
Education
Editors: Matt Bishop, bishop@cs.ucdavis.edu
Deborah A. Frincke, deborah.frincke@pnl.com

Discussions of what should be
taught inevitably circle back to who
is teaching, who is learning, and
what the ultimate purpose should
be. Key differences exist between
curricula designed to enhance an in-
dividual’s skill set (the specific ability
to write secure code, for example)
and curricula designed to enhance
an individual’s knowledge (the prin-
ciples behind writing secure code).
Both types are crucial to lasting im-
provement in the state of modern
software products. If we develop and
polish only curricula intended to
enhance specific individual skill sets,
the rapid pace of technological
change will soon render the skills
obsolete, and the individuals in-
volved will require constant retrain-
ing. If we develop only knowledge,
we’ll have many people who know
what principles should be applied
but who might not be able to pro-
duce good secure code.

What is assurance?
“Assurance” has nearly as many def-
initions as definers. In this article, we
consider it to be a measure of confi-
dence that some entity—perhaps a
computer program—meets its re-
quirements. As a parallel, “safety
assurance” for a bridge would en-
compass demonstrable measures that
increase our confidence that the

bridge is safe to use in its intended
environment. “Security assurance”
emphasizes requirements involving
security. A practitioner who demon-
strably “writes secure code” is illus-
trating a skill that supports increased
confidence that a system using that
code will be secure. As with the
bridge, this view of security assur-
ance is tied to an understanding of
the environment of use, the antici-
pated uses to which the resultant sys-
tem or code will be put, and some
definition of what “safe” (or secure)
means in this context. Divergence
from any of these expectations
moves the system outside the known
area and could result in failure, just as
driving a too-heavy truck over a
bridge could result in collapse.

In higher education, the primary
goal of teaching assurance is not to
teach students how to avoid buffer
overflows in a particular program-
ming language, but rather to teach
them about the principles to use in
determining which programming
practices to follow to prevent the
issue of buffer overflows from aris-
ing. The difference between these
approaches is the difference between
higher education and training.

Designing security in
The emphasis in higher education is
on designing security in from the

beginning rather than adding it af-
terward. Adding security mecha-
nisms to, or repairing vulnerabilities
in, an existing system can create sev-
eral problems, and might not even
fix the one being repaired. The new
mechanism must be designed to
work correctly with all aspects of the
existing system, software, and envi-
ronment—a great challenge, con-
sidering the potential for errors or
misunderstandings.

Security patches can introduce
new security vulnerabilities, as one
vendor discovered upon fixing a
widely publicized security flaw that
let attackers read users’ email: the
patch introduced a new flaw that had
the same effect as the old one—and
was easier to exploit.

Mismatches between new secu-
rity mechanisms and existing
software cause interface problems,
which, in turn, cause security prob-
lems. In the best-known example,
one set of software assumed the in-
puts were in metric units, whereas
the other assumed English units; the
result was the loss of a spacecraft.1

The added mechanism itself can
also create security problems. For
example, consider the Windows XP
Service Pack 2, which appreciably
strengthened the security of Win-
dows XP. Unfortunately, it also
interfered with certain existing pro-
grams, preventing some from work-
ing—a denial of service.2 The
service pack strengthened the sys-
tems of users who didn’t run those
programs, but it created a new secu-
rity problem for those who did.

Generality
By avoiding a focus on particular se-
curity vulnerabilities, we can teach

MATT BISHOP

University of
California,
Davis

DEBORAH A.
FRINCKE

Pacific
Northwest
National
Laboratory

C
omputer users, managers, and developers agree

that we need software and systems that are “more

secure.” Such efforts will require support from

both the education and training communities to

improve software assurance—particularly in writing secure code.

Teaching Secure
Programming

54 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

Education

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

students to identify potential prob-
lems by analyzing the means used to
implement systems and software.
Rather than focusing on arrays that
overflow, for example, a student
would learn that variables implicitly
impose size constraints—an integer,
for instance, must be between
2,147,483,647 and –2,147,483,648,
inclusive. The appropriate question
to ask is what happens when this as-
sumption is violated. If we consider
array types as including their sizes—
for example, an array of 100 charac-
ters—the same principle applies, and
the buffer-overflow problem is an
aspect of a more general, and perva-
sive, problem. Learning to handle
buffer overflows won’t help a pro-
grammer handle numeric overflows,
but learning how to deal with over-
flows in general lets the programmer
handle both types. The more gen-
eral approach is the hallmark of
higher education.

