I’'m Not Sure If We’re Okay

Uncertainty for Attackers and Defenders

Mark E. Fioravanti Il Matt Bishop Richard Ford
Department of Computer Department of Computer Department of Computer
Sciences Science Sciences
Florida Institute of Technology University of California, Davis Florida Institute of Technology
150 W. University Blvd. 1 Shields Ave. 150 W. University Blvd.

Melbourne, FL 32901

ABSTRACT

Asymmetry and uncertainty have been written about at
length in the context of computer security. Indeed, many
cutting edge defensive techniques provide system protection
by relying on attacker uncertainty about certain aspects of
the system. However, with these defensive countermeasures,
typically the defender has the ability to derive full knowledge
of the system (as is the case in, for example, Instruction Set
Randomization), but the attacker has limited knowledge.

In this paper, we concern ourselves with the case in which
neither the attacker nor the defender have perfect knowledge
of the system, but where the level of uncertainty tolerable to
both parties is different. In particular, we explore scenarios
where the attacker’s need for certainty is lower than that
of the defender, and ask if non-determinism can be used as
a weapon. We provide an example in the malware arena,
demonstrating the use of quorum sensing as a potential ap-
plication of this technique. We argue that this idea of mutual
uncertainty is a new paradigm which opens the way to novel
solutions in the space.

CCS Concepts

eSecurity and privacy — Operating systems security;
Software security engineering; eSocial and professional
topics —» Computing / technology policy; eComputer
systems organization — Architectures;

Keywords

uncertainty, asymmetry, randomization, defense, computer
security

1. INTRODUCTION

Uncertainty. The term has become something of a buz-
zword in the security community of late, with ideas such as
Address Space Layout Randomization (ASLR) [25,27] and

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

, . . Davis, CA 95616-8562
mfioravanti1994@my.fit.edu mabishop@ucdavis.edu

Melbourne, FL 32901
rford@fit.edu

Moving Target Defenses [10] garnering many column inches
at conferences — and funding announcements — over the
last few years. However, in almost every case, these solu-
tions are based on the defender (i.e. the person who deploys
the technique) having the ability to derive full knowledge
of the system, leaving the attacker at an information disad-
vantage, essentially creating a “knowledge asymmetry” be-
tween the two parties. The idea is that the attacker cannot
overcome this disadvantage, and will therefore be rendered
unsuccessful in attacking the system.

We posit that approaches based on such knowledge asym-
metry are only one possible way of leveraging uncertainty
in the computer security arena. In this paper we explore an
alternate approach: systems where both the attacker and
the defender have uncertainty about the state of the sys-
tem being defended. Whereas in the example above knowl-
edge asymmetry can be breached by the inadvertent leaking
of information from one party to another, a defender can-
not inadvertently leak something she does not have. Op-
erationally, in some instances, one party can tolerate more
uncertainty than the other yet still complete her mission. In
such a case, there is an opportunity to exploit this difference.

In what follows, we present a general model of the joint un-
certainty paradigm and derive some implications about this
symmetry. We then describe an experiment in “digital quo-
rum sensing”. This technique, inspired by bacterial quorum
sensing, allows for weak exchange of information between a
group of loosely connected entities. Using digital quorum
sensing, we show how the attacker can leverage a technique
that provides (at best) equal information to attacker and
defender, yet is beneficial for the attacker only.

Finally, we consider the utility of the technique in other
possible settings.

2. PARADIGM AND MODEL

Let P be a random variable with value drawn from the set
{attacker, defender} (abbreviated “a” and “d”, respectively).
Consider a second variable X that encodes some useful in-
formation about the system under question. Let H(z) rep-
resent the uncertainty (entropy) in the random variable z.

The usual form of defense is to have:

H(X|P=a)>0 and H(X|P=d)=0

because the defender knows, or can derive, precise infor-
mation about the state. As noted, defenses such as ASLR
follow this traditional paradigm because, while the attacker

does not know the placement of pages in memory, so
H(X = memory_location|P = a) > 0

However, the defender can determine where those pages are
in memory by looking at the page tables, so

H(X = memory_location|P =d) =0

This model immediately leads to three requirements for a
system to implement the joint uncertainty paradigm for a
given variable X:

1. Global availability: the object that produces the
values that X takes on must be accessible to both the
attacker and defender.

2. Stochastic process: the value that X takes on can-
not be deterministic. Otherwise, both the attacker’s
and the defender’s uncertainty will be 0. Thus, these
values must be produced by a stochastic process.

3. Synchronization: the assigning of a value to X must
be done before the attacker accesses the resource that
X refers to; thus, a synchronization element is present.

As a very simple example, consider the rotational scheme
of Huang and Ghosh for protecting web services [9]. They
advocate a set of different software stacks, rotated randomly,
to provide a larger attack surface than would one stack.
Here, X is the stack to be used. It is accessible to both
the attacker and the defender, meeting the first requirement.
It is randomly chosen, meeting the second requirement. Fi-
nally, the assignment of the particular stack to be used when
an attacker requests service (the assigning the value to X)
must be done before the attacker accesses the stack, meeting
the third requirement.

We now present two examples. The first is a modification
to ASLR to add uncertainty for the defender. The second
is an implemented digital quorum sensing example to which
apply the model to show that, indeed, both the attacker and
the defender have uncertainty.

3. EXAMPLE: UNCERTAIN ASLR

Return to our example of ASLR from the introduction.
When using ASLR, the network defender is not affected as
they have complete information about the system and in
particular where the ASLR routine has placed the memory
segments; despite the use of randomness, the defender has
complete knowledge of memory layout. Thus, if an attacker
gains the same access, she can observe what the defender
observes, eliminating her uncertainty also.

