

Reducing Software Security Risk through an Integrated Approach

David P. Gilliam
Caltech, Jet Propulsion Laboratory

david.p.Gilliam@jpl.nasa.gov

John C. Kelly
Caltech, Jet Propulsion Laboratory

john.c.kellyw@jpl.nasa.gov

John D. Powell
Caltech, Jet Propulsion Laboratory

John.Powell@jpl.nasa.gov

Matt Bishop
University of California at Davis

bishop@cs.ucdavis.edu

Abstract

This paper presents joint work by the California
Institute of Technology’s Jet Propulsion Laboratory and
the University of California at Davis (UC Davis)
sponsored by the National Aeronautics and Space
Administration Goddard Independent Verification and
Validation Facility to develop a security assessment
instrument for the software development and maintenance
life cycle.

Vulnerabilities in operating systems and software
applications render an otherwise secure environment
insecure. Any operating system or application added to a
secure environment that has exploitable security
vulnerabilities affects the security of the whole
environment. An otherwise secure system can be
compromised easily if the system or application software
on it, or on a linked system, has vulnerabilities.
Therefore, it is critical that software on networked
computer systems be free from security vulnerabilities.

 Security vulnerabilities in software arise from a
number of development factors; but these vulnerabilities
can generally be traced to poor software development
practices, new modes of attacks, mis-configurations, and
unsecured links between systems.

A Software security assessment instrument can aid
in providing a greater level of assurance that software is
not exposed to vulnerabilities as a result of defective
software requirements, designs, code or exposures due to
code complexity and integration with other applications
that are network aware.

 This paper presents research on the generation of a
software security assessment instrument to aid developers
in assessing and assuring the security of software in the
development and maintenance lifecycles. The research
presented here is available at:
http://security.jpl.nasa.gov/rssr.

Keywords

Security Toolset, Vulnerability Matrix, Property-Based
Testing, Model Checking, Security, Verification

1. Introduction
Software on networked computer systems must be

free from security vulnerabilities. Security vulnerabilities
in software arise from a number of development factors
that can generally be traced to poor software development
practices, new modes of attacks, mis-configurations, and
unsecured links between systems. An otherwise secure
system can be compromised easily if the system or
application software on it, or on a linked system, has
vulnerabilities.

Currently, there is a lack of Security Assessment
Tools (SATs) for use in the software development and
maintenance life cycle to mitigate these vulnerabilities.
The National Aeronautics and Space Administration
(NASA) has funded the Jet Propulsion Lab in conjunction
with the University of California at Davis (UC Davis) to
develop a software security assessment for use in the
software development and maintenance life cycle.

The goal of the effort is the use of a formal
analytical approach for integrating security into existing
and emerging practices for developing high quality
software and computer systems. The approach is to
develop a security assessment instrument consisting of a
collection of tools, procedures and instruments to support
the development of secure software. Specifically, the
instrument offers a formal approach for engineering
network security into software systems and application
throughout the software development and maintenance life
cycles.

The security assessment instrument has three primary
foci: a Vulnerability Matrix (VM), a collection of Security
Assessment Tools (SAT) which includes the development
of a Property-Based Testing (PBT) tool, and a Model-
Based Verification (MBV) instrument.

The VM is a database maintained by UC Davis as part
of the Database of Vulnerabilities, Exploits, and
Signatures (DOVES) project. It contains a list of
vulnerabilities, the associated platform/application, and
the exploit signature fields.

The VM provides a searchable knowledge base from
which properties may be extrapolated for use with PBT
and MBV. This knowledge base can also accommodate
the discovery of new attacks not yet seen on the internet,
but which may be discovered through MBV techniques.

The SAT is a collection of tools and programs that can
be used to check the security of software requirements,
designs and source code. Each of the SAT’s includes a
description of the tool and it use, its pros and cons, related
tools, and where the particular tool can be obtained.

As part of the SAT, UC Davis is developing from a
prototype a PBT tool. This PBT will slice software code
looking for specific vulnerability properties. Property
based testing is a tool that verifies properties against the
code level implementation of a system. These properties
are extracted from the VM, which may have grown due to
properties being added through the use of MBV.
Additionally, PBT is equipped with its own libraries that
contain readily testable properties. Finally, used with the
MBV, the PBT can provide verification of a model’s
fidelity to the system in the MBV.