This emphasis on generality lets
students apply concepts and princi-
ples to any programming language
and environment. Take program-
ming languages, for example. The
type-checking features in languages
such as Modula 2 and Python re-
duce the chances of calling modules
incorrectly. Contrast them with
those of the C programming lan-
guage, or assembly, in which the
wide use of mixing different types
often leads to problems. Security
features (such as bounds-checking
for buffers) are built into languages
such as Java, whereas C++ and oth-
ers have no such features. Hence,
the classes of security problems that
can arise in programs vary, in part,
according to the language. Teaching
specifics of security-enhanced pro-
gramming for a particular set of lan-
guages helps only when a student is
working with those languages. The
student can work only by analogy
when dealing with other languages,
and if they allow classes of flaws that
the other languages don’t, the stu-
dent might not be able to write pro-
grams that anticipate that set of

problems. If students understand the
more general problems, they can
specialize with particular program-
ming languages.

Principles-
based approach
In the late 1960s, scientists began
worrying about the security impli-
cations of storing information on
computers. Although discussed only
in the context of classified informa-
tion, the problems they recognized
included confidentiality, integrity,
and availability. The Ware report,
published by the RAND Corpo-
ration, identified computer security
as an area of concern.3 The Ander-
son report, commissioned by the US
Air Force, suggested approaches for
solving some problems, and identi-
fied some other specific threats, in-
cluding the trojan horse.4 Although
discussing mainframe systems, these
reports presented universal concepts
and principles. Much modern work
simply takes these ideas and applies
them to current systems.

In academia, these principles are
central to teaching assurance.
Consider the concept of a reference-
validation mechanism, embodied in a
reference monitor, which is a system
component that controls access to a
given resource. The reference mon-
itor must meet three requirements:

• all access to the resource must go
through it;

• it must be simple, so that it can be
verified; and

• it must be tamperproof, so that it
can’t be modified illicitly.

Now apply this concept to a simple
Web server, which is designed to
send files (Web pages) to clients.
These files must be inaccessible to all

other network servers. This is a con-
figuration issue that requires us to ad-
dress some programming
considerations (such as permissions
checking) and management deci-
sions (where to put the files). The
simplicity requirement means that
the server should be as small as possi-
ble, with functionality only to serve
the Web pages. It should not, for ex-
ample, execute a subprocess to read
the files. Finally, the requirement that
the program be tamperproof means
that the server should prevent any
input from altering the executing
code. This requires the prevention of
buffer overflows (which typically
inject executable code into the
process), among other problems. As
we add requirements to the Web
server—for example, the ability to
execute a specific set of common
gateway interface (CGI) programs—
the application of these principles
changes (the tamperproof require-
ment now extends to the CGI pro-
grams executing on behalf of the
Web servers). Nonetheless, the prin-
ciples remain the same.

This explains why it’s important
to study the history of assurance.
The early papers present seminal
work that’s still in use today, al-
though in different environments.
Santayana’s maxim is true here: those
who do not know history are
doomed to repeat (or rediscover) it.

Where do
checklists fit in?
Security checklists cause both
alarm (because they can replace
thinking with conformance to ir-

relevant guidelines) and delight
(because they serve as aids in check-
ing that security considerations were
properly taken into account).

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 55

The emphasis in higher education is on

designing security in from the beginning rather

than adding it afterward.

Education

Checklists have their place in as-
surance. Consider the training of
student pilots. They use checklists
throughout the training process—

everything from preflight (assurance
that the aircraft is ready to take off) to
in-flight maneuvers (assurance that
all is well before beginning to bank
or land). Professional pilots also use
and respect checklists to ensure that
neither over-familiarity nor hurry
cause them to omit key safety ele-
ments. Checklists can be specific to
individual crafts—the control panel
on a Cessna 172 differs considerably
from that on a Boeing 747—but a
student pilot must be grounded in
the principles used to develop these
checklists in order to be able to gen-
eralize in emergencies. Students are
required to study and understand the
forces that affect the safety of aircraft
in flight before they earn their pilots’
licenses.