However, there are a couple of weaknesses to this defense.
First, if the adversary is able to force the system to leak in-
formation about the memory layout, the adversary can mod-
ify their exploit accordingly. Secondly, if the ASLR uses a
source of (pseudo)random numbers with low entropy when
positioning code and data, the attacker can attempt multi-
ple attacks and from them determine the information needed
for a successful exploit. Third, the attacker can largely ig-
nore the address randomization by spraying memory with
NOPs, and hope a return will fall in the correct location to
pass control to code that the adversary has injected. Ulti-
mately, ASLR is deterministic in nature from the defender’s
perspective, and may be non-deterministic from the adver-
sary’s perspective. If the adversary is able to gain enough

information about the system, the adversary’s perspective
becomes similar enough to that of the defender to enable
the adversary to defeat the defense.

To eliminate the defender’s knowledge, we posit a “magic
memory management unit” (MMMU) that generates ran-
dom addresses at which to place pages and/or segments of
a process’ memory. All memory accesses go through the
MMMU, so neither the attacker nor the defender can ob-
serve memory directly. Thus, all physical memory addresses
are inaccessible to everyone. Now the defender has no idea
of the mapping between virtual and physical memory ad-
dresses; all she can do is supply a virtual address, which
the MMMU maps into the physical one, and then performs
the desired function (read, write, or something else). The
attacker is in the same position as before; the ASLR ran-
domizes the physical layout of the process’ memory.

Consider our three requirements. Here, the random vari-
able X represents the physical addresses; for expository pur-
poses, we pick a virtual address (the exact one does not
matter), and let X be the corresponding physical address.

1. Global availability. The object that produced the
value of X is accessible to both the defender and at-
tacker, because both need to be able to access memory.
As all such accesses must go through the MMMU, and
cannot bypass it to get directly to physical memory,
the defender and attacker have equal access.

2. Stochastic process. The value that X takes on is
random by the definition of the MMMU. Thus, these
values are produced by a stochastic process.

3. Synchronization. The value of X is assigned be-
fore the attacker can access the resource that X refers
to, here memory locations. Clearly neither the at-
tacker nor defender can reference process memory be-
fore the process is instantiated by loading it into mem-
ory. Thus, this requirement is met.

A key observation for the successful use of the MMMU is
that, while the entropy of the random number generator is
important, equally critical is the entropy of the random ad-
dresses. So an attacker observing the inputs to the MMMU
might be able to deduce information about the memory lay-
out. To prevent this, we suggest an approach that uses trial
and error.

Consider the process making a function call. The pro-
cess does not know the actual function address. Instead, at
compile time, the compiler wrapped the function call with
trampoline code that will enable the process to try a set
of addresses, and the function call will fail only when none
of the addresses are correct. When the process begins, the
MMMU dynamically provides a set of n possible addresses
for each function call, where n is chosen as a trade-off be-
tween speed and robustness). The MMMU keeps track of
these values and the association between them and the ad-
dress of the function.

When the process calls the function, the MMMU checks
that the provided address is one of the addresses it gave
that process. If not, it immediately signals the operating
system that a suspicious event has occurred, and identifies
the process; the MMMU then returns failure.

If the address is one it gave the process, the MMMU checks
to see if that address maps to the function. If so, it notes that

it has entered the function at address a. Once the function
completes (that is, a return or other termination occurs),
the MMMU randomly generated n new addresses, replaces
the previous n addresses in the process, and updates its set
of addresses. But if the address is not the correct one, the
MMMU rejects it; the trampoline code in the process traps
the error and tries the next address in the set of n.

The point here is that neither the attacker nor the de-
fender know which of the n addresses invokes the function.
Further, as a new set of n addresses are invoked each time
the function call succeeds, knowing that an address was the
right one does not enable either the attacker or the defender
to use that address again. Hence the address of the function
is still unknown.

The MMMU is a hypothetical component that replaces
traditional MMUs. It would provide uncertainty for both
attacker and defender, and so is a “thought experiment” in-
troducing our idea to provide extra security in the sense that,
even if the attacker knows everything the defender does.

We now move on to a non-thought experiment.

4. EXPERIMENT: QUORUM SENSING

A single, lone pathogenic bacterial cell poses little threat
to a host. The host’s immune system can react and remove
it with little difficulty. If a pathogenic cell switches between
multiple strategies to minimize its interactions when it is
alone or isolated, and replicates as resources become avail-
able, a host’s immune system may not identify these cells
as a threat and allow the bacteria to form a colony. Once a
colony has formed, the pathogenic bacterial cells can switch
their strategies and attack the host, and at that point the
host’s immune system may no longer be able to clear the
pathogenic bacterial cells. Indeed, some social strategies are
more beneficial if the cell is isolated or alone while other
social strategies are more beneficial if the cell is part of a
community. The start of bacterial bioluminescence, the pro-
duction of biofilms [2,7,19,22], the release of virulence fac-
tors [19,22], extracellular uptake of DNA through bacterial
competence [19], and creation of persister cells [14,15,17,26]
are examples of behaviors that are typically more beneficial
if the bacterial cell is participating in a community than if
the bacterial cell is behaving asocially. The bacterial cells re-
quire a communication channel which allows them to deter-
mine where there are sufficient cells present to switch their
behaviors.

This led to the question of whether malware could take
advantage of a communication channel similar to that used
by bacteria. A study of this communication mechanism,
called Digital Quorum Sensing (DQS), examined whether it
was viable [6]. A central requirement of the communication
scheme was that it only pass the minimal amount of infor-
mation to allow the targeted malware to conduct its mission.
The study focused on targeted malware that was created by
a determined adversary [20] to disrupt a mission, rather than
malware designed to infiltrate a network and exfiltrate in-
formation. Targeted malware is most likely only concerned
with the overall infection state of the network, specifically
whether the network is sufficiently infected for the malware
to conduct its mission.

