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Abstract

This position paper argues the need to develop prove-
nances, and provenance systems, in such a way that er-
rors in the provenance (whether deliberate or not) can be
detected and corrected. The requirement that a prove-
nance have high assurance leads to some suggestions
about the way a provenance should be constructed.

1 Introduction

The utility of data provenance has long been recognized
as both a way to provide information (“metadata”) to
help users of the data evaluate its integrity and, possi-
bly, confidentiality. Numerous papers discuss how to
protect the provenance, consisting of a chain of prove-
nance records, against tampering (see for example [6-8].
Underlying this is an assumption that the data making up
the provenance is correct when the provenance entry is
created and bound to the other entries in the provenance,
for example by the use of provenance monitors [9].

We examine what happens when this assumption is
incorrect—that is, the data in the provenance record is
either incorrect or missing. Our question is, under what
conditions is it possible to defect the problem, and what
additional information must be present or available to re-
cover or reconstruct the correct or missing provenance
record? We examine the following cases:

1. One or more provenance records (called a “broken
provenance” or “broken provenance records”) are
missing or incomplete. This may occur because the
data transits systems that do not support gathering
the requisite provenance data, or because a process
that gathers information to add to the provenance,
or that actually adds a provenance record, fails.

2. One or more of the providers provides incorrect,
incomplete, or nonexistent information to add to
the provenance. These providers do not modify
any records illicitly. Instead, the provenance record
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created as a result of the data they provide lacks
integrity—that is, it is not trustworthy. We call this
an “untrustworthy provenance” or “untrustworthy
provenance record” and it is a form of the type of
attacks collectively called “insider attacks,” because
a trusted entity (the entity creating the provenance
record) betrays that trust.

Collectively, we refer to these cases as a “bad prove-
nance” or “bad provenance record.”

The theme of this position paper is that provenance
records must be designed to detect the above failures, to
enable those who use the provenance records to assess
their completeness and trustworthiness. We do not dis-
cuss making the records tamperproof, because the bogus
information is inserted before any sealing of the record
in question is done. We instead focus on inconsistencies,
gaps, and bad actors.

Provenance requirements specify what each prove-
nance record must contain. There are two types of re-
quirements:

1. Requirements necessary for the use of the prove-
nance (“‘use requirements”). These are application-
and environment-specific.

2. Requirements necessary for the validation of the
provenance itself (“test requirements”). These in-
clude extra data required for consistency checking.

For this note, we assume that the first set of requirements
is known a priori. We focus on the second set.

We also refer to “generators” and “users” of prove-
nances and provenance records. A generator adds a
provenance record to the provenance; a user reads the
records and analyzes them. A node may be both a user
and a generator; without loss of generality, we will as-
sume it consumes before it produces, so the provenance
record may depend upon earlier records.

We first discuss our threat model. We then present two
examples in which accuracy of provenance is important.
Next, we examine detection and recovery and apply our



suggestions to those two examples. We conclude with
some suggestions for future work.

2 Threat Model

We use the representation of a provenance system de-
veloped by the Open Provenance Model [11]. The di-
rected acyclic graph includes nodes that produce prove-
nance records. The threats are:

1. A generator modifies a provenance record.

2. A generator deletes an earlier record.

3. A generator deletes all earlier provenance records,
and begins a new provenance.

4. A generator fails to add a provenance record when
it is expected to.

5. A generator enters incorrect information into the
provenance record it is creating.

In general, threats can be prevented, detected, and re-
covered from. Unfortunately, a provenance mechanism
cannot prevent broken or untrustworthy provenances or
records in the absence of systems that are fully trusted
by the users, because the generators control the systems
on which the data to be added to the provenance is gen-
erated.! We thus focus on detection and recovery.

3 Examples

3.1 Real Estate Recordation

Whenever one purchases real estate (such as a house)
in the state of California in the United States, a public
record of the sale is filed at the county Recorder’s Of-
fice. This record is added to a file that contains all previ-
ous records for that property. Thus, one can establish a
record of property ownership (including liens and other
property-related constraints) by examining this file.> In a
paper-based world, the documents are filled out, and then
a courier takes them to the county Recorder’s Office. In
California, these documents can be recorded over the In-
ternet [3,5].

