
Application of Lightweight Formal Methods to Software Security

David P. Gilliam,* John D. Powell,* and Matt Bishop**

*Jet Propulsion Laboratory, California Institute of Technology

** University of California at Davis

{dpg, john.d.powell}@jpl.nasa.gov, bishop@cs.ucdavis.edu

Abstract

Formal specification and verification of security

has proven a challenging task. There is no single

method that has proven feasible. Instead, an

integrated approach which combines several formal

techniques can increase the confidence in the

verification of software security properties. Such an

approach which specifies security properties in a

library that can be re-used by 2 instruments and their

methodologies developed for the National

Aeronautics and Space Administration (NASA) at the

Jet Propulsion Laboratory (JPL) are described

herein The Flexible Modeling Framework (FMF) is a

model based verification instrument that uses

Promela and the SPIN model checker. The Property

Based Tester (PBT) uses TASPEC and a Test

Execution Monitor (TEM). They are used to reduce

vulnerabilities and unwanted exposures in software

during the development and maintenance life cycles.

These instruments are currently being piloted with a

COTS Server-Agent Application.

1. Introduction

Specifying software properties is a challenging

task. Even more challenging is specifying informal

specifications formally. [1] This difficulty is due to

the imprecision of natural language and the difficulty

in ensuring that the specifications are correct. [2, 3]

Applied to security, formal specification is

particularly complex as security requirements mostly

state what must not happen. [4] The problem of

trying to specify security properties formally was

made apparent during the 1970’s when the United

States government commissioned development of a

provably secure multics system using mathematical

modeling. [5] Their approach addressed only

confidentiality, and then only partially. The number

of follow-on discussions on security property

specifications is witness to this problem. [4, 6, 7, 8]

The need to formally specify and verify security

properties is easily seen by the growing list of

software vulnerabilities. [9] It is apparent that better

specification and verification of security properties

will lead to more secure software. Formal

specifications and methods can fill this role and

improve the quality of software making it more

dependable. [8, 10]

The following discussion will focus on 2 formal,

integrated techniques, model checking and property-

based testing, that are being used at the Jet

Propulsion Laboratory (JPL) for verification of

security properties. They are being piloted with a

Commercial-Off-The Shelf (COTS) application that

has a Server-Agent function, where the Server

provides application software and updates to agents

running on associated workstations. The agents

check in with the server and download applications.

The process requires verification that the agents do

not provide a source of vulnerabilities or exposures

to the systems in their operation.

2. Model Checking and Property-Based

Testing

The purpose and use of tools like model

checkers and testers is to allow for mechanization of

formal specifications to reduce cost and schedule

while increasing efficiency for formal verification

activities and to assure that the software artifacts are

free from potential conflicts and violations in the

specifications. [11, 12] Model checking involves:

Building a state-based model of the system

Identifying properties to be verified

Checking the model for violations of the

specified properties.

Model checkers such as SPIN [18] automate the

process of verifying a property over its

corresponding model.

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

Figure 1: The Flexible Modeling Framework And Combiner Process [15]

Model checkers perform an exhaustive search of

a state space generated by a model. State space is the

set of total reachable system states represented in the

model. A given state consists of all variables in the

model and their associated values at a given point in

time. Software model checkers automatically explore

all paths from a start state by examining transitions in

the state space to determine the reachability of a state

that violates a property. [8] The properties are

verified as holding or not holding for each transition.

This automation provides high value for large,

complex systems where specifications are complex.

[13]

As the size and complexity of the model

increases, the state space to be checked grows at an

exponential rate. “This exponential growth in the

state space known as the state explosion problem is

the limiting factor in applying automatic verification

methodologies to large systems.” [14]

2.1. Flexible Modeling Framework

To address the state explosion problem, JPL has

developed a Flexible Modeling Framework (FMF)

that uses a “divide and conquer approach” while

seeking to maintain fidelity to the software artifact.

[15] The FMF uses compositional verification to

analyze models and verify the results for models that

represent the system. The basis of the compositional

approach is the verification of a system with regard

to a subset of its environment in a manner that allows

those results to be extrapolated to the environment at

large. The FMF approach narrows the focus to those

components for which security properties have been

identified and which can be modeled. [16]

As previously reported to WETICE, use of this

combinatorial approach allows interactions between

components to be examined bringing to light

potential questions about their relationships.[16]

These questions enable decisions to be made early in

the life cycle. Further, efficient, localized updates of

the system model can more easily be generated.

