
Slide # 1

Matt Bishop
Dept. of Computer Science
University of California at Davis

Writing Safe Setuid Programs

Matt Bishop

Department of Computer Science
University of California at Davis

Davis, CA 95616-8562

phone (916) 752-8060
email bishop@cs.ucdavis.edu

Slide # 2

Matt Bishop
Dept. of Computer Science
University of California at Davis

Theme

Using standard robust programming techniques can
greatly improve the quality of security-related code,
which involves:
• a change of privilege

example: setuid programs

• an assumption of atomicity of some functions
example: check of access permission and opening of a file

• a trust of environment
example: programs which assume they are loaded as compiled

Slide # 3

Matt Bishop
Dept. of Computer Science
University of California at Davis

Basics of Robust Programming

! Be paranoid
» Principles of least privilege, least common mechanism

! Assume maximum stupidity
» Principles of fail-safe defaults, separation of privilege,

psychological acceptability

! Don’t hand out dangerous implements
» Principles of least privilege, fail-safe defaults, complete

mediation, economy of mechanism

! Worry about cases that “can’t happen”
» Principles of least privilege, open design, separation of

mechanism

Slide # 4

Matt Bishop
Dept. of Computer Science
University of California at Davis

Six Implementation Problems

! Unstated or implicit assumptions
! Unknown interactions with system components
! Numeric or buffer (array) overflow
! Altering and/or deleting files
! Race conditions
! Invoking a subprocess

Slide # 5

Matt Bishop
Dept. of Computer Science
University of California at Davis

Unstated or Implicit Assumptions

Goal: read any location in kernel memory
ps accesses process table by:

» opening symbol table in /vmunix
» looking up location of variable _proc

ps is typically setgid to group kmem so it can read the
memory device files
User can specify where vmunix file is
So supply your own /vmunix and read any file that
group kmem can read ...

Slide # 6

Matt Bishop
Dept. of Computer Science
University of California at Davis

Validation and Verification

Distrust anything the user provides
ps: if using /vmunix, namelist is (probably) okay; if

using something else, namelist is (probably) not okay
Why? Because first assumed writable only by trusted user

(who can read memory (root; this should be checked both at
/vmunix and at /dev/kmem). Assumption for other users is
likely to be wrong at both points.

Effectively, above fix allows user to supply alternate namelist
only if user could read memory file anyway

Slide # 7

Matt Bishop
Dept. of Computer Science
University of California at Davis

Arguments and Return Values

Check that arguments are reasonable
Example: failure to check that pointer is in user space in
a kernel division allowed users to overwrite their UID
with 0

Check return values
Example:

 int validate(char * user);
/* ... */

validate(user);

Slide # 8

Matt Bishop
Dept. of Computer Science
University of California at Davis

Errors

If su could not open password file, assumed
catastrophic problem and gave you root to let you fix
system
Attack: open 19 files, then exec su root

At most 19 open files per process, so …

Use errno to disambiguate cause of failure

Slide # 9

Matt Bishop
Dept. of Computer Science
University of California at Davis

Morals

! Explicitly state assumptions
! Validate arguments
! Never assume a function or system call succeeds
! Don’t make assumptions to handle errors; if you

cannot determine the cause of failure, or do not know
how to recover safely, stop

Slide # 10

Matt Bishop
Dept. of Computer Science
University of California at Davis

Unknown Interaction with System
Components

Get IP address 55.5.12.1.2; want host name
Use gethostbyaddr, which uses Directory Name Server
Response p used as:

sprintf(cmd, “echo %s | mail bishop”, p);

if (msystem(cmd) != BAD) ...

Say host name resolves to
info.mabell.com; rm -rf *

Command executed is
echo info.mabell.com; rm -rf * | mail bishop

Slide # 11

Matt Bishop
Dept. of Computer Science
University of California at Davis

User Specifying Input

Need to check any string being used as a command and
originating elsewhere

Example: user supplies value for environmental variable DISPLAY

Say string has any metacharacter meaningful to shell
Examples: | ^ & ; ` < >

If user gives a recipient for mail as
bishop | cp /bin/sh .sh; chmod 4755 .sh

then using this as an address to mail command gives a
setuid to (process EUID) shell

Bug in Version 7 UUCP, some versions of sendmail, some versions
of Web browsers

Slide # 12

Matt Bishop
Dept. of Computer Science
University of California at Davis

Shell Scripts

% ls –l /etc/reboot

–rwsr–xr–x 1 root 17 Jul 1992 /etc/reboot

% ln /etc/reboot /tmp/-x

% cd /tmp

% –x

#

Slide # 13

Matt Bishop
Dept. of Computer Science
University of California at Davis

Dynamic Loading and Environment

General assumption: programs loaded as written
this means parts of it don't change once it is compiled

