information transfer in the Take-Grant protection

model. Building on the notion of information transfer, the information flow conspiracy results not

only put a bound on the number of vertices necessary and sufficient to transfer information but also

provide a better understanding about how information can flow about a system. Further, we saw

that these results can be applied to a model of network services in which paths of transfer of infor-

mation can be identified. From this, those subjects which could not be involved in the transfer can

be identified.

This suggests a very interesting question: can those subjects which must be involved in a

transfer of information be identified? The intuitive answer (those vertices which lie on all paths be-

tween the relevant vertices in the acting graph) does not account for edges deleted after the transfer

but before the analysis. This observation is critical.

One of the problems in the application of a theoretic analysis to a practical situation is the

issue of correct abstraction: does the abstract model properly capture the relevant characteristics of

the system being modelled? If so, the model is a valuable tool for analyzing the real situation. If

not, it may or may not be a valuable tool, but can do no more than suggest possibilities instead of

provide certainties. The examples in section 7 provide an excellent illustration of this point.

If the network which is modelled in the examples in Section 6 does not have the ability to

delete edges and rights, then the information transfers require that the paths in the acting graphs be

used. But networks do allow systems and users to delete rights; hence, if the information has been

transferred, it is possible that one or more segments of the path along which the transfer occurred

was deleted in order to hide the conspirators. In that case, another path not in the acting graph might

have been used. In other words, the model captures the current system state; if the transfer occurred

in a prior (different) state, no conclusions can be drawn from the newer, modified state. Inferences

may be made, and used as starting points for other types of analyses, however; and if the prior state

can be reconstructed (perhaps because inferences can be made from the structure of the existing

protection graph and, if available, knowledge of the way the system has evolved in general), one

could then draw conclusions about the conspirators.

This suggests two avenues of research. The first is to determine the effect of deletions upon

the set of possible witnesses to a theft. Perhaps a structure with certain (unknown) characteristics

implies that some set of subjects could not have acted in witnesses to thefts, even when delete rule

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 26 of 33

can be used. Secondly, could the above results be used to design systems in which the sets of actors

necessary for a theft are so large that such a conspiracy is unrealistic?

Acknowledgments: Thanks to Larry Snyder, who first interested me in the Take Grant Protection

Model and whose work on it has been the basis for many of the results presented here. Thanks also

to Virgil Gligor, who first suggested applying this model to networks, and to Becky Bace and

Kevin Ziese, who encouraged me to look at thefts in a less abstract context. Portions of this work

were supported by grant NAG2-480 from the National Aeronautics and Space Administration to

Dartmouth College, a Dartmouth College Faculty Fellowship, and grant TDS 95-140 from Trident

Data Systems to the University of Caifornia at Davis. Portions of this work were done while the

author was with the Department of Mathematics and Computer Science at Dartmouth College.

References

[1] P. Ammann and R. Sandhu, “Safety Analysis for the Extended Schematic Protection Mod-

el,” Proc. of the 1991 IEEE Symp. on Security and Privacy (May 1991), 87-97.

[2] M. Bishop, “Theft of Information in the Take Grant Protection Model,” Journal of Comput-

er Security, to appear.

[3] M. Bishop, “Hierarchical Take-Grant Protection Systems,” Proc. 8th Symp. on Operating

Systems Principles (Dec. 1981), 107-123

[4] M. Bishop and L. Snyder, “The Transfer of Information and Authority in a Protection Sys-

tem,” Proc. 7th Symp. on Operating Systems Principles (Dec. 1979), 45-54.

[5] D. Brewer and M. Nash, “The Chinese Wall Security Policy,” Proc. 1989 IEEE Symp. on

Security and Privacy (May 1989) 206-214.

[6] D. Clark and D. Wilson, “A Comparison of Commercial and Military Computer Security

Policies,” Proc. of the 1987 IEEE Symp. on Security and Privacy (Apr. 1987), 184-194.

[7] M. Harrison, W. Ruzzo, and J. Ullman, “Protection in Operating Systems,” CACM 19, 8

(Aug. 1976), 461-471

[8] A. Jones, “Protection Mechanism Models: Their Usefulness,” in Foundations of Secure

Computing, Academic Press, New York City, NY (1978), 237-254.

