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Abstract. Incomplete or improper input validation is one of the major sources
of security bugs in programs. While traditional approaches often focus on de-
tecting string related buffer overflow vulnerabilities, we present an approach to
automatically detect potential integer misuse, such as integer overflows in C pro-
grams. Our tool is based on CQual, a static analysis tool using type theory. Our
techniques have been implemented and tested on several widely used open source
applications. Using the tool, we found known and unknown integer related vul-
nerabilities in these applications.

1 Introduction

Most known security vulnerabilities are caused by incomplete or improper input vali-
dation instead of program logic errors. The ICAT vulnerability statistics [1] show for
the past three years that more than 50% of known vulnerabilities in the CVE database
are caused by input validation errors. This percentage is still increasing. Thus, improved
means to detect input validation errors in programs is crucial for improving software
security.

Traditionally, manual code inspection and runtime verification are the major ap-
proaches to check program input. However, these approaches can be very expensive
and have proven ineffective. Recently, there has been increasing interest in static pro-
gram analysis techniques and using them to improve software security. In this paper,
we introduce a type qualifier based approach to perform analysis of user input integers
and to detect potential integer misuse in C programs. Our tool is based on CQual [2],
an extensible type qualifier framework for the C programming language.

An integer is mathematically defined as a real whole number that may be positive,
negative, or equal to zero [3]. We need to qualify this definition to include the fact that
integers are often represented by integer variables in programs. Integer variables are the
same as any other variables in that they are just regions of memory set aside to store
a specific type of data as interpreted by the programmer [4]. Regardless of the data
type intended by the programmer, the computer interprets the data as a sequence of
bits. Integer variables on various systems may have different sizes in terms of allocated
bits. Without loss of generality, we assume that an integer variable is stored in a 32-bit
memory location, where the first bit is used as a sign flag for the integer value.

Integer variables are widely used in programs as counters, pointer offsets and in-
dexes to arrays in order to access memory. If the value of an integer variable comes
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from untrusted source such as user input, it often results in security vulnerabilities. For
example, recently an increasing number of integer related vulnerabilities have been dis-
covered and exploited [5, 6, 7, 8, 9]. They are all caused by the misuse of integers input
by a user. The concept of integer misuse like integer overflow has become common
knowledge. Several researchers have studied the problem and proposed solutions like
compiler extension, manual auditing and safe C++ integer classes [4, 10, 11, 12, 13, 14].
However, to date there is no tool that statically detects and prevents integer misuse
vulnerabilities in C programs.

Inspired by the classical Biba Integrity Model [15] and Shankar and Johnson’s
tools [3, 16] to detect format string and user/kernel pointer bugs, we have implemented
a tool to detect potential misuse of user input integers in C programs. The idea is simple:
we categorize integer variables into two types: trusted and untrusted. If an untrusted in-
teger variable is used to access memory, an alarm is reported. Our tool is built on top
of CQual, an open source static analyzer based on the theory of type qualifiers [2]. Our
experiments show that the tool can detect potential misuse of integers in C programs.

The rest of the paper is organized as follows: Section 2 gives a brief introduction
to CQual and the theory behind it. Section 3 describes the main idea of our approach
and the development of our tool based on CQual. Section 4 shows the experiments
we have performed and the results. In Section 5 we discuss several issues related to our
approach. Section 6 discusses related work. Finally, Section 7 concludes this paper with
future work.

2 CQual and Type Qualifiers

We developed our tool as an enhancement to CQual. It provides a type-based static
analysis tool for specifying and checking properties of C programs.

The idea of type qualifiers is well-known to C programmers. Type qualifiers add
additional constraints besides standard types to the variables in the program. For exam-
ple, in ANSI C, there is a type qualifier const that attaches the unalteration property to
C variables. However, qualifiers like const are built-in language features of C, which
seriously restrict the scope of their potential applications. CQual allows a user to intro-
duce new type qualifiers. These new type qualifiers specify the customized properties in
which the user is interested. The user then annotates a program with new type qualifiers,
and lets CQual statically check it and decide whether such properties hold throughout
the program. The new type qualifiers introduced in the program are not a part of the C
language, and C compilers can ignore them.