The study used a statistical covert timing channel [1,11-
13,18, 30] to communicate the overall infection state of the
network by modifying the properties of a shared resource,
in this case the time distribution of network traffic. The

communication would be a signal which results in the slight
skewing the packet transmission times, but in such a way
that those times were not skewed enough to impact enter-
prise network services or (legitimate) communications. The
communication channel is probabilistic in nature as it is not
always present in the traffic of a single infected host. Thus, a
broader approach is needed to observe the signal—inspecting
the traffic of the entire network. A network defender mon-
itoring the traffic would have several hypotheses to chose
from. Perhaps the packets were not emitted because the
host is not transmitting information; perhaps the packets
were delayed because the host is performing other compu-
tations or because the host is potentially infected with mal-
ware. Normal network traffic is not consistent and is often
bursty, so the network defender could not automatically de-
duce that the delay is caused by a host infected by malware.

4.1 Thought Experiment

As an illustration of the proposed communication scheme,
consider the following thought experiment. A large number
of participants are invited to a cocktail party, hosted by
Alice. This party is interesting to Eve who knows some in-
dividuals at the party are willing to help (Ian) in the Eve’s
nefarious schemes, but Eve does not know which individuals
these are. Alice is only interested in having certain types
of parties, so she hires the services of a Walter, the warden,
whose responsibility is to ensure that the correct types of
parties are being held. To complicate things, lan may be
traveling to the party as Bob with a fake ID, so even though
Walter can check IDs he cannot automatically assume that
any one not named lan isn’t up to anything nefarious. Eve
is interested in having parties that are not what Alice de-
sires. Eve is also not interested in the particular individuals
present at the party. Eve only wants to know when there
are enough Tans to manipulate the type of party to one the
sponsor does not want (one of the Eve’s nefarious schemes).

Eve recognizes that the manipulation will be successful
if there are enough lans present. If a single Ian attempts
to modify the type of the party on their own, Walter will
quickly identify the offender and remove them from the prem-
ises. If there is a large population of lans, then the Ians can
overwhelm Walter and disrupt the party. Eve could devise
a scheme in which there are a series of secret handshakes
that allow Ians to identify each other. They can then count
the number of times they used the secret handshake. This
has the disadvantage that if Walter knows about the secret
handshake, then Walter can identify the guests present at
the party who are lans by backtracking each and every in-
dividual that person has talked to and see if they used the
secret handshake. The secret handshake becomes a way that
both Eve and Walter can know with confidence if a particu-
lar party-goer is willing to assist the Eve or not — and can
both act accordingly..

Alternatively, Eve could take advantage of something in
the party that all party-goers share, for example the back-
ground noise, and exploit it as a communication channel.
During the course of the party, people will talk, and this
talking generates a level of background noise. When some-
one wants to speak intimately to another at the party, that
person typically lowers her voice, so the background noise
at the party decreases. Eve could devise a communication
channel that works as follows. Divide each hour into 5-
minute intervals beginning at the top of the hour. All of the

Tans will either carry on a normal conversation during each
5 minute interval, or do not talk at all during that interval.

If this “periodic pause communication channel” is used
when there are only a few Ians at the party, then there may
be a slight reduction in the background noise at the party.
If there is a more significant presence of Ians, the periodic
reduction in the background noise will be more pronounced.
Walter who is monitoring the party may notice the periodic
reduction in background noise. Walter must then distinguish
between some hypotheses. One is that the noise reduction
occurred naturally, as a result of the flow of conversation. A
second is that the reduction in background noise was mali-
ciously inserted as a form of communication. Even if Wal-
ter suspects that something malicious is going on, he must
identify each person who was quiet during that period, and
for each of these individuals determine whether the delay in
their conversation was malicious. Unfortunately, now Wal-
ter has another issue that they must consider: “who else was
listening?” Not all of the Ians may have been communicating
at the time when the quiet intervals occurred.

Eve may decide that they have an advantage but be un-
happy that Walter can potentially identify and remove a
large number of Ians before the party’s type has been changed
to a nefarious one. Eve may be willing to tolerate more un-
certainty because in this case she cares about the density
of Tans, whereas Walter needs to identify who is willing to
help. They modify the periodic pauses and introduce an ele-
ment of chance. The resulting scheme could be as simple as
generating a random number between 0 and 9 inclusive at
the beginning of the 5 minute interval, and pause conversing
when the number generated is 0. This means that roughly
10% of the Ians will pause in the party during any particu-
lar 5 minute interval. The resulting reduction in background
noise will not be as drastic as before, and there will be an
increased chance that the Ians will guess incorrectly that
they should converse during that interval, but to Eve guess-
ing wrong is not as bad as Walter guessing wrong. It is also
more likely that Walter will not notice that the background
noise has changed. Both Ian and Walter must determine if
the reduction in background noise is significant enough to
act upon. If Walter realizes that something is amiss, Wal-
ter now has three different hypotheses to choose from when
inspecting individual guests who did not pause during the 5
minute interval. These hypotheses are that the guest is they
are a normal (non-Ian) guest, or that the guest is an Ian who
opted not to participate during this window. A guest who
did converse during the 5-minute interval is either a nor-
mal, non-lan guests whose conversation naturally paused,
or an lan who is actively communicating during this inter-
val. There is no longer a straightforward distinction between
Tans and non-lans.

In an attempt to gain more insight into the motives of the
party goers, Walter may attempt to enlist additional record-
ing equipment and hire the requisite support staff. This is
an additional expenditure of resources that both Alice and
Walter must deal with, but does not cause Eve to modify
her strategy. Playing back a video does not offer any new in-
sight, other than increasing the amount of time Walter must
spend attempting to discern motives between lans and non-
Tans. Walter is still stuck playing a game to determine why
a specific party-goer chose to pause to pick up a drink from
a server, leave the party to powder their nose or even take a
breath. All of these recordings consume more resources but

Application Application Application
Operating Networking Quorum
System Libraries Emitter
Hardware . .
Abstraction | stwor
nterface
Layer

Figure 1: Quorum Emitter into the Operating Sys-
tem Diagram

may not even help Walter make progress in determining if a
party goer is really an lan.

