
 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

Abstract – While the necessity of ensuring that secure coding

practices are universally taught and adopted is becoming

increasingly apparent, there is still debate over whether we are

making significant progress in this area. This paper recalls

the accomplishments of the first Secure Coding Workshop in

2008 and discusses some of the outcomes, challenges, and

findings from that workshop. It then discusses the 2011

Summit on Secure Education, which explored some of the

issues raised at the Secure Coding Workshop. It also discusses

some of the follow-on activities that the workshop helped to

inspire or promote, and some remaining objectives that are

still presenting challenges in the ongoing pursuit of secure

coding.

Index terms – Secure coding, computer security, computer

education

I. INTRODUCTION

While current computer science (CS) programs are adept

at teaching programming skills including exposing

students to languages commonly used in industry, the

focus is often on “making programs work”. Students are

typically given an assignment with a set of functional
goals such as to create a program that reads records from

a file, and then performs some calculation based on the

values retrieved. In such cases little consideration is

given to secure programming issues, and as such students

do not learn how to write programs that would be resilient

to accidentally or maliciously malformed input in real

world conditions.

For example, suppose that the number of records in the

file is specified in the file header, and that the application

must allocate sufficient space to load all records. Such an
application is easy to write if programmer makes the

assumptions that the header will always be accurate and

well-formed. However, in reality these assumptions are

probably not valid. Consider the implications for the

program if the number of records value in the file header

was very large, zero, negative, or any value not equal to

the actual number of records in the file. It is far more

challenging to write a program that can handle these

cases.

If practical lessons such as this are easy to incorporate

into a general computer science education; and these
skills increase the marketability of programmers; and help

protect society against attacks that exploit vulnerabilities

in code, why is the practice not included as a part of the

required curriculum?

A word about terminology will clarify much of the

following discussion. Security per se has no definition;

instead, a set of rules known as a security policy defines
that term in a particular context. Thus, “secure

programming” should refer to a style of programming that

produces code satisfying stated security requirements.

But in practice, the term is used to refer to programs that

avoid generic problems like buffer overflows or failure to

validate inputs properly. A more accurate term for this

style of programming is robust programming or defensive

programming. In this paper, though, we use the term

“secure programming” for robust or defensive

programming to conform to the more common usage.

II. BACKGROUND

A group of educators and industry representatives met at
the Secure Coding Workshop in April 2008, with the goal

of addressing the issue of integrating secure coding

practices into current academic curricula. The initial

interactions at the workshop demonstrated how important

it is to draw the distinction between programming security

functionality and secure programming. The former

involves activities such as writing cryptographic or

auditing functionality, and is typically the domain of a

relatively small number of programmers with extensive

training and specialized knowledge. The later impacts all

programmers and all code, and is the cause of many
security vulnerabilities in programs.

The industry representatives felt that it was imperative

that all programmers have a knowledge of secure

programming techniques, and were concerned about the

amount of time and effort they currently spend training

new CS graduates in what they considered to be

elementary secure programming concepts. These

concepts included the ability for programmers to “think

like attackers” when writing code, how and why to

validate input (and what constitutes “input”), and how to

identify and address possible overflows and underflows in
various data types (including arrays and numeric types).

Some concern was raised that while these needs were

being communicated at forums such as this, that little or

no emphasis on these skills was evident in the industry

job postings, which many students use as a guide for

current industry requirements and many academic

Secure Coding Education: Are We Making Progress?

Kara Nance, Brian Hay, University of Alaska Fairbanks, and Matt Bishop, University of California at Davis

 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

departments use through Industry Advisory Boards to

help shape and guide curriculum.

The group also identified several challenges in the

addition or integration of secure programming material

into the CS curriculum. While secure programming is of
great interest to the workshop participants, this is not

necessarily true for all faculty members, nor is it the only

topic competing for inclusion in the CS curriculum.

Curricula are already extremely full and finding a place to

add material is very difficult, even supposing that a

faculty consensus can be reached on which material to

add.

