
Teaching Secure Coding-
The Myths and the Realities

Matt Bishop, U.C. Davis
University of California at Davis

Davis, CA
bishop@cs.ucdavis.edu

Kara Nance

University of Alaska Fairbanks
Fairbanks,AL

klnance@alaska.edu

Elizabeth Hawthorne
Union County College

Cranfield, NJ
ehawthorne@acm.org

Blair Taylor (moderator)

Towson University
Towson, MD

btaylor@towson.edu

1. SUMMARY
Teaching secure coding has never been more important. As
attacks on financial, medical, government, and critical
infrastructure systems increase in number and severity, there is a
need for curriculum that prepares all computer science graduates
to design and implement secure software. Accordingly, the
CS2013 Ironman draft has added Information Assurance and
Security as a new Knowledge Area in undergraduate computer
science education and recommended that security content be
cross-cutting across all curricula. In 2010, the Summit on
Education in Secure Software provided a series of
recommendations to facilitate secure coding education, including:
1) increasing the number of faculty who understand the
importance of secure programming principles, and will require
students to practice them; 2) integrating computer security content
into existing technical and non-technical courses to reach students
across disciplines; and 3) using innovative teaching methods to
strengthen the foundation of computer security knowledge across
a variety of student constituencies.

In this panel, we will speak to these recommendations and the
new curricular guidelines outlined in CS2013 and discuss the
importance and challenges of teaching secure coding. The
panelists have been active participants in security education and
will share their experiences teaching secure coding.

Categories and Subject Descriptors
D.2.4 [Software]: Software/Program Verification - reliability
K.3.2 [Computers and Education]: Computer and Information
Science Education – computer science education

General Terms
Reliability, Security

Keywords
Secure Coding

2. MATT BISHOP
Teaching robust programming, or how to write programs that are
reliable, in the sense that they perform the tasks they are supposed
to, and handle any unexpected inputs or events in a reasonable
manner, has several myths.

Myth #1. There is no room in the curriculum for a course on
secure programming. This statement assumes that a separate
course is required. But introductory and second programming
classes teach the basics of secure programming: how to check for
bad inputs, to do bounds checking, check return values, catch and
handle exceptions, and so forth.	When students program for more
advanced classes, the focus is on the class material and not on the
mechanics of programming. That students will write secure
programs is assumed, and rarely checked.

Myth #2. If students learn to write secure programs, the state
of software and system security will dramatically improve.	
Programs rely on operating system, library, and other services.
Further, system security relies on systems being set up and
configured as required for the particular environment in which the
system is used; the size of the gap between this and practice is
unknown, but probably large. Companies must also provide
support for the use of these skills. Whether organizations that
develop software and systems will be willing to pay this price in
practice is unclear, as is whether customers will be willing to pay
higher prices, and endure longer development times.

Myth #3. Academic institutions are hierarchical educationally.
Few academic institutions allow a university president,
chancellor, or dean to require faculty to teach a specific topic, and
how to teach it. The best ideas and methods of learning and
teaching are developed through trying different ways, and seeing
which works best. There may be no “best way" to do something;
often, several different ways work equally well.

Myth #4: We know what to do and how to do it. We don't know
how to teach secure programming. We have ideas, but we do not
know what will work, and when.

3. ELIZABETH HAWTHORNE
Software is an intrinsic part of our personal lives. Nearly every
facet of modern society depends on complex software systems:
business, energy, transportation, education, communication,
government, and defense communities. The Strawman release of
Computer Science Curricula 2013 (CS2013) recognizes the urgent
need to teach secure coding in the undergraduate computer
science curriculum [2]. CS2013 includes a new, dedicated
Knowledge Area (KA) on Information Assurance and Security
(IAS). The IAS KA is comprised of several knowledge units with

mailto:bishop@cs.ucdavis.edu
mailto:klnance@alaska.edu
mailto:ehawthorne@acm.org

one specifically on secure software design and engineering. Other
knowledge units distributed throughout the proposed CS2013
Body of Knowledge (Bok) - especially in the Software
Development Fundamentals and Software Engineering KAs – also
address secure coding practices, defensive programming
techniques, and software assurance methodologies. The next
iteration of CS2013, called Ironman, is scheduled for public
release and comment in February 2013. This panel will highlight
the places secure coding topics and learning outcomes appear in
Ironman and provide the opportunity for community feedback and
input.