Analogous to relying upon the background noise at the
party, a determined, network-based adversary could rely on
the global packet distribution on a network. In effect this
would allow the targeted malware several opportunities to
evade detection. Assembling a system which relies on the
existing network traffic for a communication scheme is not
trivial and several different technologies are required to im-
plement such a solution.

4.2 Proof of Concept Study

Now consider a large enterprise network in which most
of the hosts are infected. Each host is inserting the covert
timing channel into all traffic being emitted from that host.
If the signal only has a 10% chance of being inserting into
the traffic, then it would be reasonable to expect that about
10% of the infected hosts are emitting the signal at any single
point in time. A network defender could monitor the traf-
fic from a specific host and may not notice the signal being
emitted from that host as most of the time the signal is not
present, and even when present, it has only a slight impact
on the packet distribution. If instead of monitoring a single
host, the network defender (and the adversary) monitor all
traffic passing by the network interface of a host, they would
be more likely to detect the signal as it is the union of the
individual signals from multiple infected hosts. The signal
will be more pronounced as the number of infected hosts in-
creases. The individually infected hosts are not important;
only the presence of the community is important. This is
similar to bacterial quorum sensing, where pathogenic bac-
terial cells release autoinducers into the environment, and
when a critical concentration threshold is crossed, their be-
haviors change. With sufficient population social strategies
are more productive for survival.

The proof of concept consists of two different components:
an emitter and a receptor. The quorum emitter, illustrated
in Figure 1, resides on the host and monitors all traffic being
passed to the host’s network libraries. The quorum emitter
injects a delay according to a predefined set of emission prob-
abilities. If it is determined that a packet should be delayed,
a transmission delay is inserted which prevents the packet
from being delayed by a small mount of time (experimentally

Application Application Malware
Operating Networking Quorum
System Libraries Reciever
Hardware .)
- t A H
Abstraction etworking
Interface
Layer

Figure 2: Quourm Receptor Integration into the Op-
erating System Diagram

this delay was on the order of 40 ms). It would be reason-
able to assume that an adversary using this covert timing
channel would select a profile in which the delays introduced
by a specific host are small enough that they can be easily
attributed to sources other than insertion of a covert timing
channel.

The second component of the DQS system is the receptor
(see Figure 2). This component is more complex than the
emitter. It relies on Digital Signal Processing (DSP) and
performs statistical testing. Although an adversary can se-
lect a more traditional command and control scheme, the
statistical covert timing channel offers more resilient com-
munications in networks where modifying the contents of
packets or using a new protocol will allow the defenders to
identify the malware. Like the emitter, the receptor is em-
bedded within or hooked into the host’s networking libraries,
but unlike the emitter the receptor does not modify the traf-
fic. It only monitors the traffic being received by the host.

In the original experiment [6], the calculations that the
receptor performs are more computationally intensive than
those of the emitter. When the host receives a packet, the
receptor only records the time of arrival. The receptor main-
tains a count of packets arriving at the host, and it performs
a Discrete Fourier Transform (DFT) on the collected time
series. The receptor maintains an “ideal” emitter to com-
pare the observed signal against a correlation function. The
result of the comparison is recorded.

Follow on experiments in which a revised emitter was
tested on a network using existing network traffic revealed in
the presence of small amounts of network traffic, the corre-
lation DFT's was insufficient to reliably measure the signal.
The revised emitter used the Linux kernel’s Traffic Control
APIs to induce a periodic notch in which packets were de-
layed by 20 ms. Now instead of artificially inflating the
packet counts to induce a signal, the emitter relied on exist-
ing packets to embed a small signal in the traffic. This has
the effect of not attempting to mimic an existing protocol
which could be detected [8]. A revised detection scheme was
developed; in which the packet counts are collected and ac-
cumulated over much longer periods (i.e. 6 hours) and the
packets were counted in accumulated windows. The counts
were analyzed with the Kolmogorov-Smirnov test with the

null-hypothesis that the data was parametric in nature. This
test is important in that parametric and non-parametric
data requires different sets of statistical tests. The results
of the tests indicated that the null-hypothesis can be re-
jected (p-values were consistently < 107°). The next null-
hypothesis is that the data collections were all originated
from the same distribution. Friedman’s test with a signif-
icance level of 5% in conjunction with the Bonferroni cor-
rection, to determine if the result is statistically significant.
The statistical significance of the result varied as the like-
lihood of delaying packets was changed in the experiment.
If the result of the Friedman test returned a significant re-
sult, the Wilcoxon rank sum test could be used to determine
which periods contained anomalous data. The most interest-
ing results occurred when the probably of delaying packets
was set to 10%. In these cases there was a significant result
when monitoring the packet counts for the overall network
traffic, but if a filter was applied on a per host level each of
the tests returned results which indicated a non-significant
result. This means that over all a signal could be detected
on the network, but if a network defender attempted to nar-
row down the hosts which were causing the anomaly, no
individual host appeared to deviate significantly from the
norm.

The adversary and the network defender face similar dif-
ficulties in determining if a signal is present. The adversary
must statistically test to determine the probability that a
signal is present, and this requires that multiple tests be
performed. These tests require an additional piece of in-
formation, specifically the significance level that is required
to reject the null hypothesis. A higher significance level
means that the DQS receptor is less likely to trigger on false
positives, but the presence of a stronger signal means that
network defenders are more likely to notice the signal. A
lower significance level means that the receptor is likely to
act upon false positives and may prematurely transition, at
this point the adversary must weigh the risk of detection
against a premature transition to the social state.

During this study, different communication channels were
discussed. Of these, the statistical covert timing channel
was unique in that it allowed information to be exchanged
that was actionable for the adversary but not the network
defender. Even if the network defender obtained a sample
of the malware and reverse engineered the statistical covert
timing channel, they were not able to deterministically iden-
tify which hosts were infected by monitoring the network
traffic. If the communication channel was identified and
monitored, the network defender like the adversary could
monitor the traffic to determine the overall infection state.
The initial research led us to question if there was a more
general class of strategies available in which an adversary
relies on strategies that are based on uncertainty.