Dynamic loading has the opposite intent
load the most current versions of the libraries, or allow users to
create their own versions of the libraries

Slide # 14

Matt Bishop
Dept. of Computer Science
University of California at Davis

The Obvious Fix

Problem: Dynamic loading allows an unprivileged user
to alter a privileged process by controlling what is
loaded
Idea: Disallow this control by having setuid programs
ignore environment variables

Here, they would dynamically load libraries from a preset set of
directories only

Reasoning: Users can control what is dynamically
loaded on their programs, but not on anyone else’s,
since everything you do is executed under your UID or
is setuid to someone else …

Slide # 15

Matt Bishop
Dept. of Computer Science
University of California at Davis

Morals

Extension of first item …
! Minimize interactions; make the program as self-

contained as possible
! Validate all results from others (processes, users,

etc.) unless you trust the source
! Be sure your trust is well placed

Slide # 16

Matt Bishop
Dept. of Computer Science
University of California at Davis

Numeric or Buffer (Array) Overflows

• login, V6 UNIX (apocryphal?)
• fingerd as exploited by the Worm
• syslogd, identd, …
• lots of program argument lists

All fail to check bounds adequately

Slide # 17

Matt Bishop
Dept. of Computer Science
University of California at Davis

Handling Arrays

Use a function that respects buffer bounds
Avoid these:
gets strcpy strcat sprintf
Use these instead:
fgets strncpy strncat

(no real good replacement for sprintf; snprintf on some
systems)

To find good (bad) functions, look in the manual for
those which handle arrays and do not check length

» checking for termination character is not enough

Slide # 18

Matt Bishop
Dept. of Computer Science
University of California at Davis

Numeric Overflow

Year 2038 problem …
2147508847 is Tue Jan 19 03:14:07 2038
2147508848 is Fri Dec 13 20:45:52 1901

So overflow can foul up the time

Slide # 19

Matt Bishop
Dept. of Computer Science
University of California at Davis

Moral

! Check all array manipulations for potential overflows
! Check all pointer manipulations for potential

overflows
! Check all numeric operations for potential overflows

and underflows

Slide # 20

Matt Bishop
Dept. of Computer Science
University of California at Davis

Altering and/or Deleting Files

Watch out when you open a file for writing:
open(filename, O_WRONLY|O_CREAT, 0644)
creates a file, but will clobber an existing one
open(filename, O_WRONLY|OCREAT|O_EXCL, 0644)
won’t clobber an existing file.

Symbolic links? Check your system!

Slide # 21

Matt Bishop
Dept. of Computer Science
University of California at Davis

Morals

! Watch out when you create a file; you may zap one
that is there

! Know how programs that take pathnames handle
symbolic links; does the operation apply to the link or
to the referent?

Slide # 22

Matt Bishop
Dept. of Computer Science
University of California at Davis

Race Conditions

To check ability to access a test config file …
if (access(config_file, R_OK) < 0) error

fp = fopen(config_file, "r");

But may not be good enough ...

Attack: change files between access and fopen

Slide # 23

Matt Bishop
Dept. of Computer Science
University of California at Davis

A Classic Race Condition

Problem:
• access control check done on object bound to name
• open done on object bound to name

no assurance this binding has not changed!!!

Solution: use file descriptors whenever possible, as
once object is bound to file descriptor the binding
does not change.

Warning:
names and file descriptors don’t mix!!!

Slide # 24

Matt Bishop
Dept. of Computer Science
University of California at Davis

Example: Secure Temporary File

create file, open for reading and writing (descriptor fd)
delete file (use unlink)

as file is open, its directory entry is removed but the file is not
yet actually deleted (only files not open used can be deleted)

write data to the file
rewind the file

do this with fseek or rewind; do not close and reopen!

read data back from the file
close the file

this will delete it automatically

Slide # 25

Matt Bishop
Dept. of Computer Science
University of California at Davis

A Kernel Race Condition

How executed on most systems:
Kernel picks out interpreter

first line of script is #! /bin/sh

Kernel starts interpreter with setuid bits applied
Kernel gives interpreter the script as argument

Slide # 26

Matt Bishop
Dept. of Computer Science
University of California at Davis

Morals

! Ensure that you use only those objects you’ve
checked or that you trust

! Refer to files using descriptors (not path names)
whenever possible

! Be careful with temporary files
! Never make an interpreted setuid (setgid) command

script

Slide # 27

Matt Bishop
Dept. of Computer Science
University of California at Davis

Invoking a Subprocess

At Purdue, when I was a grad student …
Games very popular, owned as root

» Needed to be setuid to update high score files

Discovered that effective UID not reset when a subshell
spawned

» So we could start a game which kept a high score file, and
run a subshell – as root!