The addition of secure programming techniques to

existing assignments, or the replacement of existing

assignments with new exercises which include secure

programming requirements is also an area that presents
some challenges. Many of these assignments are

designed to allow students to focus on a particular

concept, and any attempt to integrate other requirements

must be undertaken carefully to ensure that the original

goals at the core of the assignment are not negatively

impacted. As such, there is little point in teaching students

to program securely when they fail to grasp the myriad of

other important concepts that must also be taught to CS

students.

While the workshop participants all had an interest and
experience in security and secure programming, this is not

necessarily true of the wider body of instructors and

faculty members which also presents a challenge to the

integration of secure programming practices throughout

the current curriculum. Students can often take security

specific classes which are taught be faculty with expertise

in that field. However, such classes tend to produce

students who are suited to programming security

functionality, but generally don’t address a wide enough

population to ensure that all CS students have a baseline

level of secure programming knowledge. As such,

exercises must be designed in such a way that instructors
throughout the curriculum can easily integrate secure

programming material in their classes, whether or not

they posses extensive security expertise.

III. GOALS

As a group, the participants defined the following specific

goals:

1. Identify areas in the CS curriculum where secure

programming concepts or exercises could be

introduced.

2. Develop and exchange exercises that promote
secure programming practices.

3. Identify methods for disseminating secure

programming materials to the wider academic

community, and in particular to those instructors

who do not currently have a strong secure

programming or security background.

4. Identify areas in which industry can assist

academia in educating students in secure coding

practices.

IV. OUTCOMES

Three curricular areas were identified with the goal of

creating and sharing exercises appropriate to various

levels in the CS curriculum. These categories included

introductory classes, web programming, and software

engineering. (Operating systems was also debated as a

potential topic, but not selected for a focus area.) The

potential for teaching secure programming concepts in

each of the selected curricular areas is discussed in the

following section.

A. Introductory Classes

This section focused on the CS1 and CS2 classes - the

first two classes in the CS major and CS0, which equates

to the pre-major programming class offered by many

institutions. At this level, students are being introduced to

the core CS concepts, and much of the time is spent on

programming assignments in languages such as C++ or

Java. Students in these classes are often expected to have

some limited programming experience, either from a CS0

class or high-school. It is in these classes that students are

exposed to good programming practices including the use

of internal and external documentation, code formatting,
testing strategies, and the development of problem

solutions prior to programming. The inclusion of secure

programming practices at this stage will ensure that

students do not have to “unlearn” insecure practices;

however, care must be taken to ensure that assignments

and lectures remain tightly focused on the primary goal of

these classes, which is to introduce students to the

fundamental tools for writing computer programs to solve

problems.

There are, however, several avenues in which secure

programming can be introduced in these classes without
overly burdening the instructor or the students. The first

approach is to introduce secure programming in the

context of program robustness. While many programs

written and demonstrated in these classes are trivial, they

often incorporate many of the issues that cause problems

in more realistic programs, such as user input and mixed

data types. For example, an assignment may require

students to write a simple phone book application, where

the user is asked to enter a name and phone number for

several users. A robust version of such a program may

check to ensure that a valid phone number and name is
entered. Students can then discuss what “valid” means in

 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

this context, and write the code to check for and responds

appropriately to valid and invalid input.

Another function of these early classes is to help the

students develop testing strategies, which often initially

involve demonstrations that programs work with valid
input. However, as the students develop expertise, their

approaches to testing can be directed to include

demonstrations that invalid input is also handled

correctly, with emphasis on choosing good test cases that

provide coverage of a wide range of possible inputs.

Lecture material in these introductory classes can also

include demonstrations and discussions of the extent to

which common secure programming issues (e.g., failure

to properly validate user input) can have catastrophic

consequences, such as the ability to run arbitrary code on

a system, or bypass authentication at a website as a result
of carefully malformed input. While few students are

likely to fully grasp the details of such vulnerabilities at

this point, the more important point to relay at this stage is

that a failure to use secure programming techniques can

be more serious than the program just crashing.