Taking the metaphor a step fur-
ther, aircraft designers must have
even deeper knowledge of issues
involving aircraft safety, from struc-
tural considerations to the study of
weather, and specialists who add to
the body of knowledge surround-
ing flight must have still deeper
knowledge.

This establishes a role for check-
lists with respect to secure program-
ming. They can provide useful
enumerations of specific actions re-
quired for safety and security. They
should be derived from sound as-
surance principles, and then tai-
lored to specific environments and
protection needs. They aren’t re-
placements for studying the princi-
ples driving their formation, nor
should we consider them as substi-
tutes for good judgment. Checklists
can be used as examples of how we

might implement principles, and
they can supplement training by
providing additional guidance for
those who have been taught spe-

cific skills. However, they should
not be used in isolation.

A s the discipline of computer
science matures, the ability to

write secure code should be
considered as fundamental to a uni-
versity computer science under-
graduate as basic literacy.

Teaching practice and principles
can be intermingled in disciplines
such as computer science, in which
there is an inherent applied aspect.
Prospective employers also have
strong expectations that graduates
will be proficient at both. Com-
puter science undergraduates (and
those who hire them) normally ex-
pect that students will graduate
with the basic skills needed to ob-
tain and hold down a job as well as
an understanding of the concepts,
principles, and methods of thinking
that will let them remain proficient.
Experience in security-enhanced
programming is important to both
of these goals, and certainly an asset
in all areas of computer science.

There is growing concern in the
academic community that the need
for improved software security will
cause pressure to teach skills focused
on specific programming languages
and operating systems at the ex-
pense of educating students in the
important general assurance con-
cepts. The function of academia is
not to teach programming tech-
niques, but to teach concepts, prin-
ciples, and methods of thinking that
students can apply to new situations.
Further, it is incumbent on gradu-

ates and employers alike to support
participation in ongoing profes-
sional training, so that employees
can refine the specific skill sets
needed to implement those con-
cepts and principles within the con-
text of their jobs.

References
1. “Mars Climate Orbiter Mishap

Investigation Board Phase I Report,”
NASA, Nov. 1999; see the press
release at http://mars.jpl.nasa.gov/
msp98/news/mco991110.html.

2. “Some Programs Seem to Stop
Working after You Install Windows
XP Service Pack 2,” Article ID
842242, Microsoft, 8 July 2005;
http://support.microsoft.com/kb/
842242.

3. W. Ware, Security Controls for Com-
puter Systems: Report of Defense Sci-
ence Board Task Force on Computer
Security, tech. report R609-1,
RAND, Feb. 1970.

4. J. Anderson, Computer Security Tech-
nology Planning Study, tech. report
ESD-TR-73-51, US Air Force,
Electronic Systems Division, 1974.

Matt Bishop is a professor of computer
science at the University of California,
Davis. His research interests include vul-
nerability analysis and denial-of-service
problems, formal modeling (especially
of access controls and the Take-Grant
Protection Model), and intrusion detec-
tion and response. Bishop has a PhD in
computer science from Purdue Univer-
sity. He is a charter member of the Col-
loquium for Information Systems
Security Education (CISSE) and author
of Computer Security: Art and Science
(Addison-Wesley, 2002). Contact him
at bishop@cs.ucdavis.edu.

Deborah A. Frincke is chief scientist of the
CyberSecurity group at the Pacific North-
west National Laboratory. Her research
interests include security of high-speed sys-
tems and system defense, especially intru-
sion detection. Frincke has a PhD in
computer science from the University of
California, Davis. She is currently on leave
from the University of Idaho, where she is
a professor and was director of the Cen-
ter for Secure and Dependable Systems.
She is a charter member of the Colloquium
for Information Systems Security Educa-
tion (CISSE). Contact her at deborah.
frincke@pnl.gov.

56 IEEE SECURITY & PRIVACY ■ SEPTEMBER/OCTOBER 2005

The ability to write secure code should be as

fundamental to a university computer science

undergraduate as basic literacy.