4.3 Model Application

In order to attempt to identify other situations in which an
adversary may attempt to utilize the DQS signaling scheme,
a formal model of the communication channel must be devel-
oped. The system described in Section 4 was reviewed and
the essential characteristics of the prototype were identified.
The characteristics identified are those that would allow an
adversary to identify resources which could be manipulated
in a way that signaling could be performed. By understand-
ing the requirements of the model that the adversary is using

to identify possible communication channels, a network de-
fender could also leverage the same model to attempt to
determine where signals may be exist in their network. As
a result of understanding the model the network defender
has the opportunity to develop ways to not only detect the
signal but also develop possible countermeasures.

We first show that the characteristics fit the requirements
given in Section 2 for a joint uncertainty approach. We
also show that the autoinducer in Section 4.2, which is the
network packet counts, are an appropriate random variable.

e Global Availability: The autoinducer should be a
shared resource which significant number of entities
routinely influence. The autoinducer should not be a
resource which is only available or accessed by a single
entity. Additionally a large number of entities should
routinely interface and influence the resource. In the
prototype experiment the overall packet counts on the
network are observable by hosts on the network (pro-
vided network level architectures are not filtering the
traffic observed by hosts). This also means that the
participating entities should frequently access the au-
toinducer. If the autoinducer is only infrequently ac-
cessed, significant change in behavior on the part of
a single entity would be identifiable. For example, if
all hosts on a network are relatively quiescent, a host
which suddenly contributes a significant about of net-
work traffic would be easily identifiable.

Further, provided that network traffic is not overly
restricted by the network architecture, any host can
monitor the traffic received by its NIC. Networks will
commonly have broadcast traffic such as Address Res-
olution Protocol (ARP), Microsoft NetBIOS (if Mi-
crosoft Windows clients are present), and possibly mul-
ticast-DNS (mDNS). Typically there are a large num-
ber of hosts on the same network and all of these hosts
are exchanging information periodically. Thus, the
characteristics of the autoinducer meets this require-
ment.

e Stochastic Process: The entity should interact with
the autoinducer in a way that is that can be analyzed
statistically but cannot be predetermined. The process
should not be deterministic in nature, for example if
the system has a Finite State Machine (FSM) the state
transitions cannot be modified as it would violate the
FSM’s transition table. The adversary could not ran-
domly modify the FSM to cause it to occasionally tran-
sition to a state that normally is undeceivable. This is
one of the most important features of the model, the
adversary will need to contribute minor modifications
to the local statistics of the autoinducer. These contri-
butions are small enough on the individual level that
they fall well within the normal statistics of the system.
When all of these contributions are added, the small
deviations are in the same direction so they are cumu-
lative in nature while the remaining unaltered commu-
nications are essentially random so they will cancel out
when accumulated.

Although the individual protocols are deterministic in
nature, e.g. the TCP protocol relies upon the three-
way handshake to start the session, the subsequent
number and duration of the messages is not part of

the protocol. HTTP is commonly used as a TCP pay-
load HTTP responses depend on the HTTP requests.
HTTP is no longer used to just convey static infor-
mation and the dynamic nature of the content return
in the response means that even subsequent identical
HTTP requests can receive different HT'TP responses.
Thus, the autoinducer may be viewed as a stochastic
process.

e Synchronization: All of the entities in the network
are able to maintain clock synchronization such that
knowing the times on multiple hosts there are only mi-
nor differences. These differences must also be minor
over longer time periods. In follow-up experiments, the
proof of concept required that all of the hosts maintain
a clock drift of less than 20 ms in 6 hours.

Networks commonly make use of protocols such as
NTP to maintain clock synchronization between hosts.
Hence the autoinducer meets the synchronization re-
quirement.

Based on this model, a number of different channels can
be identified. If a network is configured such that packets
are frequently fragmented, instead of delaying a packet by
a few milliseconds the autoinducer can rely on periodically
fragment a packet before transmission. These channels could
be used at the network level and although the communica-
tions channel so far discussed focused on the network level,
intra-host communication may also be possible.

S. ASYMMETRY & NON-DETERMINISM

Based on our model and analysis of it, our intuition is
that there is a role for shared uncertainty as a defense. In
the following sections, we examine how non-determinism has
played a role in malicious code, and then examine the space
more broadly, looking at the problem from a wider perspec-
tive.

5.1 History of Non-Determinism in Malware

The battle between attackers and defenders is perhaps
clearest in the malware space. Here, defenders have typically
been forced to respond to attackers who can probe defenses
at will.

A good example of a state where attackers and defenders
have very different needs with respect to certainty are “in-
fection markers”. The goal of these markers to is prevent a
piece of malware from repeatedly infecting the same file. For
example, some early malware would mark files as infected
by setting the seconds field on the file’s timestamp to a par-
ticular value, and then check for this value as an infection
marker.

Of course, such a marker is not reliable. Many legiti-
mate files (presumably 1 in 60) will be uninfected but have
a seconds field in the timestamp that indicates infection.
Furthermore, if an infected file is moved and the timestamp
changes, some infected files will be marked as uninfected.
Regardless of these risks, this strategy was both common
and effective for attackers. Using the seconds field of the
timestamp for detection purposes is acceptable to the at-
tacker (who simply misses an the opportunity to infect a
file) or, on occasion re-infects a file that is already infected.
Conversely, detection by timestamp is impractical for the
defender (who would suffer an excruciatingly high rate of

false positives). Similarly, infecting an infected file whose
timestamp was changed is acceptable to an attacker (in the
worst case, either the file is corrupted or the infection is
pointless) but marking a file as clean due to its timestamp
is not acceptable for the defender. In essence, the attacker
and defender have vastly different tolerances for error, mak-
ing the “soft” signal of the seconds field only advantageous
to one party.