B. Web Programming

Many students are exposed to web development as they

experiment with programming during their university

careers, and often manage web servers and even write

web based applications. This is an area where secure
programming techniques are critical, as access is not

limited to local users but is typically available to remote

users from anywhere on the Internet. This may be the

first environment they encounter in their programming

careers in which the specter of malicious user is very real,

and as a result the failure to use secure programming

techniques is likely to result in either a compromise of

their server or of the clients that connect to it, depending

on the attack used.

In many cases the underlying concepts are no different

from other environments. For example, validation of
input is vital in the web environment, but the much of the

problem lies in carefully identifying what input may be

problematic. For example, a site which accepts user’s

comments, which are then displayed to other users must

take care that input that could be interpreted by the

browser (such as HTML tags or JavaScript) is handled

very carefully.

Exercises applicable to this environment range from very

short and simple “servers” which have limited

functionality but demonstrate some common issues with
web programming to advanced fully featured

environments such as Web Goat.

C. Software Engineering

While software engineering generally is introduced later

in the curriculum, it does provide an excellent opportunity

to discuss the “process” of secure coding, and the

techniques that can help support secure coding. Three

areas that were suggested for introduction of secure
coding concepts into software engineering included case

studies, code review, and version control.

Arguably, the field of software engineering evolved as the

result of failed large projects and these projects provide a

rich arena to demonstrate the importance of secure

coding. Development of a pool of case studies in this area

would provide information on secure coding while

allowing students the opportunity to learn from the

mistakes of others.

1. Code Review

Code review is an important part of the effort to produce

secure code. Manual code reviews can be useful in

validating (or invalidating) the assumptions made by the

original developer, and such reviews can be conducted

within the scope of almost any class in the CS curriculum

by swapping assignment solutions between students and

having them review each other's code.

Automated tools can also help in this effort, and it can

again be a very interesting exercise to expose students to
these tools, either on their own code or on code written by

others. These tools typically provide extensive reports,

but the results generally require careful review by a

human to eliminate false positives, and in some cases to

understand the reasons for real security problems

identified by the tool.

2. Version Control

There are, of course, many reasons to use source code

control systems (SCC) in the normal course of business.

From the perspective of secure coding, the use of SCC
provides some specific advantages:

• The ability to easily determine what changes

were made between software versions, and at

what point an exploitable section of code may

have been inserted or removed. For example, if

version 1.53 of a particular software program

was found to have an exploitable function, it can

be easily determined when the code was inserted

(giving a range of versions that may also be

exploitable).
• The ability to determine which of a group of

programmers was responsible for each line of

code. This can be used to determine which team

members are in need of training in secure coding

 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

practices (e.g., if Alice performs rigorous input

validation whereas Bob does not, it is possible to

provide appropriate and targeted training to

rectify that situation).

D. Summary

The workshop provided examples of one way to improve

the state of education in secure programming, and the

participants explored several other ideas. After the

workshop, several participants examined ways to

incorporate secure programming into a curriculum [1, 2,

3, 4, 5, 6] through projects funded by the National

Science Foundation.

The NSF Course Curriculum and Laboratory

Improvement (CCLI) grants funded creation of a

framework for developing materials that emphasize

secure coding [1]. The framework includes background
incorporating a real-life example, a problem-related

security lab, a checklist to assist students in demonstrating

mastery, and analysis-discussion questions which provide

the opportunity to demonstrate critical thinking skills as

well as providing immediate feedback to the instructors

[7].

Even when the material is created, environments to

support the material must be developed and disseminated.

One way to do this is to deploy exercises as virtual

machines, so that instructors and students can download
pre-configured systems that can be safely used for secure

coding exercises. One example of this is the NSF-funded

SEED materials available at no-charge [3]. These

exercises utilize two virtual machines on which a large

number of security-related exercises, including secure

coding, can be performed.

While running local VMs is one approach to provide a

wide range of students and educators with high-quality

materials, another is to deploy the VMs in a remotely

accessible environment and make them available to

others. The SEED VMs, for example, have been
deployed in the NSF-funded Remotely Accessible

Virtualized Environment (RAVE) [6], and students can

work through those exercises as though they were running

the VMs locally. This ensures that any VM activities that

might be harmful to the local workstations or networks is

completely isolated within the RAVE environment. Other

advantages of this approach are:

1. VM performance is equal for all students, no

matter what how their local computer is

configured or what resources it has.
2. The same VMs can be accessed from any

network connected location, so students can start

to work through exercises in class, and complete

it from their home computer.

