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Abstract - In order to improve the abilities of students to write robust programs (“secure 
programming”) without adding new classes or material in existing classes, a Secure Programming Clinic 
that functions analogously to an English writing clinic has been developed. This paper reports on 
preliminary results from an instance of the clinic at a large university. Given the statistics obtained from 
this trial, the clinic improved the students’ secure programming behavior and helped students develop a 
deeper understanding of secure programming concepts. 

Categories and Subject Descriptors 

D.1.m [Programming Techniques]: Miscellaneous. 

D.2.3 [Softwre Engineering]: Miscellaneous. 

K.3.2 [Computers and Education]: Coding Tools and Techniques. 

K.6.5 [Management of Computing and Information Systems]: Security and Protection. 
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Experimentation, Human Factors, Security 
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1. INTRODUCTION 

A large number of vulnerabilities are present in code written by professional practitioners. Many are 
code defects that could have been prevented with the application of secure and robust coding principles. 
“Secure coding”, “secure programming”, or “robust programming” refers to a software product’s 
robustness against accidental or malicious unexpected behavior causing a problem. One example of the 
impact of failures in secure programming was the Heartbleed bug in 2014, which impacted services 
across the Internet. It resulted from a failure to check a length variable for validity [6].  

The failure of practitioners to practice this style of programming is not due to incompetence. One 
factor is simply lack of training. As Evans and Reeder noted [5], “We ... [have a] desperate shortage of 
people who can design secure systems, write safe computer code, and create the ever more sophisticated 
tools needed to prevent, detect, mitigate and reconstitute from damage due to system failures and 
malicious acts.” And the shortage is projected to grow.  Each year, more programmers enter the 
workforce. The U.S. Department of Labor projects that the demand for software developers will increase 
much faster than that for many other occupations due to an increasing demand for software on multiple 
platforms and in multiple industries [2]. These programmers need to be trained in secure programming.  

The failure to practice secure programming is not due to incompetence. One factor is simply lack of 
training.  Despite desire and interest in teaching more secure programming in the college computing and 
cybersecurity curricula, doing so is hard.  Three basic issues underlie the problem of teaching students 
how to write secure code: the lack of room in the computer science curriculum, the focus of introductory 
programming courses, and not teaching in a manner that promotes the application of learned techniques of 
good programming.  A glance at the ACM Computing Curricula [1] shows how much material must be 
compressed into courses for computer science majors. There is already so much content considered 
essential to the undergraduate curriculum, that secure programming is considered much less essential than 
other topics.  For the many universities and faculty trying to integrate secure programming into the 
curriculum, there is the challenge of when to infuse it within the sequence. Beginning programming 
classes typically focus on algorithmic and language issues rather than environmental issues. These classes 
teach some elements of secure programming, such as good program structure, basic input validation, 
checking bounds for array references and checking that pointers are non-nil. They do not teach more 
advanced elements, such as avoiding race conditions and authentication over a network, because those 
elements involve knowledge that beginning programming students are not expected to have.  Classes after 
the introductory programming class assume that students know, and will apply, principles of good 
programming. In practice, this is not true. Students tend to focus on what is being taught, and regard the 
programs they write as instruments to exercise that knowledge. This is appropriate, but—like an English 
essay comparing Orwell’s 1984 to Huxley’s Brave New World—the expression of the content is as 
important as the content itself. Unfortunately, graders (and many teachers) ignore the issue of well-crafted, 
robust code when they grade, and simply check that the program works. The result is that the application 
of learned techniques of robust programming is not reinforced, leaving students with the implicit belief 
that security does not matter as much as functionality. 

2. THE SECURE PROGRAMMING CLINIC 

The Secure Programming Clinic (SPC) serves as a resource where students can learn about and apply 



 

aspects of secure programming in a manner that does not add extra courses to the curriculum and, indeed, 
allows for the integration of secure programming concepts in multiple contexts across several courses. 
The main goals of the project are: 

1. To develop a clinic to enhance student learning and expertise in writing robust, secure software; 
2. To develop and validate measures that reflects the ability of learners with regard to writing 

robust, secure software; 
3. To implement and evaluate the efficiency and efficacy of the clinic; and 
4. To disseminate the clinic procedures, instructional modules, and measures to the educational 

community. 