Figure 1 shows the workflow of a document through
the Electronic Recordation Delivery System (ERDS).
The document is either scanned or created digitally, and
then placed onto a workstation (ASW) controlled by an
Authorized Submitter. The Authorized Submitter dig-
itally signs the document and then encrypts it (this is
the “payload”). The ASW then connects to the County
Recorder’s proxy server and authenticates itself to that
server. If successful, the proxy server acts as a proxy
for the County ERDS server, and the ASW transmits the
payload to the ERDS server via this proxy. Subsequently,
the workstation (CRDW) of the County Recorder De-
signee, who will examine the documents, connects to

the ERDS server and retrieves the payload. The payload
is decrypted and then validated. If the validation fails,
the payload is rejected. Otherwise, the documents are
extracted and checked for malware. If none are found,
the documents are stored on the CRDW. The County
Recorder then examines the documents and either re-
jects them or stamps them as accepted and files (records)
them.

Represent each provenance record as r, =
(@1,zy--.,0nz, X), where a;, is the ith attribute
of interest entered in the provenance record, and X is
the rest of the record. We assume that each provenance
record is cryptographically signed, and that the records
are cryptographically chained together, so we do not
explicitly show this (we consider them a part of X).

1. The ASW generates the first provenance record 7y,
containing the identity a; ; of the signer.

2. The ASW then generates the second provenance
record 72, containing the host as ; and site identity
a2, and chains this record to the provenance chain.

3. The proxy server adds another provenance record
r3, containing its identity a3 1 and where it received
the payload from as 2, to the chain.

4. The ERDS server adds another provenance record
r4, containing its identity a3 ; and where it received
the payload from a3 o, to the chain.

5. When the CRDW contacts the ERDS server, the
ERDS server adds another provenance record r5 to
the chain. It contains information a5 ; about the
requester (CRDW), the ERDS server identity as 2,
and where it received the payload from as 3.

6. The CRDW generates its own provenance record
re, containing its identity ae; and information
ae,2 about where it retrieved the provenance record
from.

7. When the County Recorder Designee examines the
document, the CRDW generates another prove-
nance record r; showing who is examining the
records a7 1 and the disposition az 2, and adds it to
the chain.

Thus, the provenance chain is C' = ryrgrsrarsrari.

3.2 Co-operating Competitors

Many competitors work together on joint projects. For
example, airplanes developed for militaries may include
parts engineered by many different commercial organi-
zations that, in the civilian world, market aircraft that
compete with one another. Consider a hypothetical next
generation tactical strike fighter with components from
Boeing, EADS/Airbus, Lockheed-Martin, and Northrop-
Grumman. To ensure the parts work together, the compa-
nies have established a trusted repository for shared doc-
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Figure 1: Overview of an ERDS system. The document is put onto the workstation at the office, and transmitted to the
workstation at the County Recorder office, where it is vetted and, if found valid, made a part of the public record. [4, p.

10]

uments. These documents may be shared with all part-
ners, or among a subset of partners in case one company
does not want all partners to see it.

The shared repository generates provenance records
for retrieval and insertion (or replacement) of documents,
and the provenance chain is attached to the document.
But the repository does not check provenances for con-
sistency. The organizations must do that themselves.

When a document is retrieved, it is to be edited on a
company workstation or laptop that uses third-party soft-
ware to generate and insert provenance records. Con-
sider what happens when the vendor of those operating
systems patches software, such as the editing software
on these systems. The third-party provenance software
may no longer work with the patched programs, requir-
ing the use of a non-augmented system until the third
party upgrades its software (or another patch fixes the
problem). The non-augmented system will not append a
provenance record.

Note that the non-augmented system may not have ac-
cess to the provenance records, so if the document must
be uploaded before the problems mentioned above are
fixed, the entire provenance record chain will be deleted.