There are two key ideas in CQual: subtyping and type inference.
Subtyping is familiar to programmers who practice object-oriented programming.

For example, in GUI programming, a class DialogWindow is a subclass of class Win-
dow. Then we say DialogWindow is a subtype of Window (written as DialogWindow ≤
Window). This means that an object of DialogWindow can appear wherever an object
of Window is expected, but not vise versa. Thus, if an object of type Window is pro-
vided to a program where a DialogWindow is expected, it is a potential vulnerability
and the program does not type check.

CQual requires the user to define the subtyping relation of user supplied type qual-
ifiers. The definition appears as a lattice in CQual’s lattice configuration file. For
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example, if we define the lattice for type qualifiers Q1 and Q2 as: Q1 ≤ Q2, it means
for any type τ , Q1τ and Q2τ are two new qualified types, and Q1τ is a subtype of Q2τ
(written as Q1τ ≤ Q2τ ) [2, 3]. Thus, a variable of type Q1τ can be used as a variable
of type Q2τ , but not vise versa.

Manually annotating programs with type qualifiers can be expensive and error prone.
Therefore, CQual only requires the user to annotate the programs at several key points
and uses type inference to automatically infer the types of other expressions. For exam-
ple, in the following code fragment, the variable b is not annotated with the qualifier
untrusted, but we can infer this qualifier for b from the assignment statement 1.

int $untrusted a;
int b;
...
b = a;

To eliminate the burden of annotating programs across multiple source code files,
CQual provides a prelude file. A user can define fully annotated function declarations
in this file, and let CQual load it at run-time. This is particularly useful when the source
code of certain functions is not available, e.g., the library functions and system calls.
In this situation, CQual is still able to use type inference to infer the qualified types of
expressions from the annotations in the prelude file. For example, in the following
code fragment, after we annotate the C library function scanf in the prelude file,
CQual is able to infer that the variable a is an untrusted integer variable in the program.

prelude:
int scanf (char* fmt, $untrusted ...);

user_program.c:
int a;
scanf ("%d", &a);

3 Integer Misuse Detection

This section describes how our tool detects potential integer misuse vulnerabilities in
C programs. Inspired by the Biba Integrity Model [15], we propose a security check
tool based on CQual to detect integer misuse. In our tool, security holes are detected by
tracing dependency of variables. Integrity denotes security level. If a value of a variable
is updated by an untrusted variable during the execution of a program, then the integrity
of the variable decreases and the value is regarded as untrusted.

Therefore, we categorize integer variables in programs into two types: trusted and
untrusted. An integer variable is untrusted because either its value is directly fetched
from user input, or the value is propagated from user input. An integer variable is trusted
because its value has no interaction with untrusted integers. In addition, we define pro-
gram points that generate and propagate untrusted integer variables, and program points

1 CQual requires the type qualifiers start by a $ sign. For convenience, we ignore the $ sign in
our discussion except for the code fragments.
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that should only accept trusted integer variables. For example, suppose each integer pa-
rameter of a function read file is annotated as trusted. If there is a flow in a program
that an untrusted integer variable is used as a parameter of function read file, a se-
curity exception is generated, resulting in a alarm.

In order to speed up our efforts and develop a working prototype several assumptions
are made.

3.1 Assumptions

First, we assume that a programmer does not deliberately write erroneous code. This
means that we trust the integer variables prepacked in programs if these internal integer
variables do not have any direct or indirect relations with user input. For example, an
integer variable may be initialized statically in a program and it is used as index to
access an array. There is no interaction between this integer variable and user input. The
assumption is that the programmer knows the exact size of the array being accessed and
the value of this integer variable is not larger than boundary of the array. We believe
that this is a reasonable assumption. In fact, this kind of assumptions are often needed
for many static analysis techniques.

We also assume that integer misuse only happens when untrusted integer variables
are used to access memory. This means it is safe to use untrusted integer variables
in many other situations. This is because, to the best of our knowledge, most integer
related vulnerabilities are only associated to memory access.

To make it clear, user input integers are not limited to the integers given to an appli-
cation by a command line option, or typed in by a user at a program prompt. They also
include many other methods by which a program obtains data from outside the program
itself, such as reading a file or receiving network packets. User input data in the context
of this paper means the data that is not prepackaged within the program.