The MBV component of the research is a operational
approach to perform verification of software designs for
compliance to security properties. The Flexible Modeling
Framework (FMF) approach is an innovative model
checking approach that will facilitate the development and
verification of software security models as composable
components

Model based verification uses precise abstractions. It
offers the ability to verify security properties over system
models early in the life cycle – before an implementation
exists. MBV can effectively identify security anomalies
that have not been discovered as a result of a known
network security attack. These new anomalies may then
be added to the Vmatrix Anomalies that are found in
early lifecycle phases through the examination of
abstractions (models) can be preserved and later passed
on to the PBT for verification at the code level.

The inception of this work was previously reported to
IEEE WETICE Workshop on Enterprise Security.[1], 4th
Annual Assurance Technology Conference at Glenn
Research Center and the NASA OSMA Software
Assurance Symposium ’01 sponsored by the NASA
Goddard IV&V Facility. Three parts have been
accomplished to date, the Vulnerability Matrix (Vmatrix),

the initial collection of Security Assessment Tools
(SATs), and the Property Based-Testing (PBT)
instrument. A fourth part, the Model-Based Verification
(MBV) instrument will be completed in April, 2002.

Assessments of high profile NASA systems believed to
be vulnerable to attack will provide a metric to determine
the effectiveness of these activities and prototypes. The
security assessment instrument will be verified on a
JPL/NASA Class A Flight Project to assess the approach
and the viability of the security assessment instrument for
assuring the security of software on critical networked
systems.

2. Vulnerability Matrix (Vmatrix)

The VMatrix task was initiated to develop a searchable
database containing a taxonomy of vulnerabilities and
exposures and to catalogue them into libraries of
properties that can be used in conjunction with the PBT
and MBV instruments to assess the security of software
code to assure that the software is free from the specified
vulnerabilities and exposures. Of particular concern is
that the properties of these vulnerabilities and exposures
are not re-introduced during integration with operating
systems or interoperability with other applications, nor in
the introduction of upgrades to either the operating system
or applications running on them.

Additionally, the information in the database is
intended, in part, to provide network security
professionals an understanding of the vulnerabilities and
their exploits so they can better secure their systems.
Equally important, it also provides developers with an
understanding of the vulnerabilities and exposures in code
that introduce security risks to software and systems. The
intended goal is to enable developers to write more secure
code and to provide a greater level of assurance that
software code is not exposed to vulnerabilities when
integrated with systems and other applications when used
in a networked environment.

The Vmatrix, examines vulnerabilities and exposures
and the methods used to exploit them. The VMatrix lists
vulnerabilities and exposures along with their Common
Vulnerabilities and Exposures (CVE) listing[2]. The
VMatrix includes a brief summary and a description of the
vulnerability or exposure, the affected software or
operating system, how to detect the vulnerability or
exposure and the fix or method for protecting against the
exploit. Also included is catalogue information,
keywords, and other related information as available,
regarding the vulnerability or exposure. Interesting links,
including links to Mitre with the CVE listing and the Ernst
and Young website where vulnerabilities and exposures
are ranked by severity and frequency among other factors,
are also provided.

The VMatrix led to the development and extension of a
database controlled and maintained by UC Davis, the
Database of Vulnerabilities, Exploits, and Signatures,
(DOVES). DOVES contains additional vulnerabilities
and exposures beyond that which is now contained in the
VMatrix.

The Vmatrix, the DOVES database along with the
SATs (discussed below) are available from websites at
JPL and UC Davis which can be reached from:
http://security.jpl.nasa.gov/rssr.

3. Security Assessment Tools (SATs)

The Security Assessment Tools are free tools that have
been developed and collected for use in testing and
assuring the security of operating systems and software.
This collection is provided as a list on the web sites noted
above. The SATs are a listing of tools that contain a brief
summary stating the purpose of the tool, where the tool
can be obtained, and their use along with pros and cons of
each of the tools. Also provided, is a list of similar tools
or alternative tools, and a classification of each tool. A
journal paper, “A Classification Scheme for Security
Tools,” provided on the SATs web page, discusses a
classification scheme of these security related tools and
their usage.