[9] A. Jones, R. Lipton, and L. Snyder, “A Linear Time Algorithm for Deciding Security,” Proc.

17th Annual Symp. on the Foundations of Computer Science (Oct. 1976), 33-41.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 27 of 33

[10] R. Lipton and L. Snyder, “A Linear Time Algorithm for Deciding Subject Security,” J.

ACM. 24, 3 (Jul. 1977), 455-464.

[11] J. McLean, “The Algebra of Security,” Proc. of the 1988 IEEE Symp. on Security and Pri-

vacy (Apr. 1988), 2-8.

[12] J. McLean, “Security Models and Information Flow,” Proc. of the 1990 IEEE Symp. on Se-

curity and Privacy (May 1990), 180-187.

[13] L. Snyder, “On the Synthesis and Analysis of Protection Systems,” Proc. Sixth Symp. on

Operating Systems Principles (Nov. 1977), 141-150.

[14] L. Snyder, “Theft and Conspiracy in the Take-Grant Protection Model,” JCSS 23, 3 (Dec.

1981), 333-347.

[15] J. Wittbold and D. Johnson, “Information Flow in Nondeterministic Systems,” Proc. of the

1990 IEEE Symp. on Security and Privacy (May 1990), 144-161.

[16] M. Wu, “Hierarchical Protection Systems,” Proc. 1981 Symp. on Security and Privacy (Apr.

1981), 113-123.

8. Appendix

The following analysis of the possible paths between two vertices x and y in a straight line

graph G allows the derivation of the paths for information gates. Note that if three vertices x, y, and

z are involved, x = vi-1, z= vi, and y= vi+1, and all are subjects. In each case, we must show that

passing information through the gate requires the active cooperation of the gate. We note that this

requires us examining the case where x is passive, i.e., effectively an object.

Case 1. x = v0, y = v1. We show when x must act to receive information.

y to x terminal

If x is an object, the word associated with the path between x and y is not an rw-initial span,

and so the predicate is false. If x is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) y takes (r to v) from x.

(3) x and y use the post rule to obtain an implicit r edge from x to y through v.

This verifies that can•know(x, y, G0) is true. Note that both vertices x and y must act, so x

is an information gate.

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 28 of 33

y to x rw-terminal

If x is an object, the word associated with the path between x and y is not an initial span,

and so the predicate is false. If x is a subject, the path from y to x is not in B∪C, the pred-

icate can•know(x, y, G0) is false and hence x cannot be an information gate.

y to x initial

If x is an object, the word associated with the path between x and y is not an rw-initial span,

and so the predicate can•know(x, y, G0) is false. If x is a subject, the following is a witness:

(1) y creates (rw to new vertex) v.

(2) y grants (r to v) from x.

(3) x and y use the post rule to obtain an implicit r edge from x to y through v.

This verifies that can•know(x, y, G0) is true. Note that all both vertices x and y must act, so

x is an information gate.

y to x rw-initial

If x is an object, the word associated with the path between x and y is an rw-initial span,

and so the predicate can•know(x, y, G0) is true. Hence x need not act, and is not an infor-

mation gate.

Case 2. x = vi-1, z= vi, and y= vi+1. We show when z must act to pass information.

x to z terminal, y to z terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

(1) z creates (rw to new vertex) v.

(2) x takes (r to v) from z.

(3) y takes (w to v) from z.

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. Note that all three vertices x, y, and z must act,

and so z is an information gate.

x to z terminal, y to z initial

The following is a witness whether or not z is a subject:

(1) y creates (rw to new vertex) v.

(2) y grants (r to v) to z.

(3) x takes (r to v) from z.

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 29 of 33

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. In this case, only x and y need act, and so z is

not an information gate.

x to z terminal, y to z rw-initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

(1) z creates (rw to new vertex) v.

(2) x takes (r to v) from z.

(3) x and z use the post rule to obtain an implicit r edge from x to z through v.

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. Here, x, y and z need to act, so z is an infor-

mation gate.

x to z terminal, y to z rw-terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between y

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

x to z initial, y to z terminal

The following is a witness whether or not z is a subject:

(1) x creates (rw to new vertex) v.

(2) x grants (rw to v) to z.