3.2 New Type Qualifiers

The first step is to define the type qualifiers for integer variables and the lattice of these
type qualifiers in CQual’s lattice file. Since there are two categories of integer vari-
ables in our method, two type qualifiers are defined: untrusted and trusted. These two
qualifiers have a sub-typing relation of trusted ≤ untrusted. This implies that programs
that accept an untrusted integer variable can also accept a trusted integer variable. How-
ever, the reverse is not true.

Our implementation is not limited to integer variables and we apply the two new
qualifiers to any types of variable in C programs. This is particularly important since in-
tegers are often converted from other types of data, and we keep track of these changes.
As shown in the following code fragment, the integer variable a will become untrusted
after the assignment because the content of string str is untrusted 2, and the declaration
of the function atoi in the prelude file specifies that an untrusted string has been
converted to an untrusted integer.

2 Different positions of a qualifier for a pointer variable have different meanings. In particular,
char untrusted *buf defines the memory content pointed by buf as untrusted, char*
untrusted buf defines the pointer variable buf itself as untrusted.
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prelude:
int $untrusted atoi (char $untrusted* string);

user_program.c:
char $untrusted* str;
int a;
...
a = atoi (str);

3.3 Annotations with Type Qualifiers

The second step is to determine the source of untrusted data in programs and how they
propagate in the programs, and annotate the programs using the untrusted qualifier.

By our definition, all user inputs are untrusted. Therefore, we need to identify all lo-
cations that accept data from outside the programs. For programs based on standard C
library and UNIX system calls, the sources of untrusted data include: program argument
array argv, environment variables, standard I/O input, files and network sockets. Pro-
gram argument array argv and environment variables accept user supplied parameters;
standard I/O input is usually used to accept keyboard input from the user; files store the
data from the file systems; and network sockets provide data transmitted over the net-
work. In POSIX compatible systems, most inputs are handled in the same way as files,
so it is unnecessary to distinguish them. Thus identification of user input is relatively
simple: find all C library functions and system calls that are related to files, and pick
those that fetch data. For example, the system call read and C library function fread
both read data from files. We annotate them in the prelude file as illustrated in the
following code fragment. In these declarations, the pointer buf points to a memory
buffer that saves the input data. This memory buffer is annotated as untrusted.

prelude:
int read (int fd, void untrusted* buf, int);
int fread (void untrusted *buf, int, int, FILE*);

We focus on a specific type of untrusted data: integer variables. Thus, it is necessary
to determine type conversion from untrusted data to untrusted integers. The standard C
library provides a limited number of functions that can generate integers from strings.
We categorize them into two groups:

1. General purpose library functions that can convert strings into integers. These func-
tions include group of scanf functions, e.g., scanf, fscanf, sscanf, etc..
They use the “%d” format to convert a string into an integer.

2. Single purpose library functions that convert strings into integers. These functions
include atoi, atol, strtol, atof, etc.

In group one, since scanf and fscanf directly read in data from user input, the in-
teger variables fetched are immediately annotated as untrusted. However, since the first
argument of sscanf can either be trusted or untrusted, the annotation of its fetched
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variables will depend on the qualifier of the first argument. This difference is shown in
the following code fragment 3:

prelude:
int scanf (char* fmt, untrusted ...);
int fscanf(FILE*, char* fmt, untrusted ...);
int sscanf(char $_1* str, char* fmt, $_1_2 ...);

The functions in the second group are similar to sscanf: the qualifier of the re-
turned integer variable depends on the qualifier of the input string. This is shown in the
code fragment below:

prelude:
int $_1 atoi (char $_1* s);
long $_1 atol (char $_1* s);
long $_1 strtol (char $_1* s);

In addition to C library string functions, there are two other methods that convert
different types of data into integers. One is type cast. For example, a character variable
ch may be cast into an integer variable and be assigned to an integer variable a. In
this case, CQual automatically propagates the type qualifiers of ch to a. In the other
case integers are fetched directly into a memory location of an integer variable. For
example, a program can call function fread to fetch data from a file into a buffer that
is the memory address of an integer variable. In this case, since the content of the buffer
is annotated as untrusted, CQual will infer the integer variable as untrusted.