A more complete description of the tools and a
discussion of how to use each of the tools is currently
being developed. Additional SATs are being collected as
they become available to include in the current list.

The SATs will be categorized and cross-referenced to
alternate tools so that code developers, system
administrators, and network and computer security
professionals can have a central location to search for
specific tools for use in writing secure software code and
securing computer systems.

4. Property-Based Testing

The role of property-based testing is to bridge the gap

between formal verification and ad hoc verification. This
provides a basis for analyzing software without sacrificing
usefulness for rigor, yet capturing the essential ideas of
formal verification. It also allows a security model to
guide the testing for security problems
Property-based testing [3] is a technique for testing that
programs meet given specifications. The tester gives the
specifications in a language that ties the specification to
particular segments of code. The specification has
assertions, which indicate changes in the security state of
the program, and properties, which describe a specific set
of states that are considered secure in this context. The
idea is to ensure that the properties always hold.

The tester consists of two parts. The instrumenter inserts
statements into the source code that emit assertions about
the current state of execution. The execution monitor
takes that information as input and determines if the
current state of execution violates any of the properties. If
so, the program has a security flaw. The instrumenter,
execution monitor, and any libraries of desireable security
properties make up the Tester's Assistant (TA).[4]

PBT Model
Figure 1

Our goal was to develop the TA to test programs

written in C++ code for the UNIX environment.
However, the TA task has been changed to test programs
written in JAVA instead. This eliminates some problems
such as pointer aliasing (because JAVA does not have it).
It also introduces some problems, because certain system
functions (such as the printing functions) are not written in
JAVA. If the call to such a function is instrumented, the
native code instrumented, or the statements must surround
the call to the routine instead of being invoked as the first
instruction in the routine. The first would require
developing a much more general instrumenting tool, so we
opt for the second. When the method being invoked is
computed at runtime, the complexity of the wrapping
instatements is considerable,

We have also modified the TASPEC specification
language[5] to clarify ambiguities uncovered by our
testing. For example, consider the assertions authenticated
(bob), password (bob), password (alice) are present in the
database. The instrumented program puts out the property
authenticated (x) and password (x). Does the execution
monitor report a violation, because there exists one value
for x such that the property fails, or does it say the
property is satisfied, because there exists one value of x
such that the property holds? We have chosen the latter,
but one could equally well choose the former. The only
difference that would cause is in the writing of
specifications.

5. Model-Based Security Specification and
Verification

Model based specification and verification make use of

discrete finite models to verify compliance of the model to
desired properties; in this case, software/network security
properties. Network security properties often focus on
characteristics that are manifested though the operation of
multiple software applications and systems operating
concurrently with an attacking process. The concurrent
nature of the systems results in an operational space that is
too large to effectively verify security properties through
traditional testing of the implementation. Further,
vulnerabilities introduced in the early phases of the
development lifecycle are difficult or impossible to
remove in later phases when an implementation is being
tested. This results in the addition of cumbersome
workarounds and “patches” to secure the software system.
Model based verification offers the opportunity to verify
properties early in the life cycle, providing a clearer
understanding of the vulnerability issues within the system
before an implementation exists.

Figure 2

 Processors P1, P2

Figure 3

Model checkers automatically explore all paths in a

finite state space from a given start state in a
computational tree. The objective is to verify system

properties over all possible scenarios within a model.
Model Checkers differ from more traditional heavyweight
formal techniques in that:
• Model checkers are operational as opposed to

deductive
• Model checkers provide counter examples when

properties are violated (counter examples)
• Their goal is oriented toward finding errors as

opposed to proving correctness since the model is an
abstraction of the actual system

A,D

A,E

B,D

y

x

B,E

A,F

C,D

B,E

x
y

x

y

B,F

C,E

B,F

C,E

C,E

B,F

y
x

x

y

x

y

C,F

C,F

C,F

C,F

C,F

C,F

x

y

x

y

y

x

Figure 4

Model based verification techniques, such Model
Checking, are not without drawbacks. Among them are
the ability to model a system with a high degree of fidelity
in a timely manner while the system evolves. This is
particularly problematic in the earliest stage of
development such as requirements and high-level design
when the system definition is most volatile. This lack of
agility limits an analysts ability to maintain an up to date
model that and minimize the latency between the
introduction of errors and their discovery.

