
1

Insider Attack Identification and Prevention in
Collection Oriented Dataflow-based Processes

Anandarup Sarkar∗, Sven Köhler∗, Bertram Ludäscher∗, Matt Bishop∗
∗University of California, Davis

{asarkar, svkoehler, ludaesch, mabishop}@ucdavis.edu

Abstract—We introduce an approach of automatically iden-
tifying attacks by insider agents on data-flow based processes
having a collection-oriented data model, and then improving the
processes to prevent the attacks against them. Some process
data, if used by some agents via steps at certain points of
timeline, will lead to a privacy attack. A manual identification
of these vulnerable data and rogue agents is quite tedious; thus
our approach automatically performs these identifications. We
model a process and an attack based on a directed, acyclic
graph, with steps, reading and writing data, and controlled by
agents. Then we perform a declarative implementation to find
out if this attack model can be mapped onto the process model
based on some similarity criteria. If these criteria are met, we
conclude that the attack model is “similar enough” to the process
model, to be successfully realized through it. Each possible way
of mapping shows an avenue of attack on the process. Agent
collusion scenarios are also identified. Finally, our approach
automatically identifies process improvement opportunities and
iteratively exploits them, thereby eliminating ways in which the
attack can be carried out against the process.

I. INTRODUCTION

Determining if an attack can take place on large real-world
processes, is not trivial. In elections, vulnerability analyses [1],
[2] have focused on security or privacy aspects of specific parts
of a process. But few have conducted a holistic vulnerability
analysis, investigating the interactions among the steps, data
and agents in a process [3], [4].

We present such a holistic vulnerability analysis approach-
DIAS (Data Interaction with Agents and Steps). Section II
introduces a a motivating election process example. Section
III presents a high level overview of DIAS. There are agents,
controlling steps, which do not read some data flowing along
the datastream, but have the capability (can read) to do so. If
they actually read these data at certain points of the process
timeline, in combination with other data, via the steps, a
privacy breach scenario will arise. In large processes, it is
difficult to manually identify which agents, controlling which
steps, can read which data, to lead to a privacy attack. Thus,
we model a process and a possible attack as directed acyclic
graphs with data, steps, agents, filters and restrictors (Section
IV). The agents in the graphs are all insiders who have
different access levels to the collection-oriented data moving
in between the steps. Then DIAS identifies automatically, if
there are any process steps which can read such data, which
in combination with other data, can give rise to the attack.
This is achieved by mapping the attack model onto the process
model based on some similarity matching criteria. A successful

attack identification is defined in the form of satisfaction of
these matching criteria (Section V). The intuition behind this
is, these criteria examine whether the process model can act as
the supportive medium, with agents, being capable of reading
certain “normally unutilized” data at certain points of timeline,
so that the attack can be realized through it.

DIAS can also identify attacks with apparent dissimilarity
between the attack and the process model. For example, if an
attack model step requires reading a vote in an election, and
a process model has a step which allows a manual reading of
the vote, then the attack step can be mapped onto the process
step, and hence be successful. This is because the attack model
step just needs to read a vote, and whether it is a manual
reading of the vote or a computer software reading the vote,
as provided for by the process model, the attack step can be
realized through this corresponding process step in either case.

DIAS also identifies agent collusion scenarios. We use logic
rules to implement (Section VI) the attack model-process
model similarity matching criteria. These rules generate and
test the different possible ways in which an attack model is
similar to a process model according to the matching criteria,
each corresponding to a way in which the attack can be carried
out on the process, thereby identifying the rogue, “responsible
for attack” agents too. Section VII presents the results of
applying DIAS on election process examples.

DIAS automatically searches for improvement opportunities
to eliminate the identified attacks on a process (Section VIII).
The steps in the process are scanned for improvement oppor-
tunities in a descending order of the number of times they
are attacked across the different possible ways of attack. This
scanning order ensures that a larger number of attack ways
are eliminated in the initial rounds of improvements, thereby
quickly presenting the user with a more robust process model.
We then evaluate our improvements and iteratively exploit the
improvement opportunities to ensure that the process is made
robust against the attack in all possible ways or in as many
possible ways as the improvement opportunities can eliminate.

We conclude our paper with related work in Section IX, and
summary of DIAS and future direction in Section X.

Thus, given a set of process and attack models, DIAS
identifies which attacks may be carried out successfully on
which of these processes by which agents in which ways, and
then make the processes robust against these attacks.

A major advantage of DIAS is that it provides a formal
analysis mechanism to identify and remove vulnerabilities
from a process statically, without the actual process needing to



2

s1:decide_on_vote

d2:vote d3:ballot

s2:write_vote_on_ballot

d4:vote

c3:p

d5:ballot

c4:p

s4:compose_email

d9:ballot

c6:p

d8:voter_signature

d10:email

d7:vote

s5:send_email

d14:email

c9:p

s6:validate_signature

d19:email

c10:d

d12:ballotd13:voter_signature

d16:approved d18:ballot

d1:ballot

c2:g c1:p

d6:voter_signature

c7:p

d11:vote
c11:g

d15:roster

c12:g

d17:vote

ag1:voter

s3:sign

ag2:receiving_clerk

n
c5:g

n
c8:g

Fig. 1. Vote by Email process example: A voter decides and writes
his vote on a ballot file. He also scans his signature on a file. The
voter then composes an email with his vote-annotated-ballot and
signature files as attachments, sending it out to the Election Office.
The receiving clerk approves the legitimacy of his vote, after verifying
the voter’s signature against the roster registration record.

be carried out, thereby saving lots of time and money wasted
for after the fact analyses.

II. MOTIVATING EXAMPLE

Figure 1 shows a vote-by-email process example to motivate
DIAS. The figure nodes are either oval, rectangle or rounded
rectangle. The ovals represent data, rectangles the steps, and
rounded rectangles the agents. Nodes are labeled as id:t
where id is a unique node identifier and t is a node type.
For example, in Figure 1, the first step node has the label
as s1:decide on vote, where s1 uniquely identifies the step,
which has a type of decide on vote. Refer to Section IV
for explanations on node types. We consider a collection
oriented hierarchy where a datum may possess subdata. A
step can contain multiple functions. For function semantics,
refer to Section IV. In a vote-by-email process, a voter
decide on vote, and write vote on ballot. The ballot is a file,
and vote is a marking on that file. He also signs, scanning his
signature into a file. Write vote on ballot and signing can be
parallel activities. The voter then composes an email, attaching
his voted ballot file, and signature file to the email, which are
two subdata of different types. He then sends his email via the
Internet to the Election Office, where a receiving clerk, com-
pares the signature on roster (a pre-recorded registered voters’
list) with the email attached signature. A match signifies that
the voter is registered, in which case the clerk ‘approve-marks’
the email via the validate signature step, indicating that the
attached vote must be counted as a valid one. Note that during
the validate signature step, the clerk is not authorized to
open the voted ballot attachment. He also removes the voter
signature file from the email, so that the secret of “who has

s7:
read_vote

d24:
vote

d26:
email

s8:
validate_signature

d32:
email

c17:d
d27:
voter_
signature

d25:
ballot

d31:
approved

d30:
ballot

d20:
vote

c13:p

d21:
ballot

d23:
email

c14:p

d22:
voter_
signature

c15:g

d28:
roster

c16:g

d29:
vote

ag:
receiving_
clerk

Fig. 2. A privacy attack example: A receiving clerk at the Election
Office Reads Vote by opening the voted ballot attachment in the email,
sent by the voter. He then checks the attached voter’s signature as
well, during the Validate Signature step, thereby breaching the voter’s
privacy, since now he knows for whom a voter has voted.

voted for whom” cannot be inferred by a downstream agent,
handling the voted ballot attached email.