4 Detection

According to the classic definition, detection mecha-
nisms monitor a system and look for indications of at-
tacks [1]. For this note, the provenance is the “system,”
so we seek indications that the provenance is broken or
untrustworthy. We consider the threats identified above.

Cryptographic techniques can handle attacks that in-
stantiate the first two threats. In particular, if a genera-
tor digitally signs the generated provenance record, any

subsequent modification of that record will be detected.
Similarly, a chaining scheme using cryptographic hash-
ing will bind each record to the next, so the deletion of
any previous record can be detected. Our examples both
assume the use of these techniques.

If a generator deletes an entire existing provenance and
begins a new one, in effect the generator has simply cre-
ated a new document and begun a provenance with that
document. As there are no internal indications of the
deletion of the provenance in either the document or the
new provenance, the detection of this action must rely on
external data. This situation is similar to someone delet-
ing an author’s name from a paper and adding her own.

The detection of attacks instantiating the fourth threat
depends in part on the nature of the attack. If the at-
tack modifies the data, then the discrepancy between the
hash of the data in the last provenance record and the
computed hash of the current data will show that an un-
expected change occurred. But if the attack does not in-
volve modification of the data, and is merely a failure to
add the record, then cryptography does not detect that the
document has been accessed (or that a provenance record
is missing).

This situation reduces to the fifth threat, in which a
generator enters incorrect information into the prove-
nance record it is creating (in the degenerate case, the
record is empty). We can use two techniques: consis-
tency checking and examination of external information.

We do consistency checking by looking within the
provenance itself, for inconsistencies within a record
(for example, syntactic invalidity) and inconsistencies
between records (for example, semantic discrepancies).
These inconsistencies may not be the result of an attack,
but they do raise questions about the trustworthiness of at



least one creator of provenance records. A trusted third
party would be able to do this impartially.

Consider a provenance record that, as part of the
use requirements, contains information about the host
through which the data passes. Then the provenance
record will contain the identity of the host—for our pur-
poses, say the fully qualified domain name. A second
(test) requirement might be that the provenance also con-
tain the IP address of the host from which the data was
received. Then a simple consistency check is to verify
that the fully qualified domain name in each provenance
record corresponds to the IP address of the “received-
from” host in the next record.

EXAMPLE: The recordation provenance requires check-
ing that az1 = a2, 3,1 = 053, G451 = 06,1, and
a5,2 = 4g,2-

EXAMPLE: The document provenance record shows that
the document was taken out by Boeing and then re-
turned by Lockheed-Martin. This discrepancy may be
legitimate, but it may also indicate a loss of provenance
records or something more sinister.

Another example arises from a use requirement that
the provenance record contain a time stamp saying when
the data was last modified. Without loss of generality,
we assume all such timestamps are in UTC. The test for
consistency is simply that the timestamps be increasing?
because clocks do not run backwards. This example also
shows that an inconsistency may be innocent. Here, a
system clock may be incorrect due to clock drift, or a
system administrator may reset a clock incorrectly.
EXAMPLE: Suppose Eleanor is to finish her revisions of
a document by 3PM on Wednesday. Due to a bad case of
writer’s block [12], she does not download it until 4PM
on Wednesday. She finishes it at noon on Thursday. She
then adjusts her laptop’s time back to Wednesday. When
the provenance record is created, it will show the doc-
ument completed at noon on Wednesday. But the prior
record will have been created at 3PM on Wednesday.

A third example occurs when a provenance is added
to data that follows a workflow. A workflow implies a
model of computation, and the goal of the provenance
associated with the data is to demonstrate that the work-
flow is indeed followed. This means that one can derive
properties that the provenance, and provenance records,
should satisfy [10]. If they do not, there is an inconsis-
tency implying that the provenance is bad.

EXAMPLE: The recordation system requires that the
signer be authorized to use ERDS, that the ASW be a
certified workstation, and that the company be properly
registered to use ERDS [3,5]. So the validation would
check that a;; is in the list of authorized signers, that
as,1 is in the list of certified workstations, and that as o is
a company authorized to use ERDS. Also, the document
examiner must be someone who is a County Recorder

Designee, and this can be verified by checking a7 ;.