We must consider the propagation of untrusted data in addition to the source of these
data. CQual uses type inference to automatically infers the propagation of type quali-
fiers between variables through assignments. However, this is often inadequate in prac-
tice. For example, source code of library functions is often unavailable during analysis.
If these functions are not annotated, propagation in libraries would be missed. Such
library functions include strcpy, strncpy, memcpy, memmove, etc.. We must an-
notate these functions as below:

prelude:
char $_1_2* strcpy(char $_1_2*, char $_1*);
char $_1_2* strncpy(char $_1_2*, char $_1*, size_t);
void $_1_2* memcpy(void $_1_2*, void $_1*, size_t);
void $_1_2* memmove(void $_1_2*, void $_1*, size_t);

After identifying the source of untrusted integer variables, the next step is to de-
termine that all expressions that must accept trusted integers, and make annotation as
needed. To enforce memory safety, all integer variables used as direct or indirect offsets
of a pointer must be trusted integers.

3 $ 1 and $ 1 2 are polymorphic qualifier variables in CQual. CQual treats each pair of poly-
morphic variables (A, B) as if there was an assignment from A to B when A is a substring
of B.
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Indirect use of integers as offsets of pointers is often seen in C library functions.
For example, the length parameters of functions memcpy and snprintf must be trusted
parameters because they are implicitly used as the offset. Thus, we annotated the length
parameters of these functions as trusted, illustrated below:

prelude:
void $_1_2* memcpy(void $_1_2*, void $_1*,
$trusted size_t);
int snprintf(char*, $trusted size_t, char*, ...);

Integers are often used in pointer arithmetic operations as well, and these integers
must be trusted to ensure memory safety. Unfortunately, CQual has not implemented
the ability to annotate arithmetic operators for pointers. This significantly limits the
scope of our approach. To make our tool more usable, we modify CQual’s source code
to check arithmetic operations on pointers. This is discussed in the next section.

With these annotations, if a program attempts to use an untrusted integer in an ex-
pression that only accepts trusted integers, CQual does not type check the program
and will generate an error message. For example, in the following code fragment, the
scanf function reads input from a user, and CQual infers untrusted qualifier for vari-
able len. Function memcpy only accepts trusted integer as its third parameter, and
CQual infers trusted qualifier for variable len. Therefore, the type check fails when
memcpy is called with len as its third argument, and CQual reports an error.

char buf1[BUFSIZ], buf2[BUFSIZ];
int len;
...
scanf ("%d", &len);
memcpy (buf1, buf2, len);

3.4 Modifying CQual’s Source Code

In a vulnerable program, user input integers are often used to manipulate pointers. In
the code fragment given below, a user input integer is used as an offset to access mem-
ory, posing a potential security risk. Since there are no calls to any annotated library
functions in this program fragment, CQual is not be able to catch this kind of errors.
To solve this problem, we have two possible solutions: one is to enforce a rule that
pointer arithmetic operators can only accept trusted integers; the other is to propagate
type qualifiers of an integer variable, i.e., the untrusted in the example below, to the
pointer variables and only allow dereferencing of a trusted pointer. We choose the first
approach in our tool. This is because of the varargs feature of C and the way CQual
handles conflicts in the second choice 4.

4 C allows functions to take a variable number of arguments. There is no way to specify the
types of the variable arguments. Thus, CQual applies the qualifier of the variable arguments
to all levels of the actual arguments [17]. As we annotated the function scanf, if we pass a
pointer, e.g., int* ptr to it, the pointer will becomes int untrusted * untrusted
ptr after the call. We then cannot deference the pointer ptr any more.
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int off;
int ptr[BUFSIZ];
...
scanf ("%d", &off);
ptr[off] = 20;

CQual has an infrastructure for annotating C operators, such as pointer deference.
However, annotation of certain operators such +, −, + = and − = are not imple-
mented 5. These operators are often used in pointer arithmetic operations. To ensure
safety of pointer operations, we require that pointer arithmetic operators only accept
trusted integers. This necessitates modification to CQual’s source code.