3. Instructors and students can simultaneously

access the same VM, allowing assistance to be

provided whether the student and instructor are

in the same room or in different parts of the
country.

The workshop made progress in several areas; most

notably recognizing that the teaching of secure

programming had to be pervasive across the computer

science curriculum, and identifying ways in which

industry could help improve the state of education in this

area. How to do this, though, was not explored.

V. THE SUMMIT ON EDUCATION IN SECURE SOFTWARE

In 2010, the NSF funded a Summit on Education in

Secure Software (SESS), with the goal of developing a set
of “road maps” to help institutions develop methods of

teaching secure programming. Its specific objectives -

quoting from the summit report [8], were:

1. To have cybersecurity stakeholders from

academia, government, industry, and

certification and training institutions discuss the

goals of teaching secure programming and the

current state of that teaching;

2. To use that discussion as the basis of a

collaborative effort to suggest new approaches
and improve existing approaches, to improve the

quality of that education, and to enable it to

reach a broader audience; and

3. To outline a comprehensive agenda for secure

software education that includes objectives for

different audiences, teaching methods, resources

needed, and problems that are foreseen to arise.

The Summit arrived at these objectives by considering 6

groups of students. Students at 4-year academic

institutions were divided into computer science and non-

computer science students; community college students
were a separate group, as were K-12 students, computer

science professionals, and non-computer science

professionals. Each group needed to learn something

about computer security, although what Summit

participants thought each group should know varied

among the groups. These recommendations were put into

“road maps”, each of which had a common structure.

First came a description of what the members of the group

should know; then followed a set of methods that might

educate the students appropriately, and what resources
would be needed to achieve the desired educational goals.

A key component of the road maps lists expected and

possible barriers or hindrances to meeting these goals (the

 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

“potholes”). Then, the road map makes specific

recommendations for meeting the desired educational

goals despite the existence of the "potholes". In essence,

the road maps take a vision of what anyone who programs

should know about writing secure programs, and views

that through the different lenses of the constituent groups.
The end result is to teach programmers how to write

secure programs, and analyze existing programs for

robustness problems; and to provide a foundation for non-

programmers, so if they begin to program, they will have

the proper mindset to think about secure programming.

That foundation will also help them identify poorly

written programs even though they may not be able to

write any programs themselves.

A key observation emerging from SESS was that the

environment in which the system is designed, deployed,

operated, and decommissioned plays a critical role in
secure programming. For example, the specific measures

needed to ensure a robust program to be used on a

special-purpose processor (where all inputs are known

and constrained) are different than those for a program to

be run on a general-purpose processor (where inputs are

unconstrained). This leads to several other observations.

First, understanding security requires a holistic approach,

and must be an integral part of the design and

implementation rather than be added on afterwards. (This

is why current “patching” mechanisms are so flawed from
the security point of view.) Next, knowing the principles

underlying security leads to more secure coding, as does

knowing about software development frameworks.

Understanding how attacks work, and being able to

identify potential points of attack (the so-called “attack

surface”) also allows the programmer to incorporate

countermeasures. This includes realizing that all

frameworks have weaknesses that create problems in

programs that a knowledgeable attacker could exploit.

Part of secure programming is coming up with strategies

and tactics to overcome these problems, and using tools to

aid in the development and validation of programs.

The SESS participants recommended the following to

improve the state of education in secure software [8]:

1. We need more faculty who understand both the

importance of secure programming, and who will

require students to practice it.

2. These faculty will need support to ensure the

students do practice secure programming; this

includes additional security content in textbooks

or supplements, and labs or clinics to reinforce
the practice of secure programming in student

programs.

3. Establishing professional enrichment

opportunities in this area for all educators will

heighten their awareness of the need for better,

more robust programming and its principles.