Thus, designing provenance systems—and in partic-
ular the contents of provenance records—must include
test requirements as well as use requirements. Two com-
plications arise.

The first is the generators who have direct access to
the provenance data they create. The key observation
with respect to generators of untrustworthy records is
that their goals must align in some way with defeating the
use to which the provenance will be put. That they have
access to this data means that they can alter it, and under-
mine the provenance. The “insider” can be modeled as
a continuum of access to a resource and the criticality of
the use to which that resource will be put [2]. Under this
model, one must consider the ability of each generator to
help realize the specific threats against which the prove-
nance guards as well as the access to the relevant fields
of the provenance record that that provider has.

The second is the issue of concealment. In particular,
a rogue generator who can examine other records in the
provenance may be able to supply incorrect information
for the new record, and do so in such a way as to defeat
detection mechanisms. This means that protecting the
confidentiality of each provenance record from providers
other than the creator of that record may enhance the de-
tection capability.

Weighing against the confidentiality of the provenance
is the desire for an “open provenance,” in which each of
the intermediate actors can use the previous provenance
records to validate the data for their own use. Informa-
tion in general will be used once it is known, and so it
is probable that the data being described by the prove-
nance will play a role in the actions of the nodes adding
new provenance records. In such a case, concealing those
records in order to meet a security goal will detract from
the intended functionality of the system. This empha-
sizes that security is a trade-off with functionality.

Information used to detect broken or untrustworthy
provenances can come from either internal or external
sources. Thus far, we have focused on internal sources.
Data from external sources must be evaluated carefully.
If the assurance of the external data is greater than that of
the provenance, and the two are inconsistent, the prove-
nance is suspect. When external data indicates problems
with the provenance, the specific indication, and the in-
formation involved, must be recorded. This means either
the record must contain a field for “comments” or “addi-
tional information,” or a new type of provenance record
(a “recovery record”) must be added. This record doc-
uments the problem, and any assumptions and recovery
actions undertaken (see Section 5).

When validation of a provenance, or provenance
record, fails, the entity doing the validation has three op-
tions. It can discard (ignore) the provenance, it can con-



tinue to propagate the provenance with an annotation that
the validation failed (as noted above), or it can attempt to
recover the correct data for the provenance.
EXAMPLE: If the provenance of the document to be
recorded fails to validate, the ERDS system is almost
certainly not compliant with the governing regulations.
The document would be rejected, with a new provenance
record being added to reflect the rejection. Thus, the
provenance would continue to propagate, with the record
showing rejection as part of the chain.
EXAMPLE: If the shared document’s provenance failed
to validate properly, then what happens is based on
policy. The record could be ignored, but most likely
would not be. Certainly a record for the failed valida-
tion would be created. The company may also make in-
quiries among its collaborators to uncover the reason for
the discrepancy.

We now examine the third alternative.

5 Recovery

Once a user has detected a broken provenance, it may try
to recover. Recovery could take many forms.

For a broken provenance, the goal would be to take the
point at which the provenance broke (which was identi-
fied when the broken provenance was detected), and de-
termine whether the data left the systems in the prove-
nance system or whether a generator omitted adding a
record. From that, one could determine whether recov-
ering the missing information is possible, and if not per-
haps what happened to the data during the missing time.

For an untrustworthy provenance, the recovery would
begin with the identification of the record(s) at which the
untrusted data was inserted. Then the specific untrusted
data would need to be determined, and replaced by the
original or correct data.

We suggest two approaches to this task, and then a
generalization of them. In many cases, the particular
structure and uses of provenance records will enable
other methods of recovery.