A limitation specific to model checking is the state
space explosion problem. Similar to the growth of the
growth of the operational space mentioned above, the state
space that a model checker must search to verify
properties grows at an exponential rate as the model
becomes more detailed. As shown in figures 2 through 4
the state space grows at a rate of mn where m is the range
of possible values a variable may assume and n is the
number of variables in the model. Despite the use of
modeling techniques such as abstraction and
homomorphic reduction it is infeasible to verify all but the
most simplistic software systems in their entirety though
model checking.

An innovative verification approach that employs
model checking as its core technology is offered as a
means to bring software security issues under formal
control early in the life cycle while mitigating the
drawbacks discussed above. The Flexible Modeling
Framework (FMF) is an approach that employs:

A

B

C

x

x

x

Process P1

D

E

F
y

y

Process P2

A, E

x

y
B,D

A, D

B, E x

y . . .

• A system for building models in a component
based manner to cope with system evolution in a
timely manner

• A compositional verification approach to delay the
effects of state space explosion and allow property
verification results to be examined with respect to
larger, complex models in an indirect manner.

Modeling in a component-based manner involves the
building of a series of small model, which will later be
strategically combined for system verification purposes.
This correlates the modeling function with modern
software engineering and architecture practices where by
a system is divided into major parts, and subsequently into
smaller detailed parts, and then integrated to build up a
software system. An initial series of simple components
can be built when few operational specifics are known
about the system. However these components can be
combined and verified for consistency with properties of
interest such as software security properties. As the
system evolves only the affected components need be
modified. Further by retaining knowledge from previous
verifications the effort of re-verifying properties may be
reduced significantly. This will result in a decreased cycle
time for verification of model updates thus improving the
timeliness of the formal verification results. As more is
learned about the system’s specific manner of
accomplishing its task(s) the affected model components
can be:

• Modified to reflect the more detailed approaches
developed during the design phase.

• Segmented into its own series of components
when the complexity of the high level component
begins to exhibit state space explosion problems.

The approach of compositional verification used in
the FMF seeks to verify properties over individual model
components and then over strategic combinations of them.
The goals of this approach are to: 1) infer verification
results over systems that are otherwise to large and
complex for model checking from results of strategic
subsets (combinations) while minimizing false reports of
defects. 2) Retain verification results from individual
components and combination to increase the efficiency
subsequent verifications and ultimately aid in the strategic
combination selection process. The FMF verification
process begins determining which model components are
safe and unsafe with respect to the property in question.
Then, the strategic combination process seeks to build up
relationships between components. Figure 5 shows an
example where the components C1 and C3 are safe with
respect to some security property while the states C2 and
C4 are unsafe. Relationships between C1 and C2 as well as

C3 and C4 are shown. Since C2 is individually unsafe, C1
is individually safe and the combination C1 and C2 is safe,
C1 is said to mitigate C2. Conversely C3 is safe and C4 is
unsafe and the combination of the two components is
unsafe. In this case C4 is said to undermine C3. It bears
noting that two components that are labeled individually
safe may produce and unsafe security condition when
combined and vise versa.

Maintaining the network of relationships for each
property will allow future verifications of the property to
be accomplished by noting the relationships that were
used to make earlier verification inferences and only re-
verifying the relationships affected by a component
change or addition.

This approach is currently under development and
shows promise for early life cycle detection of security
vulnerabilities. The approach may be generalized and/or
tailored in future work for applicability to non-security
domains such as safety.