Issues affected by subsequent changes can then be

revisited though required re-verification of affected

combinations. This last feature is a failsafe and not a

substitute for good practices such as documentation

of decisions and emergent requirements.

The FMF takes the most critical software

components and builds models of them. Security

properties are then verified in each component. The

interacting components are then combined and model

checked for violations of properties. This approach

allows more of a system to be model-checked within

system resource constraints thus providing a higher

degree of confidence (Figures 1 and 2). The concept

is to: a) verify systems that are otherwise too large

and complex by checking only strategic components

and “b) retain verification results from individual

components and component combinations to increase

the efficiency of subsequent verification attempts in

light of modifications to a component.” [16]

The model component combination tree in

Figure 2 shows the combination of components that

interact with each other. The components that

interact are combined and model-checked within the

FMF. The paths from the higher level components to

the lover level components that interact are shown in

the model.

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

A B C

AB
BC

AC

D

BD CD

ABCD

ABC ABD BCD

Vio
latio

n

ACD

Vio
latio

n

AD

Mitigation Mitigation

Mitigation

Mitigation

Figure 2: Model Component Combination Tree and Components Model Checked [19]

As an example, suppose in the Model

Component Tree (Figure 2) the path from ACD to AD

to A would normally produce a violation in the model

verification. However, in this case the path from

ABC to AB and AC represent mitigations that

safeguard against the violation to A. Consequently,

the property holds at the lower level of the

component tree and no violation exists unless the

components ABC, AB and AC are removed from the

tree. An example is provided in Section 3 where the

MBV was used to model a COTS software product

and the mitigation of a violation by two other

security properties.

2.2. Property-Based Testing (PBT)

Property-based testing (PBT) is a technique that

verifies that specified security properties are not

violated in the coding phase of the life cycle.

Properties are invariants that are to hold during

program execution. Implementation difficulties and

environmental considerations may affect

conformance to properties (and hence the security of

execution) and thus the properties may not always

hold. PBT provides additional assurance that the

software is correct and satisfies the specified

properties when execution follows the tested control

and data flow paths. [17]

Properties are invariants that are to hold during

program execution. Implementation difficulties and

environmental considerations may affect

conformance to properties (and hence the security of

execution) and thus the properties may not always

hold. PBT provides additional assurance that the

software is correct and satisfies the specified

properties when execution follows the tested control

and data flow paths. [17]

A PBT instrument developed by UC Davis in

cooperation with JPL, mechanizes verification of

security properties in code. The PBT instrument was

originally developed to check for security properties

in the JAVA language. It is now being extended to

check for security properties in the C language. [17]

A PBT instrument developed by UC Davis in

cooperation with JPL, mechanizes verification of

security properties in code. The PBT instrument was

originally developed to check for security properties

in the JAVA language. It is now being extended to

check for security properties in the C language. [17]

The PBT expresses properties in a low-level test

language called TASPEC. The PBT focuses the

testing on the security properties of interest.

Intuitively, the PBT instrument looks at the execution

of program sequences as a series of state transitions.

If any state transition causes a violation of a property,

an error message is generated.

The PBT expresses properties in a low-level test

language called TASPEC. The PBT focuses the

testing on the security properties of interest.

Intuitively, the PBT instrument looks at the execution

of program sequences as a series of state transitions.

If any state transition causes a violation of a property,

an error message is generated.

The PBT examines data from program executions to

expose this. The goal of the PBT is to test as many

paths of control as possible. First, a program called

the instrumenter analyzes the security properties and

the program, and inserts code to emit messages

indicating changes of state relevant to the security

properties. The program is then ‘sliced’, creating a

second program that satisfies the properties if, and

only if, the original program satisfies those

properties. The second program contains only those

paths of control and data flow that affect the

properties. This focuses the testing on paths of

execution relevant to the security properties rather

than on all possible paths of execution. The

instrumented, sliced program is then compiled and

executed. During execution, the messages indicating

changes of state are saved to a file.