The Open Provenance model represents generators as
nodes and provenance flows as directed edges between
those nodes. Consider an “overlay” graph complemen-
tary to that DAG, constructed as follows. Let node n be a
user. Add edges from n to each node representing a gen-
erator of a provenance record used by n. This represents
the paths along which n may request additional infor-
mation to validate the provenance. Edges from the gen-
erators to n indicate which generators will supply such
information.* This model parallels recovery from net-
work problems, where information is resent in response
to a request from a recipient. Here, the edges from the
user to the generator play the role of a path along which
a request is sent, and the return path is that along which

a response is sent. If a generator does not retain a copy
of (or a pointer to) the provenance record it created, or
cannot reconstruct it, the generator may simply say so,
leaving the user no worse off than had it not asked.

If the generator provides incorrect information—in
other words, a lie—there is little that can be done. The
user may accept the incorrect information as authorita-
tive or it may notice a discrepancy, in which case it can
regard the record as unrecoverable.

An alternate approach draws from the notion of
“shadow keys” in cryptography. There, one breaks a
cryptographic key into n parts, any ¢ < n of which are
sufficient to reconstruct the original key.

Construct the provenance in such a way that any m
out of n generators whose records make up the current
provenance can reconstruct the whole provenance. When
an untrustworthy or broken provenance is received, the
user must contact any m generators to fix it. As some
of the generators may be malicious or non-responsive,
the user might need to contact members of overlapping
sets of m generators to determine the correct provenance.
This problem is analogous to various problems in cryp-
tography, and similar approaches may prove useful.

To handle a rogue generator, have n entities construct
each provenance record, such that any m of them could
reconstruct the record. This enables recovery of individ-
ual records. For this to work, one would need to design
redundancy into the fields of the provenance record, or
add “shadow fields” that conceal or bind parts of the cor-
rect data in a way such that the generator cannot tamper
with it. This seems impossible given a corrupt generator.

Both of these ideas have two bases: the notion of fam-
perproofness and the notion of redundancy. Ultimately,
to enable full recovery, either the provenance records
must be stored in such a way that the provenance cannot
be tampered with, or there must be enough redundancy
in the provenance to enable reconstruction of the prove-
nance. Note that cryptographic hashes do not provide
this capability, because they are one-way functions. We
need to find the record with that hash, but by definition
of “one-way function,” that is impossible.

This suggests storing each version of the provenance
in the next record. Let p; be the ith provenance record,
and let d; be the data to be stored in it. Then:

po = do
pi = dil|l f(pi-1)

where || means concatenation and f is some invertible
transformation of the provenance record.

Assume the adversary alters the value of f(p;_2) in
the previous record. To avoid detection, she must then
alter the record p;_o to match the value stored in record
pi—1. But then she must alter p; 3, because that record



is stored in p;_o. This progression continues throughout
the provenance chain. The only way to alter f(p;_2) un-
detectably is to alter all previous records. If each record
also includes a digital signature, then detection is un-
avoidable, even if recovery is not possible.

Also, if f is an encryption function, a user will notice
that the decrypted record is syntactically incorrect, and
discard it.

For recovery, the provenance must be stored in a tam-
perproof area. This requires a trusted repository for
provenance data being sent over a network; pointers to
the data would be passed around. As the trusted third
party prevents any data from being altered, this gives the
tamperproof property. But the pointers themselves could
be tampered with. So the trusted third party must also
save the referenced data. Thus each generator commits
its provenance record and changes to the data (if any) to
the trusted third party, and then tells the next generator
how to retrieve the data from the trusted third party.

6 Conclusion

This note examined assurance of the data contained in
the provenance. While detecting that a provenance has
been tampered with is easy, detecting that provenance
data is missing, incomplete, or incorrect is harder, and
reconstructing those records is even more difficult. Thus,
the design of provenance records and a provenance sys-
tem must have redundancy and tamperproof mechanisms
to minimize the difficulty of detecting and correcting
these incomplete, missing, or erroneous records.
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Notes

They may also control the system that actually adds the provenance
record to the provenance.

2 A copy of all documents is also kept in a state repository in a vault
in mountains, to protect against catastrophic loss.

30r equal, depending on the granularity of the clocks.

4For legal or business reasons, generators may decline to comment
further on the provenance record they created, or to supply additional
information to certain users.