(3) y takes (r to v) from z.

(4) y takes (w to v) from z.

(5) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. Again, only x and y must act, and so z is not

an information gate.

x to z initial, y to z initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) y creates (rw to new vertex) w.

(2) x grants (w to v) to z.

B C∪

B C∪

B C∪

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 30 of 33

(3) y grants (r to w) to z.

(4) x and z use the post rule to obtain an implicit r edge from x to z through v.

(5) x and z use the spy rule to obtain an implicit r edge from x to w through z.

(6) x and y use the post rule to obtain an implicit r edge from x to y through w.

This verifies that can•know(x, y, G0) is true. As all of x, y, and z must act, z is an informa-

tion gate.

x to z initial, y to z rw-initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) x grants (w to v) to z.

(3) x and z use the post rule to obtain an implicit r edge from x to z through v.

(4) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. Again, x, y and z need to act, so z is an infor-

mation gate.

x to z initial, y to z rw-terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between x

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

x to z rw-terminal, y to z terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

(1) z creates (rw to new vertex) v.

(2) y takes (w to v) from z.

(3) y and z use the post rule to obtain an implicit r edge from z to y through v.

(4) x and z use the spy rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. Once more, x, y and z need to act, and so z is

an information gate.

x to z rw-terminal, y to z initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the following is a witness:

B C∪

B C∪

B C∪

B C∪

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 31 of 33

(1) y creates (rw to new vertex) v.

(2) y grants (r to v) to z.

(3) y and z use the post rule to obtain an implicit r edge from z to y through v.

(4) x and y use the spy rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. All of x, y and z need to act, and so z is an

information gate.

x to z rw-terminal, y to z rw-terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between y

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

x to z rw-terminal, y to z rw-initial

The following is a witness whether or not z is a subject:

(1) x and y use the post rule to obtain an implicit r edge from x to y through z.

This verifies that can•know(x, y, G0) is true. This time, only x and y need act , and so z is

not an information gate.

x to z rw-initial, y to z terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between x

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

x to z rw-initial, y to z initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between x

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

x to z rw-initial, y to z rw-terminal

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between x

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

B C∪

B C∪

B C∪

B C∪

B C∪

B C∪

B C∪

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 32 of 33

x to z rw-initial, y to z rw-initial

If z is an object, the word associated with the path between x and y is not in the set

and so the predicate is false. If z is a subject, the word associated with the path between x

and z is not in the set and so the predicate is false. In either case, the predicate

can•know(x, y, G0) is false, and so z is not an information gate.

Case 3. y= vn-1, x= vn. We show when x must act to send information.

y to x terminal

If x is an object, the word associated with the path between x and y is not an rw-initial span,

and so the predicate is false. If x is a subject, the following is a witness:

(1) x creates (rw to new vertex) v.

(2) y takes (r to v) from x.

(3) x and y use the post rule to obtain an implicit r edge from x to y through v.

This verifies that can•know(y, x, G0) is true. Note that both vertices x and y must act, so x

is an information gate.

y to x initial

If x is an object, the word associated with the path between x and y is not an rw-terminal

span, and so the predicate can•know(y, x, G0) is false. If x is a subject, the following is a

witness:

(1) y creates (rw to new vertex) v.

(2) y grants (r to v) from x.

(3) x and y use the post rule to obtain an implicit r edge from x to y through v.

This verifies that can•know(y, x, G0) is true. Note that both vertices x and y must act, so x

is an information gate.

y to x rw-terminal

If x is an object, the word associated with the path between x and y is an rw-terminal span,

and so the predicate can•know(y, x, G0) is true. If x is a subject, the path from y to x is in

B∪C, so the predicate can•know(y, x, G0) is true. In both cases, only y need act, so x cannot

be an information gate.

y to x rw-initial

If x is an object, the word associated with the path between x and y is not an rw-terminal

span, and so the predicate can•know(y, x, G0) is false. If x is a subject, the path from y to x

B C∪

B C∪

Appeared in Journal of Computer Security 4 (4) pp. 331-359 (1996). Page 33 of 33

is not in B∪C, so the predicate can•know(y, x, G0) is false. In neither case can x be an in-

formation gate.