Another example of tolerance for uncertainty is found in
malware that attempts to obscure its entry point (called
Entry Point Obfuscation (EPO) malware [28]). In an EPO
infection, the virus sometimes uses a heuristic to determine
where to implant the initial entry point of its code. Typi-
cally, the malware will attempt to attach itself to a function
preamble, in the hope that at some point the function will
be called and the malware executed. The technique is some-
what unreliable, but again is “good enough” for the attacker
to leverage.

In the case of EPO, the risk taken by the malware author
is that the code may not be executed, and hence the infection
is inactive. Similarly, the defender may not be able to detect
the malware reliably as a fundamental foundation of current-
generation virus scanning, emulation, may not execute the
actual entry point as it may be either deep within the host
code or rely on user input.

5.2 On Asymmetry and Uncertainty

Asymmetry has been discussed in the context of informa-
tion security and cybersecurity [16,24]. Liang and Xiangsui
have argued that exploiting the asymmetrical nature of cy-
berspace is essential in the future, especially when participa-
tion in symmetric conflicts will guarantee that an adversary
cannot win. It has been said that this asymmetry exists in
computer security because the adversary only needs to find
one weakness, but the defender needs to protect against ex-
ploitation of any weakness. Pavlovic described this situation
as the “fortification principle” [21]. The attack previously
discussed in Section 4 is an asymmetric attack because it
relies on the asymmetric information requirements of the
adversary and the defender.

The effect of uncertainty upon the actions of entities varies.
These actions depend on the nature and tolerance to error.
Consider an adversary who knows that a high-value target
is in one of three buildings. They can destroy one build-
ing, two buildings, or all of the buildings. The course of
action that the adversary selects will depend on the risk of
destroying the wrong building. If the adversary is intent on
minimizing the collateral damage, she may opt not to de-
stroy all three buildings at the risk of missing the target.
If the adversary does not care about the loss of the other
buildings, she can destroy all three buildings to be sure of
destroying the target. The uncertainty caused by the lack of
information will cause the adversary to act differently based
on their tolerance to risk. In the first case, the adversary will
prefer deterministic information; she is interested in being
certain of the particular structure that the high-value target
is in. In the second case, the adversary is not affected by
the lack of information; knowing that the high-value target
is in one of the three buildings is sufficient to have all three
buildings, and therefore the target, destroyed.

“Non-deterministic” attacks take advantage of the differ-
ent information requirements of the actors involved. The de-
fender needs certainty while the adversary can get by with-

out it — a particular confidence may be enough. For exam-
ple, an adversary launching an attack on a remote host may
be comfortable with an exploit that only works 1% of the
time, or even less. The adversary can either launch the at-
tack repeatedly until the host is successfully compromised,
or can attempt to exploit a population of hosts large enough
that, with very high probability, at least one will be com-
promised. The network defender is unable to rely on such
a probabilistic approach because if even one host is com-
promised, regardless of how low the probability of such a
compromise is, the defense has failed. An enterprise would
not be able to function if their software worked only 1% of
the time; indeed, even enterprises which guarantee 99.99%
uptime still have difficulties when that 0.01% of downtime
occurs.

Defensive strategies have attempted to exploit random-
ness to their advantage. Note that this is different from ex-
ploiting bilateral uncertainty. As an example, many modern
operating systems use Address Space Layout Randomization
(ASLR) in an effort to thwart exploits that rely on fixed ad-
dresses. Section 3 described the asymmetry in uncertainty
in this defense.

In these situations, the network defender is limited by
their need for determinism to operate successfully. The ad-
versary can accept a non-deterministic approach in which
the likelihood that their attacks are successful is high enough
that they can still accomplish their mission. In other words,
the network defender can accept no risk of failure in the
defense mechanisms. But the adversary can accept a very
high risk of failure of any particular instance of the attack
by creating enough instances to ensure that at least one will
work.

An interesting observation is that the nature of covert
channel exploitation and side channel attacks invert the usual
“uncertain attacker, certain defender” paradigm. When two
attackers communicate using a covert channel, their goal is
to communicate in a way that looks random to the defender
but not to the attackers. So here, the attackers have mini-
mal to no uncertainty (depending on the nature of the chan-
nel and signaling mechanism), whereas ideally the defenders
have maximum uncertainty. Side channel attacks, which are
effectively covert channel exploitations where the “sender”
is a system rather than an active entity, again has the at-
tacker deriving some degree of determinacy out of what to
the defender appears to be non-deterministic.

Along the same lines, the technique of generalization for
anonymization and data sanitization [3] adds uncertainty
with the goal of preventing the attacker from determining
the unsanitized data to a precision sufficient for compromise
(where “compromise” is defined from the attacker’s point of
view). It also may add uncertainty for the defender, those
who are generalizing the data. For example, if the sensors
gathering the data do so in a coarse manner, the data may
arrive at the defenders’ site in a generalized form. The de-
fenders then generalize it further, to prevent specific ranges
from being revealed. In this case, these meet the paradigm
of joint uncertainty.

A method of protecting sensitive information is through
the use of negative surveys [4,5]. A researcher uses a nega-
tive survey to query a subject in a way that allows the sub-
ject not to expose potentially sensitive information. This
work is different in a few respects from our idea. First, the
researcher is different from the attacker. The researcher is

willing to use a negative survey that affords the subject op-
portunities to preserve sensitive information but allows the
researcher to potentially gain useful information. On the
contrary, the attacker is actively seeking to exploit informa-
tion from the subject and is willing to generate arbitrary
and potentially intrusive queries to get the desired infor-
mation. In addition, the techniques proposed in this paper
are based on both the attacker and defender dealing with
situations in which they are not interested in determinis-
tic information (e.g. Eve in the cocktail party from Section
4.1) or have deliberately given up access to deterministic in-
formation (e.g. the defender using the MMMU discussed in
Section 3). With negative surveys, the subject being queried
has complete access to the information in question.