Let us now consider how a privacy breach attack may occur,
as shown in Figure 2. The initial steps from decide on vote till
send email remain the same as in the vote-by-email process
and thus have not been shown. The receiving clerk after getting
the email as an output from the send email step, performs the
read vote step. During this step, he reads the voter’s vote, by
opening the voted ballot attachment in the email. Then he reads
the attached voter signature file during the validate signature
step, thereby accomplishing the voter confidentiality breach
attack, since from the voter’s signature and the ballot’s vote
he can know for whom a voter has voted.

Given this example process and attack, can DIAS identify
automatically, if the agents can successfully carry out this
attack on this process? Can it find out how to improve the
process to prevent the attack? These are the principal questions
which we solve in the following sections.

III. HIGH LEVEL APPROACH OVERVIEW

Figure 3 shows a high-level overview of DIAS. A domain
expert defines a set of process and attack models. He picks a
process model P and an attack model Ai from the respective
sets and provides them as inputs to the Generate Attack
Maps activity to find out if Ai can be carried out against P . Ai
represents any attack in the stream of attacks A1, A2, . . . Am
making up the attack model set. We use Answer Set Program-
ming (ASP) [5], [6], a rule-based declarative programming
paradigm, to implement the Generate Attack Maps ac-
tivity. The implementing program encodes the valid conditions
under which an attack is successful and also enumerates all
possible ways in which Ai can be carried out against P based



3

!

!
Pick!a!process!P!

!
A1!
!

Am!

!
A2!
!

…!

Generate!A4ack!Maps!! Possible!A4ack!Maps!
M1,M2,…,Mk!

No!A4ack!
Maps!produced!

P!is!robust!against!!Ai!

Yes!

Improve!P!

User!selects!which!improvement!
opportunity!to!apply!

No! Improved!Process!VariaEons!
P1,!P2,…,!Pq!

User!selects!Pj!based!on!the!locaEon!in!
P,!where!the!opportunity!is!exploited!

Selected!opportunity!!

Improved!process!
variaEon!Pj!

A4ack!Models!

ImplemenEng!program!decides!where!in!P!the!
improvement!opportunity!will!be!exploited!

Fig. 3. Approach overview. Rectangles:Activities, Cut cornered rectangles:Inputs and Outputs, Diamond:Decision box. DIAS presents an
iterative process improvement and evaluative approach to test a process P ’s vulnerabilities against an attack Ai, and eliminating them.

on those conditions. We denote this set of enumerated attack
scenarios as M1,M2, . . . ,Mk. If this set is empty, then Ai
cannot take place on P .

If non-empty, this set of attack scenarios is input to
Improve P , which modifies P to thwart Ai. The user selects
an improvement method which can be exploited to prevent
Ai. Improve P then scans and applies (if the opportunity
exists) the user selected improvement method on the steps
in P in a descending order, addressing the most attacked
step first, followed by the lesser attacked ones. Thus it is
the implementing program which decides the location in P in
which the selected improvement opportunity will be exploited.
P1, P2, . . . , Pq is a set of “improved” process models,

produced as an output from Improve P , where every set
element is a variant of process P with certain attack avenues
for Ai against it, being thwarted. Each variant represents a way
by which the same process improvement method can be used
in different locations in P to eliminate attack ways. P can
contain multiple steps, which are attacked the same number
of times across the different possible ways of attack and all
or some of them can be exploited for the same improvement
method. Thus a new variant is produced depending on the
location of P ’s step actually exploited by Improve P . The
user then selects a variant, say Pj from this improved set,
which is then again provided as an input to the Generate
Attack Maps program. Generate Attack Maps again
runs the ASP rules for attack determination based on the attack
conditions to test out if Pj is indeed improved against Ai. In
this way, the process improvement and evaluation continues
iteratively till P becomes robust against Ai in all possible
ways, or in as many possible ways as the improvement
methods can eliminate. Then, we can reapply DIAS to check
the robustness of the next process selected from the set of
process models. Thus, DIAS can be applied to all possible
combinations of attack model-process model pairs from the
input sets, to identify and improve the vulnerable processes.

IV. PROCESS AND ATTACK MODELS

In this section, we define the syntax and semantics of our
graph-based language, modeling processes and attacks. We
define process and attack models based on a directed acyclic
process graph G = (V,E) whose nodes V = VS ∪ VD ∪
VT ∪ VF ∪ VY are steps VS, data VD, agents VT, filters

VF and restrictors VY. A step represents a task; a datum is
a knowledge; an agent controls a step; a filter is an add-on
activity to a step, capable of removing certain data from the
datastream and finally, a restrictor is also an add-on activity
to a step, preventing it from reading certain datum. With each
kind K ∈ {VS,VD,VT,VF,VY} of node in V , we associate
a set of types TK . For example, for K = VD (datum), we
might have the set of data types TD = {email,vote}. Types
of the same kind for data types TD and step types TS , can
be arranged into a type hierarchy. Conceptually, a type may
be further structured to contain various properties like a class
in object oriented paradigm [7]. For example, email can have
properties as emailId, sender etc. Type hierarchy follows the
inheritance concept of object oriented paradigm [8].

With nodes, for example, for a data node d ∈ VD, we
associate a single type t = type(d) from TD. Formally,
we have a family as typeK : VK → TK . Thus, we have
typeD: VD → TD, which associates data types to data nodes.
Similarly types can be associated with members from other
node kinds. If it’s clear from the context what kind of node
we’re working on, we can just say type(n) = t. For example
in Figure 1, type(d1) = ballot. Nodes have labels of the form
nodeId:type as already discussed in Section II.

Each datum in G maybe composed of one or more similar
or differently typed, children subdata. Thus in Figure 1, the
parent email datum d10 has a pair of children, ballot datum
d9, and voter signature datum d8. A subdatum is also a datum,
which may itself contain other subdata. For example, d9 has a
child as d7. Thus, there can be multiple hierarchical levels in
our data model. A datum with zero subdata (d4 in Figure 1) is
an atomic entity. A transparent datum (dashed node) allows
read access by a step to all of its subdata. An opaque datum
(solid node) restricts the read access to all of its subdata by a
step. For example in Figure 1, the send email step s5 reading
the transparent email datum d10, canRead all of its children,
i.e., ballot datum d9 and voter signature datum d8. But if d10
were solid, then s5 cannot read either d9 or d8.

The edges E = ER∪ECR∪EW∪EC∪EDU∪ECO∪EX∪EH are
as follows: ER ⊆ VD × VS is the set of read edges signifying
that steps consume data. A step requires access to all data
which are connected to it via read edges. For example, in
Figure 1, step s1 of type decide on vote, reads datum d1 of
type ballot. ECR ⊆ VD × VS is the set of canRead edges



4

signifying that steps have the capability to read data, but do
not actually read or use them as their inputs, while carrying
out the process. For example, in Figure 1 a canRead edge can
be inferred between the step s6 of type validate signature
and the datum d12 of type ballot. For assumptions governing
the inference of a canRead edge, refer to Access assumptions
paragraph later in this section. EW ⊆ VS×VD is the set of write
edges signifying that steps produce data. A step produces all
the data to which it is connected via write edges. For example,
in Figure 1, step s1 of type decide on vote, writes datum d2 of
type vote. EC ⊆ VT×VS is the set of control edges signifying
that agents perform steps. For example in Figure 1, agent
ag1 of type voter, controls step s1 of type decide on vote.
EDU ⊆ VD × VD is the set of dependsUpon edges showing
which specific output data are functions of which specific input
data to a step. The dependsUpon edges (blue) travel opposite
to the usual dataflow direction determined by the read and
the write edges. Thus, in Figure 1, datum d2 of type vote
depends on datum d1 of type ballot. ECO ⊆ VD × VD is the
set of isChildOf edges denoting the parent-child relationship
between data. An ischildOf edge in G is modeled as a dotted
one between the parent and the child data, with the parent
on top of the child in the space layout. Thus, the parent
datum d10 of type email is connected to its pair of children of
types ballot and voter signature, via the isChildOf edges. The
edges are undirected, since they do not model any dataflow or
dependency relationship. EX ⊆ VF×VS is the set of filter edges
denoting that filters remove certain types of data from the
datastream, thus preventing them from appearing as outputs,
or children on the outputs from the steps with which they are
associated. EH ⊆ VY×VS is the set of restrict edges denoting
that restrictors prevent the associated steps to read a datum or
a subdatum of a particular type. Unlike filters, restrictors do
not remove any data from the process datastream. A path is a
sequence of nodes v1, v2, . . . , vn such that (vi, vi+1) ∈ E.