Slide # 28

Matt Bishop
Dept. of Computer Science
University of California at Davis

Environment Variables

vi file
… edit it, then hang up without saving it …

• vi invokes expreserve, which saves buffer in
protected area
... which is inaccessible to ordinary users, including editor of

the file

• expreserve invokes mail to send letter to user

Slide # 29

Matt Bishop
Dept. of Computer Science
University of California at Davis

Attack #1

$ cat > ./mail
#! /bin/sh
cp /bin/sh /usr/attack/.sh
chmod 4755 /usr/attack/.sh
^D
$ PATH=.:$PATH
$ export PATH

… and then run vi and hang up.

Slide # 30

Matt Bishop
Dept. of Computer Science
University of California at Davis

Attack #2

Bourne shell determines whitespace with IFS
Using same program as before, but called m, do:

% IFS="/binal\t\n "; export IFS

% PATH=.:$PATH; export PATH

… and then run vi and hang up.

Slide # 31

Matt Bishop
Dept. of Computer Science
University of California at Davis

Fixing This

Fix given in most books is:
system("IFS='\n\t ';PATH=/bin:/usr/bin;\

 export IFS PATH;command");

This sets IFS, PATH; you may want to fix more

WRONG
% IFS=“I$IFS”

% PATH=“.:$PATH”

% plugh

Now your IFS is unchanged since the Bourne shell
interprets the I in IFS='\n\t ' as a blank, and reads
the first part as FS='\n\t '

Slide # 32

Matt Bishop
Dept. of Computer Science
University of California at Davis

Multiple Definitions

Can add them directly to environment, so multiple
instances of a variable may occur:

PATH=/bin:/usr/bin:/usr/etc

TZ=PST8PST

SHELL=/bin/sh

PATH=.:/bin:/usr/bin

Now which PATH is used for the search path?
Answer varies but it is usually the second

If PATH is deleted or replaced, which one is affected?
Usually the first ...

Slide # 33

Matt Bishop
Dept. of Computer Science
University of California at Davis

More Environment

! umask
! UIDs and GIDs

real, effective, saved, login/audit UIDs; real, effective, primary,
secondary GIDs

! notion of /
! options

Slide # 34

Matt Bishop
Dept. of Computer Science
University of California at Davis

Morals

! No program executes independently; subprograms
always carry their environment with them.

! Setuid program gives privileges for the life of the
process, plus any descendants, so the owner must
dictate the protection domain

! Turn off all environment variables; then define only
those you need

Slide # 35

Matt Bishop
Dept. of Computer Science
University of California at Davis

Miscellaneous

! Inheriting file descriptors
! Memory and core dumps
! Pseudorandom number generation
! Style and testing

Slide # 36

Matt Bishop
Dept. of Computer Science
University of California at Davis

Style and Testing

! Use a system like lint to check your code
If using ANSI C, the GNU compiler has many wonderful options
that have a similar effect; I recommend —Wall —Wshadow
—Wpointer-arith —Wcast-qual —W

! Test using random input and any bogosities you can
think of
See the marvelous article “An Empirical Study of the Reliability
of UNIX Utilities,” by Miller, Fredriksen, and So in
Communications of the ACM 33(12) pp. 32–45 (Dec. 1990)

Slide # 37

Matt Bishop
Dept. of Computer Science
University of California at Davis

Memory Use

Note: cleartext password left in memory
Bad news if there’s a core dump, so …
for(g = given; *g; g++)

*g = ‘\0’;

Can also use bzero(3) or memset(3) if you know
that the password is under some specific length:
(void) bzero(given, sizeof(given))

Slide # 38

Matt Bishop
Dept. of Computer Science
University of California at Davis

Seeding a PRNG

Do not use time of day, process ID, or any function of
known (or easily obtained) information

Attacker can guess the seed, and regenerate the
sequence, and use that as a key to regenerate the
relevant random numbers.

Slide # 39

Matt Bishop
Dept. of Computer Science
University of California at Davis

File Descriptors and Subprocesses

main()

{

int fd;
fd = open(priv_file, 0); dup(9, fd);
(void) msystem("/bin/sh");

}

Running this and typing
% cat <&9

prints the contents of priv_file

Slide # 40

Matt Bishop
Dept. of Computer Science
University of California at Davis

The Doctor’s Prescription

But I’ve bought a big bat.
I’m all ready, you see;
Now my troubles are going
To have troubles with me!