Our modification to CQual’s source code is small. In particular, we make CQual
record the new qualifiers we introduced when it parses the lattice file. This is similar
to CQual handles several other type qualifiers. Though hard-coding these type qualifiers
in CQual is not an ideal solution, we expect that it will not be needed in the future release
of CQual. We then add a new constraint to each pointer arithmetic operation such that
the integer in the operation must not be untrusted. CQual, like other type theory based
static program analysis tools, is in general a constraint based static program analysis
approach. Each type qualifier associated with a variable (or expression) is a constraint
applied on the variable (or the expression). Multiple constraints can be specified for the
same variable (or expression). CQual then tries to solve these constraints through static
analysis. If some constraints on a variable (or an expression) conflict with each other in
the analysis, it usually means a potential error in the program. Thus, our modification
to CQual’s source is to add a new constraint to each pointer arithmetic operation, and
let CQual solve these constraints in the analysis.

4 Experiments

We have performed three kinds of experiments to test the effectiveness of our exten-
sion to CQual. First, we created several simple programs to test the functionality of
our instrumentation. Second, we tested the tool against applications that have known
integer related vulnerabilities reported in the CERT Advisory and Bugtraq to validate
our instrumentation. These vulnerabilities in applications can empower an attacker to
remotely or locally exploit integer misuse and lead to execution of arbitrary code or
denial of service. Our tool is able to find most of the known vulnerabilities in these
applications. Finally, we picked several popular open-source applications and executed
the tool on their latest version. To our surprise, some of these applications still contain
trivial integer misuse vulnerabilities.

4.1 Metrics

In the world of bug finding tools, developers produce metrics to measure the effective-
ness of their tool [3].

5 We tried to modify CQual’s source code to let it support annotation of the arithmetic opera-
tors. However, our approach requires polymorphic definitions of the operators, which is not
supported by CQual to the date of our experiments.
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One of the most important metrics are false positives and false negatives. Usually
it is relatively easy to determine the false positives by manually auditing the source
code of the problematic programs against the warnings reported by the tools. On the
other side, it is difficult to determine the false negatives since we cannot know the
exact number of vulnerabilities in the programs, but only the number of vulnerabilities
already discovered. To mitigate this problem we obtained older unfixed versions of
the applications to see how many vulnerabilities were in the code. We compared these
vulnerabilities to those our tool discovered in the fixed versions and, on average, the
false positive ranges from 5% to 15% depending on the program size.

The following are our metrics measure for each program:
1. How many false positives are reported?
2. How many previously unknown vulnerabilities are reported?
3. How easy is it to prepare programs and run the tool?
4. What is the performance of the tool on average programs?
5. How much additional work is required, e.g., annotating source code, header files,

etc. ?
6. How easy is it to analyze error reports?

4.2 Test Environment

The testing platform is a single-processor Intel Pentium IV 3.2 GHz PC with 1GB RAM
and Linux kernel 2.6.7. The following tools were used during testing: gcc, version 3.3.4;
emacs, version 21.3.2; and PAM (Program Analysis Mode for emacs) version 3.01; and
GNU Make, version 3.80.

We chose several real-world open-source applications that are all written in C. Some
of the applications have known integer related vulnerabilities like integer overflows.
We tested not only the versions that have known vulnerabilities, but also the latest ver-
sions that have no known integer related vulnerabilities. We noticed that many integer
related vulnerabilities were found in the image libraries. This might be because image
files often contain a header structure that specifies the parameters of the images like di-
mension and color depths. Sanitization of these parameters is often inadequate in these
applications. Therefore, our test largely focused on these libraries.

4.3 Results

The following section illustrates the types of tests performed to quantify the effective-
ness of our tool.

Simple Programs. We have created several toy programs to test the effectiveness of
annotations on C library functions, UNIX system calls and pointer arithmetic opera-
tions. We have shown several of these examples of our simple programs in the previous
sections. Our tool reliably caught errors in these simple programs.

