£CS 36A, May 22, 2023



Announcements

1. Homework 3 and Extra Credit 3 are now due on May 30 (that’s the
Tuesday after Memorial Day).

2. The gradescope for Extra Credit 3 is set up.

Homework 4 will be available on May 25 and will be due June 8 (last
day of classes).

Final Exam is in this room, on June 9, from 10:30am-12:30pm

5. The web sites have been updated to May 19. If you don’t see
something that should be there, please let me know.



Example: Dynamically Allocated Input Buffer

* Problem: fgets requires a maximum length to input
e So it will fit into the input buffer without overflow
* May read only part of a line

* Solution: write a function that will allocate space for any length line



Requirements

* Function must be able to input line of any length without knowing
what that length may be

* Interface needs to be as similar to that of fgets as possible



Solution #1: For Interface

char *dyngets (char *buf, 1nt n, FILE *fp)

* char *butf
* If non-NULL, pointer to input buffer; dyngets acts exactly like fgets
* If NULL, one line is stored in allocated space
* 1nt n
e size of array buf
* ignored if buf is NULL
e FILE *fp
* File pointer to source of input



Solution #2: Allocation

* Create a buffer that is preserved across calls
* Use a static variable to point to this and the size of the buffer

e Static variable in function keeps variable and its value around after
function returns



General Structure

* If buf is not NULL, call fgets and return its value

* Otherwise:
1. Read a character; if end of file, go to step 6
2. If thereis room in the internal buffer, put character in and go to step 1

3. If there is not room in the internal buffer, allocate (or reallocate) an internal
buffer of length INCREMENT + length of current internal buffer

4. Add the new INCREMENT to the length of the internal buffer
Go to step 2
6. Return pointer to internal buffer

.



Program Structure

* Main routine is dyngets

* It calls a function to insert the character
e Allocation is done here



Main Routine

* Check to see if buf is non-NULL; if so, call fgets and return its return
value

* Read characters, calling the insertion function for each
* If EOF is read as the first character of the line, return NULL
* Otherwise, tack on a newline if it is present
* Terminate the internal buffer with ‘\0’

* Return pointer to internal space



Character Insertion Routine

* First, see if internal buffer is completely full
* |f so, increment the allocated space number
* If nothing allocated yet, use malloc() to allocate the desired space
* Otherwise, use realloc() to reallocate the space

* Append the character to the input line



Compiling With a Program

List multiple files for gcc

* For dyngets:
gcc —ansil —pedantic —-Wall —g —-o mcat mcat.c dyngets.c

* What is happening: for each file
* Run the C preprocessor on the file to handle thee macros
* Compile the file to produce an assembly language “.s” file
* Assemble the resulting “.s” file to produce an object “.0” file

 Then for all files:

* The linking loader merges all the “.0” files and some system libraries into an
executable