The PBT examines data from program executions to

expose this. The goal of the PBT is to test as many

paths of control as possible. First, a program called

the instrumenter analyzes the security properties and

the program, and inserts code to emit messages

indicating changes of state relevant to the security

properties. The program is then ‘sliced’, creating a

second program that satisfies the properties if, and

only if, the original program satisfies those

properties. The second program contains only those

paths of control and data flow that affect the

properties. This focuses the testing on paths of

execution relevant to the security properties rather

than on all possible paths of execution. The

instrumented, sliced program is then compiled and

executed. During execution, the messages indicating

changes of state are saved to a file.

Second, a test execution monitor (TEM) program

is given the properties in TASPEC and the messages

indicating changes of state from the instrumented

program’s run. The TEM checks each state transition

and verifies that the properties held during execution.

If the properties did hold, then they held throughout

the execution. If not, the TEM can determine where

in the program the failure occurred. [17] The testing

either validates the properties or shows they do not

hold.

Second, a test execution monitor (TEM) program

is given the properties in TASPEC and the messages

indicating changes of state from the instrumented

program’s run. The TEM checks each state transition

and verifies that the properties held during execution.

If the properties did hold, then they held throughout

the execution. If not, the TEM can determine where

in the program the failure occurred. [17] The testing

either validates the properties or shows they do not

hold.

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

3. Prototyping the FMF and PBT

While it is believed that these verification

techniques aid in ensuring that specified security

properties in software are not violated, the

instruments themselves must be prototyped to show

that they do perform as intended and do so in a cost-

effective way. Both their value and their relative

cost-effectiveness must be verified for these

instruments to useful and of benefit in the

development and maintenance life cycles.

The MBV FMF was initially evaluated against

the SSL protocol that contained a documented

weakness with Man-In-The-Middle attacks coupled

with a Domain Name System (DNS) spoofing attack.

The MBV FMF was able to detect this weakness by

encountering a path in the model of the protocol that

would allow this to occur.

Table 1: MBV Verification Results

Agent Properties MBV Results

1. The agent and server shall be capable of secure communication Verified to Hold

2. The agent and server shall have an identification that uniquely mutually

associates them

Verified to Hold

3. The agent and server shall authenticate to each other using their unique

identification

Verified – Logically

Implied by 1 and 2

4. The agent shall validate all packages that they are from its associated server Verified – Logically

Weaker version of 3

5. The agent shall validate that the package is un-tampered (like using an MD5

checksum)

Verified – Logically

6. The agent shall recognize packages that do not complete their installation Verified to Hold -

Critical

7. The agent shall have a recovery process for packages that have partial

installation or otherwise fail during installation

Verified to Hold

8. The agent shall run at low priority Verify by Other

Means

9. The agent shall recognize conflicts with other processes that generate high CPU

utilization

Verify by Other

Means

10. The agent shall go to sleep when CPU utilization is high Verify by Other

Means

11. The agent shall monitor activity for system resources Verify by Other

Means

12. The agent shall recognize conflicts with use of JAVA resources Verify by Other

Means

13. The agent shall go to sleep when it detects conflicts with JAVA resources Verify by Other

Means

14. The agent shall only accept connections that it has initiated Verified to Hold

15. The agent shall have a network session time-out Verified to Hold -

Critical

16. The agent shall have a package installation time-out Verified to Hold -

Critical

17. The agent shall provide logging of all its events Verified through

Inspection

18. The agent shall be capable of running as non-root and maintain reporting

capabilities

Verify by Other

Means

The PBT was evaluated initially using a JAVA

based web server that had a known vulnerability.

The PBT was able to detect the violation of the

security property which allowed authentication to be

by-passed. It reported in the code where the

violation occurred and the property violated.

For further verification of the MBV FMF and the

PBT, these tools are being piloted with a COTS

application written in JAVA. The COTS installs or

updates software from a parent server to clients. The

clients communicate with the server via agents.

Since the application was already developed and

available, the approach was to evaluate the purpose

of the application and the properties important to its

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

function which have potential impact on security.

The two instruments are being used cooperatively to

evaluate the value of this approach. Normally, with

code, it is unnecessary to model it, but to proceed

directly on to property-based testing. However, the

goal was to evaluate both the modeling instrument

and then the ability to take the model and extrapolate

from it the security properties to test.