3. BACKGROUND 

The Secure Programming Clinic project seeks to develop an educational innovation that enhances 
students’ learning and expertise in writing robust, secure software.  An expert is somebody who obtains 
concrete, tangible results that are vastly superior to those obtained by the majority of the population.  
Conventional thinking has been that “geniuses are born, not made”.  However, research on expertise and 
its development shows that expertise is made [4].  Furthermore, expertise is not a state that is attained 
permanently; when knowledge stores are not put into practice, they can and do go dormant.  Conversely, 
when performance picks back up, knowledge stores are reactivated.   

When expertise is conceptualized (as it should be) as attainable and results-oriented, two important 
implications follow.  First, experiences that help build expertise can be designed and developed.  Second, 
expertise and its development can be measured, and those measures can be used to improve experiences 
designed to develop expertise, creating a feedback loop.  This is foundational to the design of the SPC. 

3.1 Experiences that Help Build Expertise 

The journey to truly superior performance is characterized by several distinctive features.  Experts 
accumulate knowledge over numerous learning experiences, many of which are not traditional classroom 
experiences.  Developing expertise is time intensive, and full of struggles and mistakes. Developing 
expertise involves both improving the knowledge skills one has, and extending the reach and range of 
those skills.  The path to expertise involves learners testing the veracity and robustness of that knowledge 
as a way of honing what is known. However, this honing is not a solitary activity.  Research shows the 
critical role of expert mentors can help accelerate the learning process.  These mentors serve an essential 
role in giving constructive, corrective feedback. This deliberate practice at tasks just beyond one’s current 
level of competence and confidence, with meaningful feedback, is how stronger mental models are built 
and increasingly more capable performances realized.  Expertise involves complete acts of thought where 
the expert fluently moves from specific to general cases and back [3], and building expertise requires 
practicing movement in both inductive and deductive reasoning. 

While it is clear that practice, practice, and more practice are essential for developing expertise, it is 
equally clear that not all practice is equally effective.  Research finds that practice with the following 
features is superior.  The practice must be deliberate, meaning that considerable, specific, and sustained 
efforts must be undertaken to do something that one cannot do well; purposefully working at what one 



 

cannot yet do well is essential.  Effective practice also engages learners in thinking with deliberation 
(deliberate thinking).  Deliberate thinking requires a planned approach to learning.  This includes intent to 
improve through a plan, but at that same time the planned approach is adaptive.  Deliberate thinking 
explores possibilities and thinks through consequences in situ.  Afterwards, deliberate thinking involves 
reflective processing about when, how, and why a course of action did not work as planned, and 
corrective assessment.  The third essential feature of effective practice is that it be habitual.  The 
development of expertise happens when deliberate thinking and acting occurs in regular, chunked 
increments.  For example, we instinctively know that if one wants to improve at baseball, one must 
practice intensively. Two hours of practice a day, 6 days a week, is likely to be much more effective than 
12 hours of practice on Saturday.  It is just as important that deliberate thinking be habitual.  Deliberate 
practice without deliberate thinking can slip into routine doing, with no thought.  When this happens, an 
essential characteristic of expertise building has been lost.  And finally, efforts to hone existing 
knowledge, as well as efforts to choose to move outside one’s comfort zone, are habitually practiced. 

3.2 Clinical Education as a Framework for Building Expertise 

Clearly, a foundational aspect of developing expertise in learning is doing (and redoing).  One of our 
first decisions was to ground the SPC in the clinical education model, and to specifically approach our 
clinical experiences with the goal of building toward expertise. The principle of clinical education is the 
integration of theory and guided practice so the students have the opportunity to immediately implement 
or apply in practice the theoretical knowledge gained in class. The development of expertise will be based 
on numerous, scaffolded learning experiences with opportunities for deliberate practice and deliberate 
thinking as discussed above.  While there are many educational experiences we can envision for the clinic, 
we are taking a deliberate approach in developing and testing the interventions of the clinic so that we 
know which interventions to keep, modify, or stop.  This paper reports on results from the first 
instantiation of the clinic. 