In addition, on some occasions our tool could not reveal some known vulnerabilities
in real-world applications. We created simple programs that mimic the vulnerabilities
in the applications. These experiments revealed some interesting results. For example,
we found a bug in CQual’s handling of the malloc function.
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Table 1. Results of experiment. The Reported Warnings counts the numbers of warning reported
by the tool. The Known Bugs is the number of real bugs found by the tool that were reported in
public domain. The Unknown Bugs is the reported number of real bugs found that we were not
aware of.

Name Version Description Reported Known Unknown
Warnings Bugs Bugs

gd 2.0.28 A library for dynamically creating images 4 1 1
gdk-pixbuf 0.22.0 Image handling library 4 1 1
rsync 2.5.6 A utility for file transfer 5 1 0
libtiff 3.6.1 A library parsing TIFF files 1 1 0
libunif 4.1.2 A library parsing GIF files 7 0 0
libexif 0.5.12/0.6.11 A library parsing exif files 2/2 0 0
libpng 1.0.18/1.2.8 A library parsing PNG image files 0/0 0 0
libmng 1.0.5 A library parsing MNG files 0 0 0
libwmf 0.2.5/0.2.8.2 A library parsing WMF files 4/4 0 0
libidn 0.1.4/0.5.8 A library implementing Stringprep 1/3 0 0
mpeg lib 1.3.1 A library decoding MPEG-1 video streams 1 0 0
netpbm 10.18.12 A toolkit manipulating graphic images 8 0 0

Real-World Applications. Table 1 summarizes the experimental results in applying
our tool to several popular open source applications.

Below is a brief description of some of the experiments.

GD Graphics Library [18]: There is a known integer overflow vulnerability in version
2.0.28 [19]. In particular, the library reads in the dimension parameters from the image
file without careful sanitization and calls the malloc function with the parameters. We
have annotated the malloc function such that it only accepts trusted integer variables
as the size parameter.

Initially the tool was not able to detect this rather trivial integer overflow vulner-
ability. It could not detect similar problems in our simple program that contains the
simplified code of the vulnerability in GD library. This turned out to be a bug of CQual,
which did not correctly handle the type qualifiers for the parameters of the malloc
function. This was confirmed by CQual’s developers.

After fixing CQual, our approach was able to detect a vulnerability in the GD library
(see Fig. 1 for the output of the tool). Interestingly, we found it is different from the
known one, and it turned out to be an unknown vulnerability that even exists in the
latest release of GD, version 2.0.33. This was confirmed by the maintainers of GD, and
they also closed a similar potential vulnerability based on our discovery.

Since our tool did not report the known vulnerability, we examined the GD source.
It turned out that the untrusted integer variable in the vulnerability is not generated by
standard C library functions, but by an unannotated function png get rowbytes exported
by the PNG library. Thus, the integer variables returned by the function are considered
to be trusted. After we annotated the function, the tool was able to detect this bug.

Rsync [20]: There is a known integer overflow vulnerability in version 2.5.6 [21]. As
show in Fig 2, the rsync program reads in an integer from the input and uses it to allocate
memory without careful sanitization. There is a potential integer overflow vulnerability
here. Our tool, however, did not issue a warning about this trivial vulnerability. After
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gd.c:2464 type of actual argument 1
doesn’t match type of formal
sx: $noninit $trusted $untrusted
$tainted
/cqual/config/prelude.cq:35 $untrusted
== *fgets_ret@2410

gd.c:2410 == s[]
gd.c:2414 == *sp
gd.c:2429 == atoi_ret@2429
gd.c:2429 == w
gd.c:2464 == sx
gd.c:88 == im->sx
gd.c:1830 == x1
gd.c:1838 == x
gd.c:1840 == x
gd.c:747 == $trusted

Fig. 1. Warning of GD Vulnerability

s->count = read_int(f);
...
if (s->count == 0)

return(s);
s->sums = (struct sum_buf *)malloc

(sizeof(s->sums[0])*s->count);
...
for (i=0; i < (int) s->count;i++) {

s->sums[i].sum1 = read_int(f);
read_buf(f,s->sums[i].sum2,

csum_length);
...