The verification process required working with

the developers of the application to obtain from them

their software and architecture artifacts to extrapolate

properties for the FMF and PBT. Additional

information and explanation of some of the

properties in the architectural artifacts was obtained

from the developers. From these artifacts and in

working with the developers, a model of the software

was developed. Further, in view of the purpose of

the application, security properties were specified

independently.

A study was performed of the COTS server and

agent software and its operation. It was decided that

verifying the security properties of the agent software

would provide the most benefit and be manageable

not only to verify the security properties but also to

verify the validity of the instruments and the

approach.

After evaluating the software’s purpose and

function, properties that could impact security of the

system were generated and evaluated. There were 18

essential properties that were determined as essential

for the operation of the application, some of which

were considered as critical security properties. These

are shown in Table 1. The goal is to provide a higher

level of assurance with respect to the security of the

agent software through the combined the use of the

FMF and PBT instruments.

The MBV verification has been completed. The

FMF-style model was able to verify that the critical

properties hold over the model. (See Table 1) One

mitigated violation was identified. A path was

discovered in which a Denial of Service could occur.

The violation could be perpetrated through a constant

attempt to submit packages to the agent from a

source other than the parent server. The agent would

continually spend time verifying and rejecting the

package. However, this violation was only likely to

occur when secure communication and mutual

authentication were not used (properties 1 and 2).

The explicit use of SSL mitigated this potential

violation.

Properties 1 and 2 act as mitigation for property

4, where the system could be relegated to verifying

and discarding packages that were not from the

server continuously. This finding may be used in

part to validate the hypothesis of the FMF that a

violation in a lower level component of a model

framework could be mitigated by a component or

combination of components at a higher level of the

model framework.

After MBV was performed, the resulting

specifications of the model, the verification results,

and the security properties were then passed on to the

PBT for use in verification at the

implementation/code level.

The PBT is testing the implementation of the

tool to ensure that the properties verified by the FMF

are correctly implemented. The FMF expressions of

these properties are translated into TASpec. This

associates the properties with the implementation of

the tool being tested, and enables the PBT to record

relevant changes of state during execution. Testing at

the implementation level also allows us to check

some properties that are not easily modeled, such as

properties 12 and 13, because they identify

implementation-level problems that result in changes

of state—exactly the type of flaw the PBT is

designed to find.

Some of the properties in Table 1 must be

refined in order to encode them in TASpec. For

example, the PBT can check for “secure

communication” provided that the term is specified

precisely and in terms of the software. If “secure

communication” means using SSL, then the TASpec

property would be written to ensure the SSL routines

are invoked properly. (Even the SSL routines could

be checked if desired.) In addition, test data must

exercise the paths involved in the changes of state.

5. Conclusion

It is expected that this approach will improve the

overall security of software. The results of the

current investigation will be provided to the National

Aeronautics and Space Administration’s (NASA)

Independent Verification and Validation (IV&V)

Center through whom this research has been funded.

Through use of formal techniques in application

to security, security assessment instruments and tools

in the software development and maintenance life

cycles can improve the security of software if used

correctly. We hope the SSAI being developed at JPL

and UC Davis is a step forward in this direction.

Through the application of these instruments in a

coordinated effort, a higher level of assurance for

security can be achieved.

Tools and instruments that can be used during

both the development and maintenance life cycle

beginning with a security checklist in the inception

and requirements phases through retirement will

create an environment of stronger security.

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

7. Acknowledgements

The research described in this paper is being carried

out at the Jet Propulsion Laboratory, California

Institute of Technology, under a contract with the

National Aeronautics and Space Administration.

7. References

[1] Van Lamsweerde, A., (2000). Formal

Specification: A roadmap. In Finkelstein, A. (ed.)

Proceedings of the Conference on the Future of

Software Engineering (pp. 147 – 159). ACM Press.

2] Hussmann, H. (1997). Formal foundations for

software engineering methods. Goos, G., Hartmanis,

J., and van Leeuwen, J. (eds.), Lecture Notes in

Computer Science, 1322. Berlin: Springer.

[3] Schach, S.J. (2005). Object-oriented and

classical software engineering. 6th ed. New York:

McGraw-Hill.