6. Instrument Integration

The various parts of the Security Assessment Instrument
can be used separately or in combination (See Figure 6)
providing the additional benefits of:

• Reduced rework to identify security properties
• Increased confidence in the system through

verification at multiple times during the
development and maintenance lifecycle

• One tool is capable of verifying the input and
output of another tool in the instrument

• Finding additional attacks yet to be seen in the
wild (attacks that have not yet been seen outside
of a laboratory environment) and test for their
viability and severity

Figure 5

C1 C2 C3 C4

And And

Safe Unsafe

6.1. Vulnerability Matrix (VMatrix)
The vulnerability matrix provides a searchable knowledge
base from which properties may be extrapolated for use
with PBT (See Section 6.1.) and Model Based
Verification (MBV) (See Section 6.3.). This knowledge
base can also accommodate the discovery of new attacks
not yet seen in the wild that may be discovered through
MBV techniques.

6.2. Property Based Testing (PBT)
Property based testing is a tool that verifies properties
against the code level implementation of a system. These
properties are extracted from the VMatrix (See Section
6.1.), which may have grown due to properties being
added through the use of MBV (See Sec 6.3.).
Additionally, PBT is equipped with its own libraries that
contain readily testable properties. Finally, used with the
MBV, the PBT can provide verification of a model’s
fidelity to the system in the MBV.

6.3. Model Based Verification (MBV)
Due to the fact that Model based verification uses precise
abstractions; it offers the ability to verify security
properties early in the life cycle – before an
implementation exists. The MBV can effectively identify
and notify the VMatrix of security anomalies that are not
yet seen in the wild (See Sec 6.1.). Anomalies found early
in the lifecycle by examining abstractions can later be
passed on to the PBT for verification at the code level
(See Sec 6.2.).

7. Conclusion

The four parts of the integrated approach for detecting

security vulnerabilities in software form a coherent
technique for examining systems for software security
flaws. Each part can be used independently or in
conjunction with another. When used in conjunction with
each other, synergistic benefits are leveraged to classify
and understand security properties for modeling and
testing. The VMatrix and model-based checking provide
the properties that the software must meet; the property-
based tester checks that implementations do indeed meet
these properties. The VMatrix forms the beginning of a
library of properties. Property-based testing requires
properties expressed in TASPEC to test against. Training
in the writing of more secure programs flows directly from
the library of security properties. Placing these
properties in the context of a particular system
environment is an important part of improving the quality
of software and systems.

8. Acknowledgements

The research described in this paper is being carried
out at the Jet Propulsion Laboratory, California Institute
of Technology, under a contract with the National
Aeronautics and Space Administration, and the University
of California at Davis under a subcontract with the Jet
Propulsion Laboratory, California Institute of Technology.

9. References

[1] D. Gilliam, J. Kelly, M. Bishop, “Reducing Software
Security Risk Through an Integrated Approach,” Proc. of
the Ninth IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative
Enterprises (June, 2000), Gaithersburg, MD, pp.141-146.

[2] Published and maintained by Mitre. The CVE listing
can be found at: http://cve.mitre.org/

[3] G. Fink, M. Bishop, “Property Based Testing: A New
Approach to Testing for Assurance,” ACM SIGSOFT
Software Engineering Notes 22(4) (July 1997).

[4] M. Bishop, "Vulnerabilities Analysis," Proceedings of
the Recent Advances in Intrusion Detection (Sep. 1999).

[5] J. Dodson, "Specification and Classification of
Generic Security Flaws for the Tester’s Assistant
Library," M.S. Thesis, Department of Computer Science,
University of California at Davis, Davis CA (June 1996).

 Vmatrix

PBT

MB V

A ttacks not in the wild

D iscovered a ttacks not been seen in the wild
Known attacks for Vmatrix / PBT Libaries

Figure 6

[6] J. R. Callahan, S. M. Easterbrook and T. L.
Montgomery, "Generating Test Oracles via Model
Checking," NASA/WVU Software Research Lab,
Fairmont, WV, Technical Report # NASA-IVV-98-015,
1998.

[7] P. E. Ammann, P. E. Black and W. Majurski. “Using
Model Checking to Generate Test Specifications,” 2nd
International Conference on Formal Engineering Methods
(1998) pp. 46-54.

[8]G. Lowe. Breaking and Fixing the Needham-Schroeder
Public Key Protocol Using CSP and FDR. In TACAS96,
1996.

[9] W. Wen and F Mizoguchi. Model checking Security
Protocols: A Case Study Using SPIN, IMC Technical
Report, November, 1998.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