Fig. 2. Vulnerable Rsync Program

examining the program, we found it is due to the error reporting mechanism used by
CQual. In particular, CQual clusters warnings that have the same root cause and only re-
ports one. The vulnerability relies on the return variable of function read int, which
itself contains a warning and masks the real interesting one. Our solution is to annotate
the return variable of read int as untrusted and execute the tool on the single file that
contains the vulnerable code but not the code of read int.

gdk-pixbuf version 0.22.0 [22]: There are two known integer overflow vulnerabilities
in gdk-pixbuf [23, 24]. Our tool detected two real bugs. One of them is known [23],
the other is a new bug in the XBM image handler. We missed one known vulnerability
because the CQual’s reporting mechanism masked it out.

libtiff version 3.6.1: There are two known integer overflow vulnerabilities [25] in this
program. Our tool reported one of the bugs and missed the other. Again, CQual’s re-
porting mechanism masked it out.
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4.4 Evaluation

Our tool is capable of finding known and unknown security bugs in real-world programs
with a few false positives generated. Our examination of the false positives shows that
most of them are due to the lack of flow-sensitive analysis. Another reason is the lack
of precision in our analysis. Specifically, type qualifiers like trusted and untrusted do
not record the range of possible values of an integer variable. Arithmetic operations of
such an integer variable without appropriate check can turn a trusted integer into an
untrusted. Our tools is unable to detect this type of transitions. This is a more serious
limitation of our approach. In addition, our tool also produces false negatives. They are
due to the lack of required annotation for functions in programs and CQual’s warning
reporting mechanism that suppress alerts with the same root cause. We will discuss
these issues with more details later, suggesting fixes to the tool.

Preparation of the program for the automated analysis takes from several seconds
to a few minutes depending on the size of the program. The first step of preparation
involves running the configure script where necessary. We then compile the program
files with make CC="gcc -save-temps" option to create the intermediary files,
and execute our tool on them with the command cqual *.i.

The runtime performance of the tool is good, thanks to CQual’s efficient type infer-
ence and type checking algorithms. Usually it takes only a few seconds to finish the
analysis. For larger applications of say 20K lines of code, it takes about two minutes.

CQual’s output of warnings is mostly clear, since it prints the flow path of qualifier
propagation. However, from our experiments, the flow path is not always clear. Because
CQual tends to choose the shortest path in the constraint graph, it is not necessarily the
path of unsafe sequence of execution. In addition, we sometimes get a path spreading
across multiple files that looks irrelevant. This takes a great deal of time in our analysis.
We are investigating the reason behind this.

In summary, we have successfully evaluated the effectiveness of our approach on a
number of real-world applications and have discovered integer misuse bugs that were
unknown prior to our approach. We strongly feel that these results illustrate the potential
of our approach in detecting integer misuses that were overlooked. Through the success
of our experiments we have provided another example of how CQual can be extended
to catch new kinds of vulnerabilities.

5 Discussions

Our analysis currently is data flow-insensitive. This means that the trusted or untrusted
property of an integer variable never changes in the program. However, often this is not
true. For example, many programs often fetch an untrusted integer from the user input
and then correctly sanitize it. Thus, the untrusted integer variable can be converted into
a trusted integer variable. Due to the limitation of CQual in flow-sensitive analysis, our
tool cannot handle this kind of cases. In addition, an integer variable may be used for
two conflicting purposes in the program. For example, an integer variable may be used
as a untrusted variable in the first part of a function, and is reused as a trusted variable
in the second part of the function for a different purpose. In this case, our tool cannot
distinguish the two cases correctly, which may result in false alarms. An intuitive fix
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for these problems is to introduce flow-sensitive analysis, which does the conversion
after sanitization. However, the problem is that the definition of correct sanitization
usually is closely related to program logic. There is no universal way for sanitization.
Therefore, to determine the program point that a sanitization can be done at is difficult.
Although we are able to look for sanitization code in an ad hoc way, CQual’s capability
to handle flow-sensitive qualifiers is not general. It requires us to extensively revise
CQual’s source code.

The precision of our analysis is limited even if it is flow-sensitive. For example, in
a case that two trusted integer variables are computed by integer arithmetic operations,
the result can be bad, e.g., an integer overflow may occur if the programmer is not suffi-
ciently careful. Our analysis cannot detect this kind of error because the type qualifiers
do not contain the range information of each integer variable. We also treat all types of
integers equally regardless of their size. But in programs, the size of an integer variable
can determine its value range and thus eliminate certain problems like integer overflow
if they are assigned to an integer variable of larger size. A constraint based analysis with
integer range solver [26] can possibly solve this problem.