[4] Rushby, J. (March, 2001). Security

requirements specifications: How and what? Invited

Paper from Symposium on Requirements

Engineering for Information Security (SREIS),

Indianapolis, IN.

[5] Bell, D. E. and LaPadula, L. J. (March,

1976). Secure computer systems: Unified exposition

and multics interpretation. Technical Report Mitre

TR-2997, Mitre Corporation, Bedford, MA.

[6] McLean, J. (January, 1999). Twenty years of

formal methods. Proceedings of the IEEE

Symposium on Security and Privacy, 115 – 116.

 [7] Payne, C. N., Jr., Moore, A. P., and

Mihelcic, D. M. (1995). An experience modeling

critical requirements. Proceedings of the Ninth

Annual Conference on Computer Assurance, 1994.

COMPASS ’94 ‘Safety, Reliability, Fault Tolerance,

Concurrency and Real Time, Security’, 245-255.

 [8] Nicol, D. M., Sandera, W. H., and Kishor,

S.T. (2004). Model-Based evaluation: From

dependability to security. IEEE Transactions on

Dependable and Secure Computing. Vol. 1, No. 1, 48

– 65.

[9] Mitre Corporation (2004). Common

Vulnerabilities and Exposures (CVE) List. Retrieved

November 22, 2004, from

http://www.cve.mitre.org/cve/downloads/.

[10] Easterbrook S. M., and Callahan, J. R.

(1996). Formal methods for verification and

validation of partial specifications: A case study.

Report to NASA Independent Verification and

Validation Facility, Fairmont, WV. Retrieved

November 14, 2004, from

www.cs.toronto.edu/~sme/papers/1998/NASA-IVV-

97-010.pdf.

[11] Holzmann, G. J., & Smith, M. H. (2002).

An automated verification method for distributed

systems software based on model extraction. IEEE

Transactions on Software Engineering, Volume: 28,

No. 4, April 2002, 279 – 295.

[12] Hamon, G., de Moura, L., and Rushby, J.

(May, 2004). Generating Efficient Test Sets with a

model checker. Computer Science laboratory (CSL)

Technical Note. SRI International. Retrieved

November 14, 2004, from

http://www.csl.sri.com/users/rushby/biblio.html.

[13] Rushby, J. (February, 2002). Using model

checking to help discover mode confusions and other

automation surprises. Reliability and System Safety.

Vol. 75, No. 2, 167-177.

[14] McMillan, K. L. (1992). Symbolic model

checking: An approach to the state explosion

problem. CMU-CS-92-131, Submitted to Carnegie

Mellon University in partial fulfillment of the degree

of the requirements for the degree of Doctor of

Philosophy in Computer Science. Carnegie Mellon

University. Later published (1992) as Sympolic

model checking. Kluwer Academic Publishers:

Norwell, Mass. Retrieved Nov. 22, 2004, from www-

cad.eecs.berkeley.edu/~kenmcmil/thesis.ps.

[15] Powell, J. D., and Gilliam, D. P., (2002)

Component based approach to modeling for model

checking. The Sixth Biennial World Conference on

Integrated Design & Process Technology. Pasadena,

California, 2002.

[16] Gilliam, D. P., and Powell, J. D. (2002).

Integrating a flexible modeling framework (FMF)

with the network security assessment instrument to

reduce software security risk. Proceedings of the 11th

IEEE International Workshops on Enabling

Technologies: Infrastructure for Collaborative

Enterprises. WETICE 2002, 153 – 158.

[17] Gilliam, D. P., Powell, J. D., Haugh, E., and

Bishop M. (2003). Addressing software security and

mitigations in the life cycle. Proceedings of the 28th

Annual NASA Goddard IEEE Software Engineering

Workshop (SEW), 201 – 206.

[18] Holzmann, G. J. (2004). The SPIN model

checker: Primer and reference manual. Boston, MA:

Addison-Wesley.

[19] Powell, J. D. (2003). Reducing software

security risk through an integrated approach research

initiative: Model based verification of the secure

socket layer (SSL) protocol. Deliverable to the

NASA IV&V Facility. Fairmont, WVA.

Proceedings of the 14th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise (WETICE’05)
0-7695-2362-5/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