The data dependency function declarations determine the
semantics of G. I denotes the set of all step function identi-
fiers which relate the output data with the input data in G.
O={p, g, d, u} defines the set of types of operations being
performed by a data dependency function, indicating the
meanings of the data dependencies. They are as follows:

• Pass through (p) denotes that a step function, without
modifying the input datum, writes it as is, as an output.

• Generate (g) denotes that a step function produces a new
output datum, previously non-existent on the datastream.

• Delete (d) signifies that a step function removes an input
datum from the datastream.

• Update (u) signifies that a step function, changes one or
more property values of an input’s data type (but not the
type itself) to produce an output datum.

We associate labels to dependsUpon edges which are of the
form i : o where i ∈ I, o ∈ O.

For example, the step s1 of type decide on vote in Figure 1
has two data dependency functions, d3 = c1(d1), and d2 =
c2(d1). The function c1 has a pass through semantics, reading
datum d1 of type ballot, and passing it along the datastream,
as an output datum d3 of type ballot. Another function c2

d1:
Voter 

Signature

s:
Send Email

canRead

d3:
Email

d2:
Ballot

d4:
VotecanRead

d1:
Voter 

Signature

s:
Send Email

canRead

d3:
Email

d2:
Ballot

d4:
VotecanRead

e:
Ballot

(a) (b)

canRead

Fig. 4. (a) Step s of type Send Email reads transparent datum d3 of
type Ballot- hence s canRead all the children of d3, i.e., datum d1
of type Voter Signature and datum d2 of type Ballot. (b) Step s can
no longer read the datum d2 because of the matching restrictor.

s1:
decide_on_vote

d2:
vote

d3:
ballot

s2:
write_vote_on_ballot

d4:
vote

c3:p

d5:
ballot

c4:p

s4:
compose_email

canRead

d1:
ballot

c2:gc1:p

canRead

d6:
voter_signature

ag1:
voter

s3:sign n

c5:g

Fig. 5. Step s4 of type compose email canRead the upstream ballot
datum d1; the intermediate steps s1 and s2 have functions c1 and
c4 respectively, which passes the ballot unmodified onto s4.

has a generate semantics, reading datum d1 of type ballot,
and writing datum d2 of type vote. Thus the label on the
dependsUpon edge between d3 and d1 is c1:p and that on the
edge between d2 and d1 is c2:g. 1

A pass through of a parent datum by a step implies a pass
through of all the subdata of that parent datum by that step.

Next we describe the assumptions, governing the inference
of a canRead edge in G.
Access assumptions: A canRead edge is an inferred edge
which follows from the below assumptions:

1) If a step reads a transparent parent datum, then it canRead
all children subdata of that parent. However, a restrictor
may prevent read access by a step to a child subdatum
which matches its type. Figure 4 (a) shows an example
where the step s of type Send Email reads the transparent
parent datum d3 of type Email, implying that it canRead
all the children data of d3, i.e., d1 of type Voter Signature
and d2 of type Ballot. In Figure 4 (b), a restrictor of type
Ballot prevents the step s from reading d2.

1Generate function dependency may not have any input, in which case we
label the input as n (null). Function c5 in Figure 1 shows such an example.



5

2) If a step reads a subdatum in a transparent parent datum,
then it can read any other subdatum of that parent datum.
However, just like in Access assumption 1), a restrictor
may prevent read access by a step to a child subdatum
which matches its type.

3) If a step reads a subdatum of a parent datum, then it can
read the enclosing parent as well. The intuition follows
from the scoping concept in a programming language,
where a read access to an inner entity automatically grants
a read access to the enclosing outer entity.

4) The isChildOf relation is defined transitively over the
set of all data VD in G, thus facilitating the inference
of additional canRead edges between a step and the
descendants of a transparent datum. Since a step canRead
a child only if its parent is transparent, as soon as we
encounter an opaque datum, in the path, made up of data
connected by isChildOf edges, cutting across the parent-
child hierarchical levels of G, we can infer no more
canRead edges between the descendants of that opaque
node and the step reading the opaque node, or any of
its ancestors. For example in Figure 4 (a), an additional
canRead edge can be inferred between the step s of type
Send Email and datum d4 of type Vote. The step s reading
datum d3 implies that s canRead its descendant d4 as
well, and the parent of d4 being transparent, allows for
this possibility.

5) A step s canRead a datum d indirectly from the upstream,
if all the functions, acting on d as input, belonging
to all the steps on any path between s and d, only
perform a pass through operation on d, or on parent of
d. For example in Figure 5, the compose email step s4
canRead the upstream ballot datum d1 indirectly, since
the functions c1 and c4 of steps s1 and s2 respectively,
pass along the ballot datum unmodified onto step s4.

We define a process model and an attack model as two
distinct types of process graphs. The process model is a
specification, drawn out by the domain experts to achieve a
useful goal, while the attack model represents a malicious plan,
sought by the rogue agents via the process model.

Formally, a process model P is a process graph GP =
(V P , EP ). An attack model A is similarly, simply a process
graph GA = (V A, EA) where VF

A = ∅, VY
A = ∅, EX

A = ∅
and EH

A = ∅, since an attack model does not contain any
filter and restrictor constructs, and correspondingly no filter
and restrict edges. Henceforth, in all the following figures we
have represented process model as white colored graphs, and
attack models as pink colored graphs.

V. ATTACK SEMANTICS

We now describe a valid attack semantics, and determine in
how many possible ways an attack can take place on a process.

A. Map Conditions

For an attack A to be successful on a process P , we test if
the process model steps have the capability to read and write
the data required by the steps of A in order to carry out the
attack. Also, the process agents need to collude if A requires

that. All these requirements, intuitively reduce to a similarity
matching between the corresponding nodes of A and P .

Thus, we define an attack as a mapping relation M between
an attack model A and a process model P , i.e., relating nodes
in A with nodes in P : M ⊆ V A×V P . An attack map2 M is
said to be well-formed if it relates A nodes and P nodes of
the same kind, i.e., M =MVS

∪MVD
∪Mα ∪Mω ∪MVT

. We
only consider well-formed mappings in this paper.
MVS

: VS
A → VS

P maps attack model steps to process
model steps where VS

A and VS
P denote the set of all steps

in attack model and process model respectively. MVD
⊆

VD
A × VD

P relates attack data with process data, where
VD

A and VD
P denote the set of all data in attack model

and process model respectively. Mα,Mω ⊆ VD
A × VD

P also
relate attack data and process data, but are used to identify
the beginning and end of a sequence mapping, respectively.
Finally, MVT

⊆ VT
A×VT

P relates attack agents with process
agents, where VT

A and VT
P represent the set of all agents in

attack model and process model respectively.
A well-formed M is valid M if all the following mapping

conditions are satisfied. These conditions define when a pro-
cess model allows an attack to be successfully realized through
it, because of the similar nature of the pair of models.