4. RESEARCH METHODS FOR TESTING THE EFFICIENCY OF THE SPC 

This paper reports on data collected at the initial iteration of the clinic at a large university in the 
spring of 2015. At this iteration of the clinic, the research team primarily focused on building experiences 
for deliberate practice with opportunities for guided feedback from clinicians during clinical visits.  
Throughout the academic term, secure programming concepts were covered in class, and students were 
given homework assignments that required them to apply the secure programming concepts (learning by 
doing).  Students could visit the clinic (meet with the expert clinicians) to identify mistakes made, discuss 
corrections needed, and why (the latter is especially important for developing students’ ability to test the 
veracity of their knowledge) before submitting their homework. Once the homework was submitted and 
graded, students could resubmit the program for a re-grade, in which they recover up to 80% of the points 
deducted for non-robustness. They were free to visit the clinic before resubmitting. Thus, there were four 
types of students: 

1. Proactive visitors, who visited the clinic before the first submission; 
2. Reactive visitors, who visited the clinic after the first submission; 
3. Consistent visitors, who visited the clinic both before and after the first submission; and 
4. Non-visitors, who did not visit the clinic at all. 



 

4.1 Research Question 

The research question is: how does level of engagement in the clinic, as defined by those four types of 
students, affect students’ robust programming behavior? 

4.2 Population and Sample 

There were a total of 104 students enrolled in the class.  Robust programming behavior was analyzed 
by examining student code on homework 2.  The researchers were able to analyze code for 42 students; 
table 1 shows the breakdown by group. 

N 
Non Visitors 6   
Reactive Visitors 17 
Proactive Visitors 14 
Consistent Visitors 5 

Table 1: Breakdown of students who visited and did not visit the clinic  

4.3 Variables 

The students were asked to write a program that checks the status of a second program that performed 
some privileged function. The students were to write code that found the second program; verified that 
program had the specified owner, permissions, and other attributes; and if so, modified the permissions to 
enable the program to run with sufficient privileges to perform the privileged function. The program had 
to run on designated class resources and to be robust.  

Within the program, the researchers looked for indicators that the students recognized and adequately 
addressed possible vulnerabilities. These vulnerabilities and their mitigation are categorized in five 
variables: 

1. Comment the code. Appropriate comments contribute to robustness of the code by allowing future 
users and maintainers of the code to understand the code better. 

2. Use file descriptors or some equivalent way to maintain access to a file object; furthermore, use these 
to make changes to the file object to ensure the proper object was modified. Using file descriptors 
eliminates possible time of check to time of use of race conditions. The improper use of file 
descriptors fails to achieve the robustness objective as the code is still open to the same compromises 
as it would have been without any use of file descriptors. 

3. Sanitize the environment for spawning sub-processes that executed other programs. One sub-process 
was required for the assignment; a second was appropriate for the extra credit; and in both cases, 
spawning the correct sub-process required the environment to be reset to a pristine, known safe state. 
The failure to do so enables an attacker to cause unexpected behavior, including privilege escalation. 
A student can fail to clean the environment for just one of these external programs; in this case, there 
seems to be some disconnect or failure to understand or translate the concept into action in slightly 
different situations. 



 

4. Safely handle strings and buffers through proper allocation, termination, and bounded operations that 
do not depend on user input (and, thus, a well-behaved user) to prevent reading beyond the end of the 
object (which can access additional information) or writing beyond the end of the object (which can 
change additional information and potentially change the behavior of the program). 

5. Check the returns of calls for unexpected values, proper ranges, and failure indicators, to be sure the 
program is behaving correctly. 