4. Integrating computer security content (including

ways to think about security) into existing

technical and non-technical courses will reach

students in a much wider variety of disciplines.
5. A required computer security course should

focus on technical topics for computer science

majors, and on raising awareness of basic ideas

and issues of computer security for non-majors.

6. The cross-discipline education will require

innovative teaching methods to inculcate an

understanding of computer security basics to the

various constituencies.

7. Because of the lack of resources for training and

education in academia, government, and

industry, organizations in all three groups should

encourage partnerships and collaborate on the
development of curricula to meet their needs.

8. Metrics to measure the effectiveness of

educational techniques in specific environments

will help assess progress towards meeting the

educational goals for secure programming of the

institution.

9. Finally, the role of computer security

professionals in key business and government

policy decisions must be highlighted, so they are

consulted when appropriate.

The Summit concluded that emphasizing the role software

plays in our society will emphasize the importance of

writing good, solid code—something that is critical to the

development of high assurance systems, and to the

successful, effective use of ordinary computers.

VI. CONCLUSION

Most introductory programming classes focus on good

coding style, which—essentially—is all that secure

coding is. But after that class, rarely are students required

to practice those precepts; the only issue is whether the

program works in the general case.
The Workshop on Secure Coding discussed incorporating

exercises to demonstrate the need for, and principles of,

secure programming in general computer science classes.

The Summit on Education in Secure Software provided a

set of more general frameworks for teaching secure

programming including identifying potential problems

(the “potholes”). Its goal was to provide information and

advice to institutions that wished to emphasize secure

programming in their curriculum. How to implement its

recommendations, and which ones to implement, will

depend on the institution’s goals, environment, resources,
and organizations.

 Proceedings of the 16th Colloquium for Information Systems Security Education

 Orlando, FL June 11-13, 2012

ISBN 1-933510-95-1/$15.00 2012 CISSE

Acknowledgements: The authors were supported by

awards from the National Science Foundation’s

Directorate for Computer and Information Science and

Engineering and the Directorate for Education and

Human Development. Matt Bishop was supported under

award CNS-1039564 via George Washington University.
Kara Nance and Brian Hay were supported under award

DUE-1023135. Any opinions, findings, and conclusions

or recommendations expressed in this publication are

those of the authors and do not necessarily reflect the

views of the National Science Foundation.

VII. REFERENCES

[1] Security Injections @ Towson University. Available

from: http://triton.towson.edu/~cssecinj/secinj/.

[2] Garramone, V. and D. Schweitzer, "PRISM: A Public

Repository for Information Security Material," in
Colloquium for Information Systems Security

Education(CISSE). 2010: Baltimore, MD.

[3] Du, W. and Wang, R.,. "SEED: A Suite of

Instructional Laboratories for Computer Security

Education (Extended Version),". In The ACM Journal on

Educational Resources in Computing (JERIC), Volume 8,

Issue 1, March 2008.

[4] Taylor, B. and S. Azadegan, "Moving Beyond

Security Tracks: Integrating Security in CS0 and CS1," in
Technical Symposium on Computer Science Education

(SIGCSE), ACM, Editor. 2008, ACM.

[5] Hislop, G.W., et al., "Ensemble: creating a national

digital library for computing education," in Proceedings

of the 10th ACM conference on SIG-information

technology education. 2009, ACM: Fairfax, Virginia,

USA. p. 200.

[6] Hay, B., Dodge, R., Nance, K., “Using Virtualization

to Create and Deploy Computer Security Lab Exercises,”

proceedings of the 23rd International Information
Security Conference (SEC 2008), 8 – 10 Sept, 2008,

Milan, Italy.

[7] Nance, K., B. Taylor, R. Dodge, and B. Hay.

Creating Shareable Security Modules. Proceedings of the

2011 Workshop on Information Security Education.

June, 2011. Lucerne, Switzerland.

[8] Burley, D. and M. Bishop, Summit on Education in

Secure Software: Final Report, Technical Report CSE-

2011-15, Dept. of Computer Science, University of
California at Davis, Davis, CA 95616-8562, USA (June

2011).