Condition 1: Steps Match. An attack model step represents
an activity, which can be carried out successfully only if the
process model provides a corresponding supportive step of
matching type. Thus for MVS

to be valid, for all MVS
(sa, sp),

the types of sa ∈ VS
A and sp ∈ VS

P must match. Types match
if the process model and attack model step types are equal,
or if the process model step type is a subtype of the attack
model steptype. Following the inheritance concept, a step sp’s
type is a subtype of step sa’s type if the former possesses
all properties of the later, along with some additional. The
intuition here is that, for successful realization of an attack
step, a process model step should provide at least what an
attack model step demands, but can provide for more. For
example, if an attack model consists of a step sa with type
as Read Vote, and a process model consists of a step sp with
type as Read Vote with a software, then we can claim that
MVS

(sa, sp) is valid, the process step’s type being a subtype
of the attack step’s type. The attack step in this case can
be successfully carried out via the process step (similarly
reasoned as in Section I).

However if an attack model step’s type is a subtype of the
process model step’s type, then the mapping between them
is valid conditionally, i.e., the attack can succeed only if the
process step type allows for the additional condition to be met.
The intuition is, as long as the supportive process model step
type does not explicitly prohibit the characteristics demanded
by an attack model step type, a valid mapping can exist
between them, with the condition that attack step’s additional
requirements must be met. For example, if, sa’s type is Read
Vote with a software and and sp’s type is Read Vote, then a
valid mapping can exist between them, with the proviso that
the process model allows, reading the vote with a software.

For an attack to be successful, all of its steps need to be

2short for: attack mapping relation (i.e., M is not a function but a relation)



6

carried out. Thus all steps in VS
A are mapped to some steps

in VS
P (unless they are part of an attack sequence map as

explained in Condition 4). For all sa ∈ VS
A there is a sp ∈

VS
P such that MVS

(sa, sp), or else sa is part of an attack
sequence map (Condition 4).

Condition 2: Inputs Match. An attack model step may need
to read certain input data to be successful. Thus the corre-
sponding process model step must provide for these matching
input data. The process model can meet this requirement in
two ways: either the process model step actually reads the
data (where a read edge exists between the process data and
the step) needed by the attack model step to be carried out
successfully, or the process model step possesses the capability
to read the data (where a canRead edge can be inferred
between the process data and the step) needed by the attack
model step. The capability of a process step to read a data is
governed by the Access assumptions (Section IV). Thus for
MVD

to be valid, for all MVD
(da, dp), the types of da ∈ VD

A

and dp ∈ VD
P must match, indicating that the process model

do indeed support the attack model’s requirement. Types match
if the process and the attack model data types are equal, or if
the process model data type is a subtype of the attack datatype.
A datum dp’s type can be a subtype of a datum da’s type
according to the inheritance concept, or if, da possesses only
a subset of the children, possessed by dp.

A filter must not block the transitive availability of an input,
say dp, to a process step sp, when sp satisfies an attack model
requirement through a canRead edge. If a filter, checking for
type of dp, is present on any step on the path, dp, . . . , sp, then
it removes dp from the datastream, thereby disallowing it to
act as the target of data map from the attack model. Hence
there should exist at least one path dp, . . . , sp in the process
model, such that there is no filter for dp in this path. Similarly
there should be no restrictor associated with step sp, which
prevents the access to dp by sp, for a valid attack to take place.
Formally: if MVD

(da, dp) and MVS
(sa, sp) and da ∈ in(sa),

then dp ∈ in+(sp) and there exists a path πp : dp, . . . , sp in
P such that for all steps s ∈ πp and for all filters f of s,
f does not match dp, i.e., type(f) 6= type(dp) and for all
restrictors e of sp, e does not prevent read of dp by sp, i.e.,
type(e) 6= type(dp). in(sa) is the set of all direct data inputs
to sa. in+(sp) is the set of all data d that are direct or indirect
inputs to sp, i.e., there is a path from d to sp in P .
MVD

preserves read edges, and thereby the dataflow. For
example, if a step of type s1 reads a datum of type d1 in
an attack model, and this (step,datum) pair is mapped to its
counterpart in the process model, for a valid attack to take
place, it must be the case that in the process model, the step
of type s1 (or subtype of s1) reads (or canRead) datum of
type d1 (or subtype of d1). The attack model datum of type
d1 cannot be mapped to a matching datum, which is written
by the step of type s1 (or subtype of s1) in the process, or to
any downstream datum which appears after the step of type
s1 (or subtype of s1) in the process timeline.

An attack model step needs to read all the inputs in order to
be successful. Thus all of the inputs read by any attack model
step, must have their corresponding matches in the process

model, for a successful attack. For all da ∈ VD
A there is a

dp ∈ VD
P such that MVD

(da, dp), or else da is part of an
attack sequence map (Condition 4).

Condition 3: Outputs Match. When an attack model step
is successfully performed, it produces certain data. Thus the
corresponding process model step must provide the supportive
output data of matching types, to which the attack model
data can be mapped to, for a successful attack. Thus, if
MVS

(sa, sp), i.e., an attack step sa is mapped to a process
step sp, then we require that any output d′a ∈ out(sa) also
matches an output d′p ∈ out(sp) for a successful attack. Here
out(sa) represents the set of all data d′ that are written by
step sa. out(sp) is defined similarly.

Also, for a valid attack, there should not be any filter,
associated with process step sp, checking for a datum of type
of d′a or checking for a datum of type of a descendant of d′a.
Otherwise due to this filter, process step sp cannot produce
an output or descendant of the output, as demanded by the
attack, thereby failing the attack. Formally: If MVS

(sa, sp) and
MVD

(d′a, d′p) and d′a ∈ out(sa), then d′p ∈ out(sp) and for
all descendants desa ∈ VD

A of d′a and all filters f of sp, f
neither matches desa nor d′a, i.e., type(f) 6= type(desa) and
type(f) 6= type(d′a).

An attack model step needs to produce all the data it is
connected to, via the write edges, in order to be declared
completed. Thus all of the outputs written by any attack model
step, must have their corresponding matches in the process
model, for a successful attack.

Condition 4: Sequence Match. Sometimes a sequence of
attack steps sa1 , . . . , s

a
n can be realized by a malicious agent

using a single step sp of the process model. We consider this
possible if at least one of the steps sai in the sequence matches
sp in type. We also require that the inputs and outputs of the
attack sequence match those of sp, similar to Conditions 2 and
3 before. To this end, the mapping M “encloses” the attack
sequence via special edges Mα and Mω , relating the data
inputs (start of the sequence) and outputs (end of the sequence)
to those of sp. Formally: if Mα(d

a, dp) and Mω(d
′a, d′p), then

there exists a path πp: d
p, . . . , sp, d′p in P such that for all

paths πa: d
a, sa1 , . . . , s

a
n, d
′a in A there is a matching step

sai ∈ πa with type(sia) = type(sp).
Attack steps in the sequence, including their inputs, outputs

and controlling agents are assumed to be carried out via a
single process step. Thus they are exempt from being explicitly
mapped via MVS

,MVD
, and MVT

.

Condition 5: Non-Collusive Agents match trivially. If
MVT

(ta, tp), i.e., an attack agent ta is mapped to a process
agent tp, and ta controls step sa and agent tp controls step
sp, then, we require that, MVS

(sa, sp). Also, the inputs and
outputs of sa match the inputs and outputs of sp respectively.

We assume that any process agent can be made rogue; so
whenever an attack step requires an agent to perform it, the
process model can always provide one, and it may not have
the same type as that of the attack model agent type, but still
be capable of carrying out the required attack step, as long as
the corresponding step types in the attack and process match.

When agents collude, agent mapping scenarios becomes



7

non-trivial, as discussed in Section VII-B. Note that for a valid
attack, mapped steps are either part of an attack sequence or
are mapped individually.

B. Multiple Ways of Valid Attack

For a given attack model A, there can be many mapping
relations M , that relate A to a given process model P . We try
to find out all such Ms, each corresponding to a way, in which
A can be carried out against P . If there is no M , we infer
that P is robust against A in all possible ways. The problem
of determining all such Ms is in essence a search problem:
each possible way of mapping attack steps/data to process
steps/data must be examined. Each combination is generated,
and then tested against the requirements of a valid mapping
as explained in Section V-A. Thus we use a generate and test
paradigm to generate all attack mapping possibilities and test
the validity of the mapping.