Researchers looked for evidence that students implemented the appropriate mitigations for 
vulnerabilities using indicators. The resulting score ranged from –16 to 16.1 Students were awarded one 
point if they implemented the appropriate behavior consistently and completely, and one half-point if they 
implemented the behavior somewhat or sporadically. If the student's program was vulnerable but the 
student did not implement a mitigation, the student lost one point. If the student's program was not 
vulnerable, no points were awarded or deducted; the student might have consciously or unknowingly 
chosen an implementation that avoids the vulnerability. The sixteen variables are described in table 2. 

Comment 
Code 

1 The code is accompanied by comments where the student describes the behavior of 
the code. Commented-out code does not count. 

File 
Descriptors 

2 Use (1): At least one consistent reference to a file is maintained, whether as a file 
descriptor or as an equivalent approach in a non-C language. 

3 Consistency (1): The same file descriptor is used throughout the program. 
4 All (1): In every case in which the file descriptor could be used, it is used. 
5 Get Status (1): The student used the file descriptor, and the appropriate function 

(fstat(2) in C, or its equivalent in another language), to check the status of the file. 
6 Change Permissions (1): The student used the file descriptor, and the appropriate 

function (fchmod(2) in C, or its equivalent in another language) to change the 
permissions of the file. 

External 
Calls 

7 Change Owner (1): The student took appropriate steps to provide a clean 
environment for the execution of a program to change ownership (chown(1)). 

8 Execute Call (1): The student took appropriate steps to call the Change Owner 
program (execve(2) in C, or its equivalent in another language). 

String and 
buffer 
handling 

9 Allocation (1): If the student set up a string buffer, the buffer is protected from 
reading or writing beyond the end of the buffer by a length variable. Students could 
reference a system-set MAX_LENGTH value, or a hardcoded length for their 
check. 

10 Termination (1): If the student used a string buffer, the buffer is protected from 
reading or writing beyond the end of the buffer by proper string termination (a 
terminal ‘\0’). 

11 Bounded print (1): If the student printed the contents of a string buffer to the 
standard output, the student chose a function that limits the number of bytes written 
(for example, snprintf(3) in C, or its equivalent in another language). 

12 Bounded construction (1): If the student constructed strings dynamically, the 
student chose functions that limit the number of bytes written or read (for example, 
strncat(3) or strncpy(3) in C, or their equivalent in another language). 

Return value 
checks 

13 All system calls (1): The student checked the return values of all system calls. 
14 Change Permissions (1): The student checked the return value of the permission-

                                                        
1 These scores were not related to the scores assigned to the homework. 



 

changing function in particular (chmod(2) or fchmod(2) in C, or their equivalent in 
another language). 

15 Execute Call (1): The student checked the return value of the command-execution 
function in particular (execve(2) in C, or its equivalent in another language). 

16 Open (1): The student checked the return value of the function to open a file and 
obtain the file descriptor (open(2) in C, or its equivalent in another language).  

Table 2: Secure programming variables examined in students' code  

Students’ code was compared at all available time points to see whether and how the code changed in 
response to clinic visits, grading, or both. The majority of students used C and C++ as their primary 
programming language. 

5. RESULTS 

The descriptive data for the final score (the score for the last program submitted by the students) for 
both groups are summarized in figure 1. 

 

  N Aver
age 

Std Dev. 

Visitors 36 69.61
% 

23.24% 

Non Visitors 6 38.02
% 

17.50% 

Figure 1: Comparing final scores for students who did or did not visit the clinic 

An independent sample t-test was conducted to compare the final scores for visitors and non-visitors 
to the clinic. There was a significant difference in final scores between visitors (M=69.62%; SD=23.24%) 
and non-visitors (M=38.02%; SD=17.50%); t(40) = -3.89, p = 0.004. 
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Of the 36 students who visited the clinic, 14 were proactive visitors, meaning that they visited the 
clinic before the homework was due. Seventeen students were reactive, meaning that they visited the 
clinic after the homework was graded (and returned to them) to understand how to fix their mistakes 
before submitting the revised homework for a re-grade (it should be noted that resubmission for a higher 
score was optional).  Five students visited the clinic both before the homework was due and after the 
graded homework was returned in order to make modifications to their work prior to resubmission; these 
five students are called consistent visitors.  The final score averages for the students in all four groups 
(proactive visitors, consistent visitors, reactive visitors, and non visitors) are summarized in figure 2 
below. 