Our approach missed several known integer overflow vulnerabilities in the appli-
cations. The primary reason is that the untrusted integers are fetched from functions
that were not annotated. For example, many image processing applications often obtain
the image dimensions by calling image library functions. Without annotating the library
functions, the integer variables returned by these functions are not considered untrusted.
The other reason is related to CQual’s warning reporting mechanism. Though the num-
ber of warnings is reduced by clustering, real bugs can be masked. Further study is
needed to eliminate this problem.

Since we focus on the use of integer variables to access memory, our tool cannot
detect errors out of this situation. For example, if a user input integer variable is used
as the amount of a bank account balance, without a proper check our tool will miss the
misuse because the variable is not used to access memory.

Recent advances in program analysis have provided several powerful tools like
CQual for automatically analyzing legacy code and discovering security bugs. How-
ever, for these tools, there is often a gap of usability between the state-of-art and user
requirements. For example, in our approach, simply introducing new type qualifiers
is not sufficient, especially in the case of pointer arithmetic, even though similar ap-
proaches [3, 16] have existed based on the same tool. Therefore, CQual’s source code
has to be modified. In addition, the changes we have made are not a generic solution
that can be used to address similar problems.

6 Related Work

Static analysis is important in eliminating security bugs in the programs. Lexical tools
[27, 28, 29] can only find misuse of dangerous function calls in non-preprocessed source
files. But for the purpose of our work where the program uses legitimate functions, they
are not effective because they do not understand the language semantics. LCLint [30]
also uses annotation like qualifiers to specify additional properties to programs. How-
ever, it does not apply type inference and requires the programmer to annotate the
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source code extensively. Meta-level compilation [31] allows the programmer to spec-
ify flow-sensitive property as a finite state automaton and uses the automaton to check
the property of the program. However, unlike CQual, it is not designed to be sound or
complete.

There have been some studies to detect and prevent integer overflows. Horovitz de-
veloped a tool for protecting applications from integer overflows that occur from big
loops [11]. His tool, big loop integer protection or blip, is a gcc extension that de-
tects and flags integer vulnerabilities at run-time. Chinchani et al. [10] propose an
approach, named ARCHERR, to automatically insert safety checks against possible
integer overflows in the program. This approach also detects integer overflows at ex-
ecution time. Leblanc proposed to use a safe integer class SafeInt in C++ to avoid
integer overflows [14]. However, it only works for C++. In addition, to revise existing
C++ programs using the SafeInt class may be a considerable workload. Howard studies
integer overflows and proposes several ways to write secure code against integer over-
flow [12, 13]. However, an automatic tool to analyze C programs and to detect potential
integer overflows is not provided.

Out approach is similar to the approach proposed by Shankar et al. [3] to detect
format string vulnerabilities. Their approach also is using CQual. Johnson and Wag-
ner have also extended CQual in order to detect user/kernel pointer bugs [16]. These
approaches and ours all apply a similar idea by categorizing the data into trusted and
untrusted and detecting misuse of untrusted data. Our contribution is to address the
specific issues in analyzing integer variables in C programs and propose the solutions
for solving these problems.

7 Conclusion and Future Work

We extended CQual to detect integer misuse vulnerabilities in real-world applications
through static analysis. We distinguished between trusted integer variables and un-
trusted user input integer variables, a vision inspired by the classical Biba integrity
model. Our extension to CQual is not limited to integer overflow vulnerabilities but can
be applied to any type of integer misuse detection.

Our implementation is not flow-sensitive, thus it generates false positives. In our
experiments, false positives range from 5% to 15% depending on the size (lines of
code) of the program. In addition, since the type qualifiers do not contain any range
information of the value of integer variables, our analysis is not precise. We plan to add
flow-sensitive and integer range analysis into our tool to further reduce false positive
rates. Our experiments largely focused on open-source image processing libraries as
many vulnerabilities are found in these libraries. We also plan to use the tool to check
other programs like file archiving and network packets transmission.
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