VI. IMPLEMENTATION

We use DLV [9], [10], a state-of-the-art implementation of
ASP [6], [11], to implement our valid attack map conditions
(Section V-A). We have included a selected portion of our
entire implementation as a representative.

We encode the constructs in the process model and at-
tack model like step, datum, agent etc., their types and
the interactions between them, as a set of DLV facts. For
example pm_read(d,s) is a process model fact encoding
that process model step s reads data d i.e., (d,s) ∈ ER

P .
Attack model facts are similar, but they are prefixed with am.

Next, we encode, a valid attack on a process, implementing
mapping Condition 4 in Section V-A.

1mapsequence(A1,S1,S3,A3,A2,SP,A4):-
2am_sequence(S1,S3),
3am_connected(S1,S2),
4am_connected(S2,S3),
5am_steptype(S2,X),
6pm_steptype(SP,X),
7allInMap(A1,S1,A2,SP),
8allOutMap(S3,A3,SP,A4),
9not filter_restricts(S2,SP).

The above DLV rule implements the criteria for an (input
data,first step in sequence,last step in sequence,output data) in
an attack model i.e., (A1,S1,S3,A3) to be validly mapped
to an (input data,step,output data), i.e., (A2,SP,A4) in the
process model (modeled by mapsequence). If an attack
model step S2 in a sequence, has the same type X as that of a
process model step SP, and the datatypes of all the data input
to the first step S1 in the attack sequence and output from
the last step S3 in the attack sequence match the datatypes of
at least some data input to, and output from the process step
SP (modeled by the predicates allInMap and allOutMap,
respectively), then we can claim that S1 and S3, along with
its input to S1 and output from S3 data, can be mapped to
SP and its input and output data respectively, signifying that
a sequence of attack steps can be successfully realized via
a process step. The last conjunct in the above rule body on
line 9 ensures that there is no restrictive filter on the process
model step SP which can prevent its output A4 from being the
target of the map (referring to the filter restriction requirement

in Condition 3). A pair of steps is connected (modeled by
am_connected) if the former writes a datum which is read
by the latter, directly or indirectly (A step can indirectly read
a datum as discussed in Access assumption 5 in Section IV).
A pair of connected steps where the steps are different from
each other, form a sequence, as modeled by am_sequence
in line 2 of the rule. The allInMap atom implements the
condition, where a process model step can support an input
read requirement by an attack step, either by actually reading
the input data, or by having the capability to read the input
data (Condition 2 in Section V-A). Similarly, allOutMap
supports the output condition (Condition 3 in Section V-A).

Given an attack and a process model, Generate Attack
Maps (in Figure 3) implementation finds out in how many
different ways this attack is validly possible on this process
based on the attack mapping conditions. This implementation
is realized using ASP paradigm, based on stable model seman-
tics [12], amenable to computationally difficult (e.g., NP-hard)
search problems. This implementation is as follows:

1inmapsequence(A1,S1,S3,A3,A2,SP,A4) v
2outmapsequence(A1,S1,S3,A3,A2,SP,A4):-
3mapsequence(A1,S1,S3,A3,A2,SP,A4).

Using the above rule, DLV generates all attack maps or
stable models in which all valid attack conditions (as explained
in Section V-A) are satisfied. Each attack map corresponds to
a way in which an attack can be carried out on a process.
Each such map contains inmapsequence atoms denoting
that certain entities in the attack model are mapped to those
in the process model, or outmapsequence atoms denoting
that those attack model entities are not mapped.

We feed as input, the attack and process models, along with
our valid attack conditions (of Section V-A) and rules used
for resultant attack map visualization, to the DLV answer set
solver implementing Generate Attack Maps. The solver
generates a set of attack maps, each showing a way in which
all the attack model steps, data (or attack sequence) and agents
can be mapped to some process model steps, data and agents,
respectively, as per our valid attack conditions. The model
constructs in each of these attack maps get projected onto node
atoms, and the relations and corresponding mappings among
the constructs onto edge atoms of a graph, by the visualization
logic. Using DLVWrapper [13], a Java interface for the DLV
system, we implement a Java-based method to collect these
node and edge atoms and construct a graph in dot format
(Section VII shows such program-generated output graphs).

Thus, utilizing the power of the answer set solver DLV, we
can implement successful attack semantics, and generate all
possible ways of attack based on this semantics.

VII. RESULTS

This section shows our results of running Generate
Attack Maps implementation (Section III) on input process
and attack models. Section VII-A shows an automatic privacy
attack identification, arising due to subtle read capabilities of
process steps, in motivating example of Section II. Section
VII-B deals with privacy attack identification on a vote-in-
person process, involving agent collusions.



8

d23:
email

d14:
email

s7:
read_vote

d26:
email

d22:
vsig

d21:
ballot

d19:
email

d13:
vsig

d12:
ballot

d32:
email

d31:
approved

d30:
ballot

d18:
ballot

d11:
vote

s6:
valSig

d20:
vote

d24:
vote

d16:
approved

s8:
valSig

d27:
vsig

d25:
ballot

d28:
roster

d29:
vote

ag:
recClerk

ag2:
recClerk

s5:
send_email

d15:
roster

d17:
vote

ag1:
voter

Fig. 6. Output of Generate Attack Maps (in Figure 3) run on
our motivating example, demonstrating a voter confidentiality attack,
where a clerk reads the voted ballot, before validating the voter
signature, thereby knowing for whom a voter has voted.

A. Can Read Capability Attack

Figure 6 shows the result, automatically produced, when
we run Generate Attack Maps implementation on our
motivating example. The interpretation of the output requires
knowledge of the process semantics as well as domain knowl-
edge and is left to the user. For example, this output can
be interpreted as the malicious goal of read vote along with
the non-rogue step of validate signature in the attack model,
being realized through the single step of validate signature
in the process model. This is visualized by the pair of red,
dashed mapping edges from step s7 of type read vote and
step s8 of type valSig (denoting Validate Signature) in the
attack model, both terminating in the step s6 of type valSig
in the process model. 3 The mapping edge between ag and
ag2 in the attack and process model respectively, identifies the
recClerk (receiving clerk) as the rogue agent. The receiving
clerk reads the vote on the ballot, attached in the email during
the read vote step (s7), and then carries out the valSig step
(s8), reading the vsig (denoting voter signature) attachment in
the email as well. Thus a privacy attack has been now realized
since, the clerk knows for whom the voter has voted. Note that
satisfying Condition 4 in Section V-A, all the inputs to the first
step s7, and all the outputs from the last step s8 of the attack

3Some node label types in figures starting from Figure 6 are abbreviated.
Also, only a relevant portion of the process model in Figure 6 is shown.

rcl

cve

rcl

bcl

wvb

isb

bcl

voter

fillb

voter

vid vev

cve

b

isb

b

b

fillb

vid vidrl rl

vevb b

vid

vid

b

vid vote

b

vote

Fig. 7. Output of Generate Attack Maps run on a vote-in-
person process, demonstrating how, the voter confidentiality can be
breached when the roster clerk and the ballot clerk collude.

sequence, are mapped to some inputs and outputs respectively,
of the step s6 in the process model. In the attack model, the
step s7 requires to read the vote datum (d20) as one of its
input. The process model provides for this requirement via
the canRead edge (dashed black edge in Figure 6) between
d11 and s6 (satisfying Condition 2 in Section V-A). Step s6
in the process model reads the email datum d14, which is a
transparent one. As per Access assumption 4, s6 canRead any
descendant of the transparent datum d14, as long as there is
no opaque datum on the path between d14 and that “read-by”
descendant, along the isChildOf edges. The datum d11 is a
descendant of d14. Also the intermediate datum d12 between
d14 and d11 is transparent. Hence a canRead edge can be
inferred between d11 and s6, thereby realizing the attack.

