£CS 36A, May 16, 2025



Sorting

* Function is:
vold gsort(void *base, size t nmemb, size t size,
int (*compar) (const void *, const void *));

* Here comparis function that takes 2 pointers to elements of the
array base, with nmemb members of size size

e compar returns negative if first is less than second; O if the two are
equal; and positive if the first is greater than the second

* You supply compar



Example compar ()

int cmp(const void *x, const void *y)

{
int *px, *py;
px = (int *) x;

py = (int *) y;

return(*px - *py);



Calling gsort ()

int arr[100]; /* array of integers to be sorted */
int narr; /* number of integers in arr */
/* ... put random numbers into arr */

/* now sort them */
gsort (arr, narr, sizeof(int),

(1nt (*) (const void *, const void *) ) cmp);



Oops. ..

Remember gsort () ? Here is its call:

gsort (base, nelts, sizeof (double),

(1nt (*) (const void *, const void *)) cmp);

| used this for cmp:
int cmp(const void *x, const voild *y) {
double *px, *py;
px = (double *)x;
py = (double *)y;
return (*px - *py);

}
What is wrong with this?



Oops. ..

It’s the *px — *py — ifit returns something less than 1.0, the function
returns O (equal), even if there is a difference of (say) 0.5 or —0.5

int cmp (const void *x, const void *y) {
double *px, *py;
px = (double *)x;
py = (double *)vy;
1f (*px > *py) return(l);
else 1f (*px < *py) return(-1);
return (0) ;

}
The lines in red replace the return in the earlier version

May 16, 2025 ECS 36A, Spring Quarter 2025



Random Numbers

* Int rand(void)
e Generate pseudorandom number between 0 and RAND_MAX inclusive

* This function is dangerous — avoid it!! In older versions, it is not
pseudorandom in the low order bits. (On newer Linux systemes, it’s OK)

* long random (void)
* Generate pseudorandom number between 0 and 23!-1 inclusive

* All require a starting point — called a seed



Random Number Seeds

* vold srand (unsigned 1nt seed)
* |nitialize the rand () pseudorandom number generator with seed

* vold srandom(unsigned 1nt seed)
* Initialize the random () pseudorandom number generator with seed

* Pick seed as randomly as possible

* There are defaults, useful for regenerating the same sequence for
debugging
* rand/srand default seed is 1
* random/srandom default seed is 1



Random Numbers

* Linux has a pool of bits generated from sources such as hardware
timings and other natural sources that are considered random

* They are not generated by an algorithm as pseudorandom numbers are

getrandom (void *buf, size t sz, unsigned 1int flags)

* Generates sz random bytes and store them in the given buf
e Returns number of bytes stored in buf

* Flags:
* GRND_NONBLOCK prevents getrandom() from blocking; if it would block it
returns —1 and sets errno to EAGAIN

* GRND_RANDOM draws from a random source more limited than the one
used when this flag is given (avoid using this one)



Example Use

unsigned int rnd;
int count;
count = getrandom(&rnd, sizeof (unsigned 1int),
if (count == -1)
perror ("getrandom") ;

else

for(i1 = 0; 1 < count; 1++)

GRND NONBLOCK) ;

printf ("0x%02x\n", count, (rnd>>i)&0xff);

May 16, 2025 ECS 36A, Spring Quarter 2025

10



String Functions

* strcpy, strcat, strcmp, strncpy, strncat, strncmp, strlen
* You've seen these

e char *strdup(char *s): make a duplicate of string s
e Space is malloc’ed

e char *strchr(char *s, int c): return pointer to first occurrence of
character c in s; NULL if not there

e char *strrchr(char *s, int c): like strchr, but points to last occurrence

e char *strstr(char *s, char *t): like strchr, but looks for first occurrence
of string t



String Functions

e char *strtok(char *s, char *delim): breaks a string into a sequence of
0 or more nonempty tokens (substrings)
* On first call, s points to string to be parsed
On subsequent calls for the same string, set s to NULL
delim is a string of characters that delimit tokens
strtok returns NULL when there are no more tokens to return
strtok always returns a nonempty token

Warning: strtok overwrites delimiters with ‘\0’, so don’t give it a read-only
string

* int strcasecmp(char *a, char *b): ignore case during comparison



Memory Functions

e void *memcpy(void *dest, void *src, unsigned int n): copy n bytes
from src to dest
* Behavior undefined if src, dest overlap

* int memcmp(void *s1, void *s2, unsigned int n): compare first n bytes
of s1 and s2; returns negative, zero, positive depending on whether
sl is less than, equal to, greater than s2



Bug: Stack Smashing

* Problem: failure to check input
length

* Going back to the stack, here is
what it looks like when a
function is called:

variable

return address

other control stuff

parameter




The Program bad2.c

#include <stdio.h>
char *gets(char *);
int main (void)
{

int above = 100;
char 1nput([24];

int below 200;
printf ("BEFORE INPUT: above = %$#010x; below = %$#010x\n", above, below);
1if (gets (input) == NULL) {

fprintf (stderr, "Unexpected EOF\n");
return(l);

}
printf (" AFTER INPUT: above = %#010x; below = %$#010x\n", above, below);
return (0) ;

May 16, 2025 ECS 36A, Spring Quarter 2025 15



A Program Run

* BEFORE INPUT: above = 0x00000064; below = 0x000000c8
* aaaaaaaaaaaaaaaaaaaaaaaaaa

« AFTER INPUT:Iabove = 0x00000064; below = OXOOOO6T161
26 a's (overflowing input by 2 chars) 'a' is represented by the number

0x61 in the computer

May 16, 2025 ECS 36A, Spring Quarter 2025 16



May Change Variable Values Unexpectedly

* Here is the stack frame after

gets is called above

input

below

return address

other control stuff

parameter

—

May 16, 2025 ECS 36A, Spring Quarter 2025

variables in
main()

control data
and parameters
for gets()

17



	Slide 1: ECS 36A, May 16, 2025
	Slide 2: Sorting
	Slide 3: Example compar()
	Slide 4: Calling qsort()
	Slide 5: Oops . . . 
	Slide 6: Oops . . . 
	Slide 7: Random Numbers
	Slide 8: Random Number Seeds
	Slide 9: Random Numbers
	Slide 10: Example Use
	Slide 11: String Functions
	Slide 12: String Functions
	Slide 13: Memory Functions
	Slide 14: Bug: Stack Smashing
	Slide 15: The Program bad2.c
	Slide 16: A Program Run
	Slide 17: May Change Variable Values Unexpectedly