Finally, there has been work on the idea of shared system
uncertainty. van Dijk et al. [29] examined a simple security
game where players did not know the game state until they
played a move. The work spawned research into optimum
strategies under mutual uncertainty, and could provide an
interesting framework for a theoretical model for the tech-
niques we are using. Schéttle and Bshme [23] have also
explored the idea of uncertainty in stereography. Stenogra-
phy is an interesting topic, but the effect on the channel’s
value as a result of its discovery are slightly different. Both
the techniques described in this paper and communication
via steganographic channels rely on modifying existing re-
sources within the environment. But agents using a channel
such as the digital quorum sensing channel are able to oper-
ate in an environment where the defenders are aware of the
channel, whereas the discovery of a steganographic chan-
nel defeats the purpose of using steganography. The use
of steganographic techniques in conjunction with the tech-
niques discussed in this paper could open some interesting
opportunities for the attacker and defender, especially with
regards to identifying potential channels that could be used
to exchange information.

5.3 The Paradigm, Redux

While we have illustrated our idea in several examples,
there is a wider lesson to be learned. In each case, uncer-
tainty as to state played a role — and this uncertainty was
shared by both attacker and defender. For example, for
self-infection checks in malware, neither side has additional
information about the state of a file, but this level of uncer-
tainty penalizes the defender more than the attacker. That
is, the asymmetry in the information requirements make the
strategy advantageous to one side.

The important difference between our approach is that
in our system, attacker and defender share the same level
of uncertainty — they differ not in their knowledge, but in
their requirements for usable information. We argue that
where such an approach can be used, it is more powerful
than existing approaches because, quite simply, one cannot
leak information one does not have. In ASLR, for exam-
ple, attackers use probes to slowly gather information about
the address space of the target machine. This is possible
because the defender actually knows the location of various
structures in memory.

We envisage applications of this paradigm where a sys-
tem is designed to contain only the level of certainty needed
to accomplish a particular action and nothing more. For
example, consider a GPS system that is embedded in a ve-
hicle. If our driver only needs to know approximate location,

but there exists a threat where an attacker needs to know
the location at much higher precision (perhaps to detonate
a roadside device or target a missile) our existing design
paradigms would like to install a regular high precision GPS
and attempt to blind the attacker to its output. We argue
a better approach is to limit the fundamental accuracy of
the location device in the vehicle at the hardware level, so
the GPS system, even if fully compromised, provides only
enough positioning for the defender, but not the attacker.

Such an approach of deliberate uncertainty should come
as no surprise to anyone: it is an approach that has been
used in military operations and espionage for as long as their
have been wars, where each member of a team may have
been given only that information that is critical to their
performance of a particular task. We ask why computer se-
curity should not work the very same way. In this argument,
we are not conflating incorrect information with missing in-
formation: both have a role in developing a new model of
computer security that is based on the deliberate use of bi-
directional uncertainty as a defensive or offensive technique
in the cyber realm.

6. CONCLUSIONS

In this paper we have argued that shared uncertainty
about a system can be a useful technique for both attacker
and defender. We argue that either side can leverage an
asymmetry in the information requirements that need to be
met in order for a particular mission to fail. We further
argue that such uncertainty is preferential, where possible,
to defenses that rely on only one party having uncertainty
about the state of a particular system.

We illustrate this by exploring an experimental system
that allows for limited coordination of malware activity in
a way that is meaningful to the attacker, but extremely dif-
ficult to leverage for the defender. In such a system, both
attacker and defender have the same knowledge: the prob-
ability that a certain percentage of machines are infected,
but this knowledge has radically different usefulness to each
party. We envisage this difference in value to be an interest-
ing area of exploration, ripe with possibilities.

In our arguments, we draw a distinct border between sys-
tems that rely on asymmetric knowledge — that is, where
either the attacker or defender knows something that the
other does not — and systems where both parties poten-
tially have access to the same information. Defenses such
as ASLR are quite different from the type of scenario we
have considered. Instead, where there is uncertainty in a
signal that cannot be overcome by knowledge of a shared
secret, differences in the acceptable error rate or tolerance
for uncertainty for attacker and defender become the defin-
ing factor for utility. Such asymmetric attacks should be
explored as a matter of urgency because like it or not, both
attacker and defender will use whatever means available to
gain an upper hand. In our own work, it seems that the
different goals of attacker and defender give the advantage
quite firmly to the attacker; more research is needed to see
if this can be changed.

An interesting question, not explored in this paper, is the
level of uncertainty needed in the attacker’s view, and in
the defender’s view, to make the joint uncertainty model an
effective defense. Can one devise a general methodology for
deriving the variables, and the minimum entropy associated
with those variables, to ensure the defender’s information is

useless to the attacker even if it should be revealed? The
uncertainty in the attacker is clearly related to that of the
defender, and vice versa; but what is the dependence? How
does all this relate to the specific goals of the attacker, or
assets and resources protected by the defender?

In closing, we note that there has been a great deal of focus
on techniques that rely on limiting the adversary’s knowl-
edge of the system. For example, Moving Target defenses
rely on the attacker not knowing the movement of the pro-
tected resource (whereas the defender does). We do not see
this as a bad thing, and believe such approaches will exist
for a long time in the security world as they can provide
significant protection. However, we ask if there is a larger
potential role for more fundamental uncertainty in the at-
tacker/defender playbook. In the real world, these kind of
asymmetries are common. In the digital world, however, the
use of these approaches is much scarcer.

7. ACKNOWLEDGMENTS

The authors would like to thank Dr. Marco Carvalho,
Evan Stoner and Troy Toggweiler from the Harris Institute
for Assured Information, at the Florida Institute of Tech-
nology for allowed the use of network resources for conduct-
ing experiments. The authors would also like to thank Dr.
Heather Crawford from the Harris Institute for Assured In-
formation, at the Florida Institute of Technology for her con-
tribution in revising the statistical tests that were required.
Lastly the authors would like to thank Keith Johnson, from
the Department of Computer Sciences, at the Florida Insti-
tute of Technology for providing access to additional network
resources.