Thus DIAS automatically identifies attack scenarios where
normally unused process data are used by agents in a malicious
context, leading to a privacy breach. In a non-malicious
scenario, the receiving clerk does not read the vote datum,
while he is validating the voter signature. But if he does, a
privacy breach occurs.

B. Agent Collusion Attack

The mapping of the agents as described in Condition 5 in
Section V-A becomes non-trivial when agents collude. Con-
sider a vote-in-person process (white graph of Figure 7) where
a roster clerk rcl 4 checks a voter’s eligibility to vote during the
cve (Check Voter Eligibility) step when the voter reaches the
polling booth on the election day. The clerk verifies whether
vid (voter’s ID), is present in rl (roster list). If the verification
succeeds, rcl tells bcl (the ballot clerk) to give the voter a
ballot of a specific type; vev (Voter Eligibility Verification) is
an abstract representation of this communication. The voter

4In some figures starting from Figure 7 and in text body, we refer to nodes
with only types; For example, step isb means step of ‘type’ isb.



9

now gets a blank ballot from bcl via the isb (Issue Ballot)
step, on which he fills out his vote, as a child of the ballot,
via the fillb (Fills Ballot) step.

Now let us consider that insider agents want to collude,
to find out for whom a voter has voted. The pink graph in
Figure 7 shows such a scenario. Once rcl finds out that a voter
is eligible to vote, he covertly passes on the vid to bcl. The bcl
writes that secret on an empty ballot as a child of it via the wvb
(Write Vote on Ballot) step, and hands it over to the voter. The
unsuspecting voter casts his vote on the ballot, as a child of it,
as usual. Thus we have a ballot with two children subdata, the
vid and the vote thereby breaking the voter’s confidentiality.

Figure 7 shows the result of running the Generate
Attack Maps implementation on these vote-in-person pro-
cess and possible privacy breach attack models, automatically
identifying how, the roster and the ballot clerk can collude to
actually realize the attack. The step cve in the attack model
along with its inputs and outputs is mapped to its counterpart
in the process model (satisfying Conditions 1, 2 and 3 in V-A
and shown by the orange mapping edge), while the sequence
of steps wvb,...,isb in the attack model is mapped to the single
step of isb in the process model via a pair of red edges
(satisfying Condition 4 in V-A). Also there are mapping edges,
from rcl and bcl in the attack model to their counterparts in
the process model. All these can be interpreted as that, the rcl
performs the usual step of checking the voter eligibility and
the bcl performs the malicious step of writing the vid on the
ballot along with the non-rogue step of issuing the ballot to the
voter. The attack model requires that the secret vid, gained by
the rcl via the cve step, needs to be passed onto the bcl. The
process model supports this requirement, via the dotted green
edges between the agents rcl and bcl, which signify that the
rcl and the bcl can collude. Thus through the process step isb,
the bcl can perform two activities: it writes the datum vid (as
a child on the ballot b) which it canRead from the upstream,
passed onto him by the rcl (assuming that the step cve does a
pass through on vid), and then issuing the ballot to the voter.
The voter fills out the ballot, (as shown by the orange mapping
edges between the corresponding steps of fillb in the attack
and process model) thereby breaching the voter confidentiality
since now the same ballot contains the children, vid and vote.

VIII. PROCESS IMPROVEMENT

After Generate Attack Maps identifies the possible
ways in which an attack can take place on a process, Improve
P (in Figure 3) automatically searches for, and applies im-
provement opportunities in the original process model to
prevent the attack from succeeding in any possible way, or
as many possible ways as it can eliminate. However, in the
course of these improvements, Improve P does not modify
the process model in such a way that the original process goal
is inhibited. Thus, none of the process steps, agents, or data
are deleted or updated in their types during the improvement.

Once improved, the resulting process model is again pro-
vided as an input to Generate Attack Map, to confirm
that the process has been indeed made robust against the
concerned attack in different possible ways. It may take
multiple improvement iterations before this goal is achieved.

A. Restrictor addition

In this section we show how restrictors can be added as add-
on activities to process steps, to prevent attacks. We have used
this improvement method to prevent the voter confidentiality
attack on vote-by-email process (Section VII-A).

d23:
email

d14:
email

s7:
read_vote

d26:
email

d22:
vsig

d21:
ballot

d19:
email

d13:
vsig

d12:
ballot

d32:
email

d31:
approved

d30:
ballot

d18:
ballot

d11:
vote

s6:
valSig

d20:
vote

d24:
vote

d16:
approved

s8:
valSig

d27:
vsig

d25:
ballot

d28:
roster

d29:
vote

ag:
recClerk

ag2:
recClerk

s5:
send_email

d15:
roster

d17:
vote

ag1:
voter

	  	  	  e:	  
ballot	  

Fig. 8. A process improvement example where a restrictor e of
type ballot (in the red box) prevents the capability of step vali-
date signature to read ballot (d12), thereby preventing its capability
to read the child vote (d11) as well. Without the canRead edge
between d11 and s6, the data mapping from d20 to d11 fails, thereby
failing the voter confidentiality attack.

Figure 8 shows how a vote-by-email process can be im-
proved to prevent the voter confidentiality breach attack. The
attack model (as shown in Figure 6), requires the agent ag of
type recClerk, carrying out the step s7 of type read vote, to
read datum d20 of type vote. The process model satisfies this
requirement via the step s6, having the capability to read d11
using the canRead edge. Improve P (in Figure 3) finds an
improvement opportunity here, where a restrictor e of type
ballot is added as an add-on activity to the step s6 of type
valSig as shown in Figure 8. The restrictor e prevents s6 from
having the capability to read datum d12 of type ballot or any
of its descendants. As per the Access assumptions (Section
IV), a step canRead a child subdatum only if its parent is
transparent. The restrictor e, by preventing the read access of
step s6 to d12, has the effect of making d12 as opaque. Thus
s6 cannot read d11, which is a child of d12 (shown by the red
cross on the canRead edge between d11 and s6 in Figure 8),
thereby preventing the map from d20 to d11 (shown by the
red cross on the mapping edge), hence failing the attack.

A restrictor addition of type vote to process step s6, would



10

bcl

isb

bcl

voter

fillb

voterb

isb

b

fillb

b

vid

vid

b

vid vote

b

vote

vid

Fig. 9. Improve P run on a vote-in-person process, showing how
an automatically added filter to the process step isb (in the red box),
prevents the ballot clerk from issuing a vid containing ballot to the
voter, thereby failing the voter confidentiality breach attack.

have the same effect as adding a restrictor of type ballot to step
s6. The restrictor of type vote would have prevented s6 from
having the capability to read any datum of type vote, thereby
disallowing the map from d20 to d11, hence failing the attack.
This alternative process improvement way through more fine-
grained data access control, is desirable in scenarios where a
process step reads siblings of the secret (d11), we are trying
to prevent the read of. For example if s6 reads d11’s siblings
(if present), then adding a restrictor of type ballot to s6 will
prevent s6 from reading those siblings as well, hindering the
original goal of the process in the first place.

Thus generalizing we can say that, if we need to prevent a
step s from having the capability to read a datum d (s canRead
d) in a process, then either we can add a restrictor of type equal
to d’s type to s, or we can add a restrictor of type equal to the
type of any ancestor of d, to s, provided there is no read edge
between that ancestor or any other descendant of that ancestor
and s. Note that if a restrictor of type, equal to d’s type is
added to s, then it must be the case that there exists no read
edge between d or any descendant of d, and s in the process
model. Otherwise, the improvement opportunity can not be
applied because it hinders the original goal of the process.

Currently this ‘restrictor-addition’ improvement method is
only conceptualized; in future we will implement it.