In figure 2, we can see that the proactive visitors had the highest final scores on the assignment, the 
reactive visitors had the second highest final scores, the consistent visitors the third highest, and the non 
visitors had the lowest final scores.  A one-way between-subjects ANOVA was conducted to compare the 
effect of timing and frequency of clinic visits on students’ final scores. There was a significant effect of 
the timing and frequency of the visits at the p < 0.05 level for the four visitor conditions [F(3, 38) = 3.67, 
p = .021]. Post hoc comparisons using the Tukey HSD test indicated that the mean score for the non-
visitors (M = 38.02%, SD = 17.51%) was significantly different from the final grades of proactive visitors 
(M = 72.77%, SD = 28.49%) and reactive visitors (M = 69.85%, SD = 14.78%). 

 

 

 N Final 
grade 

Std. Dev. 

Non Visitors 6 38.02% 17.51% 

Reactive Visitors 17 69.85% 14.78% 

Proactive Visitors 14 72.77% 28.49% 

Consistent Visitors 5 60.00% 32.58% 
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Figure 2: Comparing final scores for students who visited the clinic at different time points 

Next we considered what growth in knowledge looked like across these different groups.  Figure 3 
below shows the differences between T1 (pre-homework submission score), T2 (homework score), and 
T3 (homework resubmission score). 

 

Figure 3. Comparing average grades across time points 

We only have T1 data for proactive and consistent visitors (the fact that we have these data is what 
puts them into their respective categories).  As can be seen, the proactive and consistent visitors start out 
very similarly (33.00% and 34.37% respectively).  The mean score for proactive visitors on the 
homework (T2) increases notably to 71.88%. The T2 scores of non visitors, reactive visitors and 
consistent visitors are clustered tightly at 18.75%, 21.13%, and 22.91% respectively (keep in mind that 
the T2 scores for reactive visitors and non visitors is their first grade).  However, by T3, the scores of the 
reactive group are up to 69.85%, and the scores of the 3 participants in the consistent group who 
submitted for re-grade are up to 77.08%, while the non-visitors are only up to 38.00%. 

6. DISCUSSION AND CONCLUSION 

It appears that the clinic is having a big impact in helping students learn.  All students who visited the 
clinic scored significantly better on the sixteen instances of five specific applicable robust programming 
behaviors measured by the researchers. All groups showed gains when the assignment was submitted for 
re-grade; however, groups who visited the clinic demonstrated significantly more gains than those who 
did not visit the clinic. For the proactive visitors, the gain is before the homework is submitted.  These 
students use the clinic to troubleshoot and improve their work prior to submission.  For the reactive 
visitors, the gain is after the homework is submitted.  These students turn in the homework to find out 
what needs to be fixed, and then use the clinic to address those gaps.  It should be noted that the number 
of participants in each group is small, and especially so in the consistent and non visitor groups.  
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The consistent visitors exhibit an interesting pattern. Unlike the other groups who visited the clinic, 
they demonstrate a loss in secure programming behavior between their first and second submission. This 
is most likely due to the very small sample size in consistent visitors; one student in that group who did 
very poorly on the homework submission skewed the results. The three consistent visitors who submitted 
at T3 demonstrate substantial gains between the second and third submissions. This may be because 
students in this group were less likely to submit complete or close to complete programs on their initial 
clinic visit. This suggests that students in this group first visited the clinic not to troubleshoot (which is 
more common among proactive visitors) but because they were struggling with the assignment. It would 
then follow that they did not focus on secure programming issues in their program until their second 
clinic visit. Again, it should be emphasized that the size of this group was very small, so we can only 
conjecture, not conclude. 

The results reported here indicate that the clinic is succeeding in both improving the students’ secure 
programming behavior and helping students develop a deeper understanding of secure programming 
concepts. Further data collected at this clinic and other secure programming clinics at other institutions as 
the project proceeds will be analyzed to determine whether the observed results of patterns and timing of 
clinic visits is replicated. 
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