This material is based in part upon work supported by the
National Science Foundation under Grants Number DUE-
1344369 and DGE-1303211. Any opinions, findings, and
conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the
views of the National Science Foundation.

8. REFERENCES

[1] S. Cabuk, C. E. Brodley, and C. Shields. Ip covert
timing channels: design and detection. In Proceedings
of the 11th ACM conference on Computer and
communications security, pages 178-187. ACM, 2004.

[2] J. Costerton, P. S. Stewart, and E. Greenberg.
Bacterial biofilms: a common cause of persistent
infections. Science, 284(5418):1318-1322, 1999.

[3] R. Crawford, M. Bishop, B. Bhumiratana, L. Clark,
and K. Levitt. Sanitization models and their
limitations. In Proceedings of the 2006 New Security
Paradigms Workshop, NPSW ’06, pages 41-56, New
York, NY, USA, Sep. 2006. ACM.

[4] F. Esponda and V. M. Guerrero. Surveys with
negative questions for sensitive items. Statistics &
Probability Letters, 79(24):2456-2461, 2009.

[5] F. Esponda, K. Huerta, and V. M. Guerrero. A
statistical approach to provide individualized privacy
for surveys. PloS one, 11(1):e0147314, 2016.

[6] M. E. Fioravanti and R. Ford. Bacterial quorum
sensing for coordination of targeted malware. In
Malicious and Unwanted Software: The Americas
(MALWARE), 2014 9th International Conference on,
pages 101-108. IEEE, 2014.

[7] B. K. Hammer and B. L. Bassler. Quorum sensing
controls biofilm formation in vibrio cholerae.
Molecular microbiology, 50(1):101-104, 2003.

[8] A. Houmansadr, C. Brubaker, and V. Shmatikov. The
parrot is dead: Observing unobservable network
communications. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 65-79. IEEE, 2013.

[9] Y. Huang and A. K. Ghosh. Introducing diversity and
uncertainty to create moving attack surfaces for web
services. In Moving Target Defense: Creating
Asymmetric Uncertainty for Cyber Threats, volume 54
of Advances in Information Security, pages 131-151,
New York, NY, USA, 2011. Springer.

[10] S. Jajodia, A. K. Ghosh, V. Swarup, C. Wang, and
X. S. Wang. Mowving target defense: creating
asymmetric uncertainty for cyber threats, volume 54.
Springer Science & Business Media, 2011.

[11] M. H. Kang, I. S. Moskowitz, and S. Chincheck. The
pump: A decade of covert fun. In Computer Security
Applications Conference, 21st Annual, pages 7—pp.
IEEE, 2005.

[12] M. H. Kang, I. S. Moskowitz, and D. C. Lee. A
network pump. Software Engineering, IEEE
Transactions on, 22(5):329-338, 1996.

[13] B. W. Lampson. A note on the confinement problem.
Communications of the ACM, 16(10):613-615, 1973.

[14] K. Lewis. Persister cells, dormancy and infectious
disease. Nature Reviews Microbiology, 5(1):48-56,
2007.

[15] K. Lewis. Persister cells. Annual review of
microbiology, 64:357-372, 2010.

[16] Q. Liang and W. Xiangsui. Unrestricted warfare. PLA
Literature and Arts Publishing House Beijing, 1999.

[17] N. Mgker, C. R. Dean, and J. Tao. Pseudomonas
aeruginosa increases formation of multidrug-tolerant
persister cells in response to quorum-sensing signaling
molecules. Journal of bacteriology, 192(7):1946-1955,
2010.

[18] I. S. Moskowitz and M. H. Kang. Discussion of a
statistical channel. In Proceedings of IEEE-IMS
Workshop on Information Theory and Statistics,
Alexandria, VA. Citeseer, 1994.

[19] W.-L. Ng and B. L. Bassler. Bacterial quorum-sensing
network architectures. Annual review of genetics,
43:197-222, 2009.

[20] M. Oram. Determined Adversaries and Targeted
Attacks. Technical report, Microsoft Corp., Redmond,
WA, USA, June 2012.

[21] D. Pavlovic. Gaming security by obscurity. In
Proceedings of the 2011 workshop on New security
paradigms workshop, pages 125-140. ACM, 2011.

[22] S. T. Rutherford and B. L. Bassler. Bacterial quorum
sensing: its role in virulence and possibilities for its
control. Cold Spring Harbor Perspectives in Medicine,
2(11):a012427, 2012.

[23] P. Schéttle and R. Bohme. Game theory and adaptive
steganography. IEEE Transactions on Information
Forensics and Security, 11(4):760-773, 2016.

[24] W. Schwartau. Asymmetrical adversaries. Orbis,
44(2):197-205, 2000.

[25] H. Shacham, M. Page, B. Pfaff, E.-J. Goh,

N. Modadugu, and D. Boneh. On the effectiveness of
address-space randomization. In Proceedings of the
11th ACM conference on Computer and
commumnications security, pages 298-307. ACM, 2004.
D. Shah, Z. Zhang, A. B. Khodursky, N. Kaldalu,

K. Kurg, and K. Lewis. Persisters: a distinct
physiological state of e. coli. Bmc Microbiology,
6(1):53, 2006.

B. Spengler. Pax: The guaranteed end of arbitrary
code execution. G-Con2: Mezico Clity, Mexico, 2003.
P. Szor. The art of computer virus research and
defense. Pearson Education, 2005.

M. van Dijk, A. Juels, A. Oprea, and R. L. Rivest.
Flipit: The game of "stealthy takeover”. Cryptology
ePrint Archive, Report 2012/103, 2012.

L. Yao, X. Zi, L. Pan, and J. Li. A study of on/off
timing channel based on packet delay distribution.
Computers & Security, 28(8):785-794, 2009.