B. Filter addition

We introduce a second improvement method with filters
as add-on activities to process steps, to prevent attacks. This
method prevents the voter confidentiality attack on vote-in-
person process (Section VII-B).

Sometimes an attack model step writes a datum with a child,
whereas its counterpart in the process model does not contain
any matching child on the corresponding output datum. For
example, in the attack model in Figure 7, the step isb writes a
datum b with a child vid, whereas the output datum b from the
corresponding isb step in the process model does not contain
any child as vid. Thus a process improvement opportunity

exists which is utilized by Improve P implementation.
Figure 9 shows the output of Improve P run on the vote-
in-person process, (Section VII-B). The implementation of
Improve P automatically adds a filter, vid, on the process
step, isb as shown within the red box of Figure 9. Condition
3 in Section V-A requires that, if we can validly map an
output datum from an attack model step to that from a process
model step, then the attack step’s output must not contain
a descendant whose type matches the process model step’s
filter’s type. Thus, the addition of the filter of type vid on the
step of type isb in the process model will ensure that Condition
3 does not hold. The output datum from the attack step isb
can no longer be mapped to the output datum from the process
step isb (red cross in Figure 9) because of this prohibitive filter,
thereby failing the attack. The filter prevents the ballot output
from step isb to contain the secret vid. Thus vid does not
get carried downstream, where both the children subdata vid
and vote can exist on the ballot, thereby preventing the voter
confidentiality attack.

There maybe scenarios where a combination of different
improvement opportunities are applied to the same process
model to eliminate various attack ways.

IX. RELATED WORK

First we compare DIAS to rest of the literature. Then we
explain, how DIAS, with respect to our previous work on
which it is based upon, advances our research contributions.

A. Comparison with other literature

1) Holistic perspective: Most security analyses focus on
specific parts of a process, rather than taking a holistic view.
Kohno et al. [1] have analyzed the source code of voting
machines having a significant share in US market, to realize
that they do not meet sufficient security standards. Not only
are these voting machines vulnerable to insider threats, like
vote manipulation, but they are susceptible to simple outsider
attacks as well, for example, against attacks over the computer
network. Feldman et al. [14] have demonstrated that malicious
code can be easily injected in Diebold AccuVote-TS voting
machine, to steal votes undetectably, and manipulate machine
records and logs. Similarly, [15], [16] have focused on the
voting machine technology, which is a specific part of the
process. In contrast to all these approaches, we examine the
interactions among agents, steps, and data, i.e., all players in
a process, rather than analyzing a specific aspect of a process,
to identify attacks and improve the process.

2) Process-based attack analysis: Osterweil [17] first ap-
plied a formal method of process analysis to software develop-
ment in order to improve the way in which software was de-
veloped. Several other models were developed for various uses
such as co-ordination in the workplace, and several languages
were developed to enable formal analysis of processes [18],
[19], and applied to domains beyond software development,
such as health care [20]–[22] and elections. But none of these
approaches focus on identification and prevention of malicious
attacks in processes. Curtis et al. [18] have studied the human
aspect, attributable to a software process. Cass et al. [19] have



11

shown the benefits of using Little-JIL as a graphical, yet for-
mal, process programming language for defining and analyzing
processes. Clarke et al. [20] have used Little-JIL to define
a blood transfusion medical process, then applied PROPEL
[23] system to elucidate desirable properties which must be
adhered to by the process, and then used verifiers (SPIN [24],
FLAVERS [25], LTSA) to check if the properties are actually
respected. The verifier algorithmically checks all possible
execution traces through the process model to determine if
any execution violates any desired property to be conformed
to, by the process. A counterexample trace is generated by
the verifier if a property is violated, thereby detecting errors
in the medical process. Christov et al. [21] takes a similar
approach in identifying errors in a chemotherapy medical
process. Simidchieva et al. [3] have used Little-JIL to define a
detailed election process model, and then automatically derive
a fault-tree to identify combination of failures that may allow
a selected potential error to occur. All the errors identified by
these aforementioned works in this paragraph, are inadvertent
mistakes, committed by the process agents, whether human
or automated. On the other hand, DIAS identifies intentional
attacks on a process by rogue agents. Thus we see that,
process-based attack analysis (as against error analysis) of
agents, steps and data in any domain, including elections, is
an emerging area of study, where a lot of work still needs to
be done. Red-team tests have performed some work in this
area, examining systems both individually and in the context
of an election process [26]–[28], but the latter is being done
informally and non-rigorously. Barr et al. [29] pointed out, the
security of elections and the accuracy of their results depend
just as much upon the processes and procedures followed
as upon the technology used. But they have focused on
pointing out the weaknesses of the standards, upon which US
election processes and voting machine systems are designed,
and process and system certifications are performed, rather
than providing a formal attack analysis mechanism, as we do.
Weldemariam et al. have examined the security of business
processes, and applied that work to elections procedures [30]–
[32]. They have discussed a formal methodology for assessing
the procedural security of an organization. However unlike,
our logic-rule based, attack identification approach, they have
first encoded the process asset-flows in terms of executable
specifications using a formal language, where there is an
allowance for malicious transformation of assets by random
execution of one or more threat actions in the model. Then
they have specified, the desirable security properties using
mathematical formulae, which the process needs to satisfy,
and then have performed a security verification, using a model
checker, to test if the security properties are fulfilled with
respect to the threat scenarios in the model. Similarly Huong
et al. [4] have analyzed the security properties of an election
process under attack, using model checking. But unlike DIAS,
the concept of agents in their analysis is not explicit; they
realize it implicitly via the process steps. Also, our logic-rule
based approach for determining the criteria for a successful
attack is more flexible. By changing our logic rules, we can
easily change the definition of a “successful attack”, whereas
in Huong’s approach, the definition of a successful attack via

a process not satisfying an “attack-always-fails” property is
somewhat rigid. Also, their approach, unlike ours, does not
provide a method for automated improvement of the process
once the attack has been identified.

B. Advancing our previous work

DIAS is based on, and extends our previous work of
insider attack identification and prevention using a declarative
approach [33]. The improvements made by DIAS, and their
advantages, in relation to our previous work, are as follows:

1) Our extended model supports multi-level, hierarchical,
parent-child decomposition of data (missing in our pre-
vious work), thereby being able to model and analyze a
much wider range of real-world processes.

2) Hierarchical data decomposition enables differential data
access modeling capability, which helps to identify more
subtle privacy attacks. We can now model and identify
scenarios, where rogue process agents utilize their not-so-
apparent capabilities to read data across the parent-child
hierarchy via the steps, leading to privacy attacks.

3) DIAS is simpler and concise, but, subsumes all the
concepts expressed by our previous model. For example,
annotation was a construct in our previous model, en-
coding extra information in a datum. Hierarchical data
modeling has replaced its need. A child of a datum
is now, equivalent to an annotation on a datum. Also
with annotations, we could not model multi-level data
hierarchy. This is because an ‘annotates’ edge existed
between an annotation and a datum, and annotation on an
annotation on a datum, concept, could not be encoded.

4) Flexible step type matching in our extended model allows
for more attack identification opportunities. A process
model step should allow for at least what an attack model
step demands, but can provide for more. Thus if a process
step type is a subtype of the attack step type, then the
attack step can be realized through the process step. This
was disallowed by our previous approach, which needed
the attack and process step types to be strictly equal, for
a successful attack.

5) DIAS has an enriched semantics, expressed by the fine-
grained data dependency declarations. In our previous
model, a process step was a “black-box”- it abstracted
away the type of operations it performs on the inputs
to produce the outputs. Also, our model did not specify
which output from a step depends on which particular
input. Our current work expresses all those fine-grained
data dependencies and their types.

6) DIAS introduces additional process improvement meth-
ods like utilizing restrictors, missing in our previous
work.