According to CERT, software assurance is an important discipline
to ensure that software systems and services function reliably and
securely. In September 2011, the Software Engineering Institute at
Carnegie Mellon University published a technical report entitled,
“Software Assurance Curriculum Project Volume IV: Community
College Education” [3] sponsored by the U.S. Department of
Homeland Security (DHS) National Cyber Security Division
(NCSD). This report focuses on community college courses for
software assurance and includes a review of related curricula,
outcomes and body of knowledge, and outlines for six courses.

4. KARA NANCE
Many faculty members are overwhelmed with the thought of
preparing original materials that demonstrate and emphasize the
importance of secure coding. Further, creating a lab environment
to allow students to gain hands-on experience with the potential
effects of insecure coding can be challenging and may require
resources and isolated environments that are not available at many
institutions. The RAVE Project, funded by NSF, provides a
remotely accessible virtualized environment that can be leveraged
by instructors to demonstrate these effects in a safe and easy-to-
use environment. The shareable instructional materials available
through the RAVE Project have been developed through an ever-
growing cadre of CS educators and facilitate easy inclusion of
these important foundational concepts in a wide range of CS
courses. Instructors can utilize these resources in a number of
ways -- from setting up their students with accounts in the RAVE
(if local resources are limited) -- to adapting the materials for use
in a local environment. The emphasis of the RAVE Project is on
sharing resources to minimize duplication of effort as instructors
with common educational objectives work together.

5. BLAIR TAYLOR (moderator)
To adequately prepare computer science graduates for current and
future cybersecurity challenges, security and secure coding can no
longer be elective or relegated to a track for select students. All
computing students should learn secure coding, starting with their
first programming course, and security principles should be
reiterated throughout the computer science curriculum. The
challenges to security integration are significant, and include:
faculty lacking security skills; programming textbooks that

include insecure coding examples; and courses that leave little
room for additional topics.

To help address these issues, the Security Injections @ Towson
project (www.towson.edu/securityinjections) includes over 30
security injection modules, available to all instructors. (This work
is supported by NSF – 0817267) Security injections are security-
related modules which address top security concerns, including
integer error, input validation, and buffer overflow, that are
particularly relevant for introductory programming courses.
Modules are available at varying levels for CS0, CS1, and CS2,
and in a variety of languages including Java, C++, pseudocode
and Python. Each module is self-contained and can be easily
inserted into the course with no additional instruction required by
the faculty. Modules have been tested across a variety of two and
four-year institutions and one HBCU. Additional modules are also
available for the Computer Literacy course (for non-majors),
Database, Networking, and Web Development.
Security injections allow faculty to easily incorporate important
security topics that are often not well-addressed in textbooks.
Teaching undergraduates to validate input and avoid integer errors
and buffer overflow goes a long way towards producing more
secure code, as these errors lead to a large number of the top
vulnerabilities. Another important goal of the security injections is
to “create a security mindset” amongst faculty and students, which
many security experts consider to be one of the most important
strategies towards improving security. Each security injection
module includes a “Code Responsibly” section which includes
guidelines for writing code that is robust and secure.
Through this project, we have integrated secure coding concepts
in CS0, CS1, and CS2 to over 1000 students; coached faculty at
two and four year institutions to implement the security injections;
and piloted a “build-a-lab” workshop to grow the modules library
and foster engagement. The next step, recently funded by NSF -
1241738, is to expand the build-a-labs and create a community of
“security ambassadors” to expand security integration at more
institutions. Blair will serve as moderator of the session.

6. REFERENCES
[1] Burley, D and Bishop, M. 2011. Summit on Education in

Secure Software Final Report.
http://nob.cs.ucdavis.edu/bishop/notes/2010-sess/2010-
sess.pdf

[2] ACM/IEEE-CS 2013 Joint Task Force on Computing
Curricula. (2012, February). Computer Science Curricula
2013 Strawman Draft. Retrieved from
www.cs2013.org/strawman-draft/cs2013-strawman.pdf

[3] Mead, N., Hawthorne, E. and Ardis, M. Software Assurance
Curriculum Project Volume IV: Community College
Education. Retrieved from
http://www.sei.cmu.edu/library/abstracts/reports/11tr017.cfm

http://www.towson.edu/securityinjections
http://nob.cs.ucdavis.edu/bishop/notes/2010-sess/2010-sess.pdf
http://nob.cs.ucdavis.edu/bishop/notes/2010-sess/2010-sess.pdf
http://www.cs2013.org/strawman-draft/cs2013-strawman.pdf