X. DISCUSSION

We present DIAS, a novel, logic rule-based, static analysis
approach for automatically determining if an attack can take
place on a process and if so, in how many ways this attack
can be performed and who are the rogue insider agents
involved. Interesting agent collusion, attack scenarios are also



12

demonstrated. Dataflow-based process and attack models are
considered, and a holistic perspective is used that looks at
steps, data and agents to determine if a process is vulnerable.
DIAS also automatically identifies subtle attacks on processes
having collection-oriented data models, showing how rogue
insiders, can make use of the not-so-apparent, read capabilities
of the process steps, to carry out privacy attacks. The problem
of attack determination is essentially reduced to a graph
matching-based search problem. We have introduced a graph-
based language for modeling the processes and attacks. The
language has a natural visual syntax which provides a simple
understanding of how a process and a possible attack on that
process may look like. Then we use a declarative programming
paradigm to automatically enumerate the possible ways in
which an attack model graph can be matched against a process
model graph according to a concept of a valid mapping,
encoded as logic rules. Each mapping gives rise to a possible
avenue of attack, showing how a process model can act as the
supporting framework, via which the attack can be carried out.

Apart from being intuitive in expressing a valid attack
mapping concept and being useful in automatically enumerat-
ing attack possibilities, our logic rule-based approach is also
very amenable to addition of new constraints to change the
definition of an attack mapping and hence the meaning of
a successful attack. Once attack possibilities are determined,
our Java-based implementation automatically and opportunis-
tically searches and exploits improvement opportunities in the
process, starting from the highest attacked steps to the lesser
attacked ones, to make the process robust against the attack.

DIAS does not automatically generate attacks from a given
process model, as achieved by a model checker in current
literature [34]. DIAS is complementary to this model checking
approach. Once the model checker generates an attack trace
that is successful against a process, we can convert that attack
trace structure into our format of a data-flow based attack
graph. Then, DIAS can be used to check against which other
processes, this attack will be successful, and in how many
different ways the attack is possible.

As a future work, we want to apply DIAS on process do-
mains, beyond elections, like real estate and medical domains,
thereby demonstrating its broader applicability base.

ACKNOWLEDGEMENTS

We thank Professor Leon J. Osterweil, in the Department of
Computer Science, University of Massachusetts, Amherst, for
his feedback on improving the semantics of our graph-based
process and attack models.

Our work is supported by the National Science Foun-
dation under Grant Number CCF-1219993 and by the US.
Department of Commerce, National Institute of Standards
and Technology under Grant Number O-60NANB13D165.
Any opinions, findings, conclusions and recommendations
expressed here are solely of the authors, and do not necessarily
reflect the views of the supporting organizations.

REFERENCES

[1] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S. Wallach, “Analysis
of an electronic voting system,” May 2004.

[2] Security analysis of the Diebold AccuVote-TS voting machine. Center
for Information Technology Policy, Princeton University, 2007.

[3] B. I. Simidchieva, S. J. Engle, M. Clifford, A. C. Jones, S. Peisert,
M. Bishop, L. A. Clarke, and L. J. Osterweil, “Modeling and analyzing
faults to improve election process robustness,” Berkeley, CA, aug 2010.

[4] H. Phan, G. Avrunin, M. Bishop, L. A. Clarke, and L. J. Osterweil, “A
systematic process-model-based approach for synthesizing attacks and
evaluating them,” Berkeley, CA, aug 2012.

[5] V. Lifschitz, “What is answer set programming,” in Proceedings of the
AAAI Conference on Artificial Intelligence, 2008.

[6] P. Bonatti, F. Calimeri, N. Leone, and F. Ricca, “Answer set program-
ming,” in A 25-year perspective on logic programming, 2010.

[7] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. E. Lorensen et al.,
Object-oriented modeling and design, 1991.

[8] M. Stefik and D. G. Bobrow, “Object-oriented programming: Themes
and variations,” AI magazine, 1985.

[9] S. Citrigno, T. Eiter, W. Faber, G. Gottlob, C. Koch, N. Leone, C. Mateis,
G. Pfeifer, and F. Scarcello, “The dlv system: Model generator and
application frontends,” 1997.

[10] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scar-
cello, “The dlv system for knowledge representation and reasoning,”
2006.

[11] V. Lifschitz, “Answer set planning,” in Logic Programming and Non-
monotonic Reasoning, 1999.

[12] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry,
“An a-prolog decision support system for the space shuttle,” 2001.

[13] F. Ricca, “The dlv java wrapper.” in APPIA-GULP-PRODE. Citeseer,
2003.

[14] A. J. Feldman, J. A. Halderman, and E. W. Felten, “Security analysis
of the diebold accuvote-ts voting machine,” Berkeley, CA, aug 2007.

[15] E. Proebstel, R. Sean, F. Hsu, J. Cummins, F. Oakley, T. Stanionis, and
M. Bishop, “An analysis of the hart intercivic dau eslate,” Berkeley, CA,
aug 2007.

[16] C. Sturton, S. Jha, S. A. Seshia, and D. Wagner, “On voting machine
design for verification and testability,” New York, NY, Oct. 2009.

[17] L. Osterweil, “Software processes are software too,” in Proceedings
of the 9th International Conference on Software Engineering, Los
Alamitos, CA, 1987.

[18] B. Curtis, M. I. Kellner, and J. Over, “Process modeling,” in cacm, New
York, NY, Sep. 1992.

[19] A. G. Cass, B. S. Lerner, E. K. McCall, L. J. Osterweil, S. M. Sutton Jr.,
and A. Wise, “Little-jil/juliette: A process definition language and
interpreter,” Los Alamitos, CA, Jun. 2000.

[20] L. A. Clarke, Y. Chen, G. S. Avrunin, B. Chen, R. Cobleigh, K. Fred-
erick, E. A. Henneman, and L. J. Osterweil, “Process programming to
support medical safety: A case study on blood transfusion,” May 2005.

[21] S. Christov, B. Chen, G. S. Avrunin, L. A. Clarke, L. J. Osterweil,
D. Brown, L. Cassells, and W. Mertens, “Rigorously defining and
analyzing medical processes: An experience report,” Oct. 2007.

[22] C. Bertolini, Schäf, and V. Stolz, “Towards a formal integrated model
of collaborative healthcare workflows,” Aug. 2011.

[23] R. L. Smith, G. S. Avrunin, L. A. Clarke, and L. J. Osterweil, “Propel:
an approach supporting property elucidation,” 2002.

[24] G. J. Holzmann, “The model checker spin,” IEEE Transactions on
software engineering, 1997.

[25] J. M. Cobleigh, L. A. Clarke, and L. J. Osterweil, “Flavers: A finite
state verification technique for software systems,” 2002.

[26] RABA Innovative Solution Cell, “Trusted agent report Diebold
AccuVote-TS voting system,” Columbia, MD, Tech. Rep., Jan 2004.

[27] M. Bishop, “Overview of red team reports,” Office of the California
Secretary of State, Sacramento, CA, USA, Jul. 2007.

[28] J. L. Brunner, “Project everest: Evaluation and validation of election
related equipment, standards and testing,” Ohio Secretary of State, Tech.
Rep., dec 2007.

[29] E. Barr, M. Bishop, and M. Gondree, “Fixing federal e-voting standards,”
cacm, Mar. 2007.

[30] K. Weldemariam and A. Villafiorita, “A methodology for assessing
procedural security: A case study in e-voting,” Bonn, Germany, Aug.
2008.

[31] ——, “Procedural security analysis: A methodological approach,” in
Journal of Systems and Software, 2011.

[32] ——, “A formal methodology for procedural security assessment,” in
ICDS 2011, The Fifth International Conference on Digital Society, 2011.

[33] A. Sarkar, S. Köhler, S. Riddle, B. Ludäscher, and M. Bishop, “Insider
attack identification and prevention using a declarative approach,” 2014.

[34] R. W. Ritchey and P. Ammann, “Using model checking to analyze
network vulnerabilities,” in Security and Privacy, 2000.


