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Sorting

• Function is:

void qsort(void *base, size_t nmemb, size_t size,

  int (*compar)(const void *, const void *));

• Here compar is  function that takes 2 pointers to elements of the 
array base, with nmemb members of size size

• compar returns negative if first is less than second; 0 if the two are 
equal; and positive if  the first is greater than the second

• You supply compar
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Example compar()

int cmp(const void *x, const void *y)

{

 int *px, *py;

 px = (int *) x;

 py = (int *) y;

 return(*px - *py);

}
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Calling qsort()

int arr[100]; /* array of integers to be sorted */

int narr;  /* number of integers in arr */

/*  . . .  put random numbers into arr */

/* now sort them */

qsort(arr, narr, sizeof(int),

 (int (*)(const void *, const void *) ) cmp);
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Oops . . . 

Remember qsort()? Here is its call:
qsort(base, nelts, sizeof(double),

  (int (*)(const void *, const void *)) cmp);

I used this for cmp:
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 return(*px – *py);

}

What is wrong with this?
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Oops . . . 

It’s the *px – *py — if it returns something less than 1.0, the function 
returns 0 (equal), even if there is a difference of (say) 0.5 or –0.5
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 if (*px > *py) return(1);

 else if (*px < *py) return(-1);

 return(0);

}

The lines in red replace the return in the earlier version
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Random Numbers

• int rand(void)
• Generate pseudorandom number between 0 and RAND_MAX inclusive

• This function is dangerous — avoid it!! In older versions, it is not 
pseudorandom in the low order bits. (On newer Linux systems, it’s OK)

• long random(void)

• Generate pseudorandom number between 0 and 231–1 inclusive

• All require a starting point – called a seed
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Random Number Seeds

• void srand(unsigned int seed)
• Initialize the rand() pseudorandom number generator with seed

• void srandom(unsigned int seed)

• Initialize the random() pseudorandom number generator with seed

• Pick seed as randomly as possible

• There are defaults, useful for regenerating the same sequence for 
debugging
• rand/srand default seed is 1

• random/srandom default seed is 1
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Random Numbers

• Linux has a pool of bits generated from sources such as hardware 
timings and other natural sources that are considered random
• They are not generated by an algorithm as pseudorandom numbers are

getrandom(void *buf, size_t sz, unsigned int flags)

• Generates sz random bytes and store them in the given buf

• Returns number of bytes stored in buf

• Flags:
• GRND_NONBLOCK prevents getrandom() from blocking; if it would block it 

returns –1 and sets errno to EAGAIN
• GRND_RANDOM draws from a random source more limited than the one 

used when this flag is given (avoid using this one)
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Example Use

unsigned int rnd;

int count;

count = getrandom(&rnd, sizeof(unsigned int), GRND_NONBLOCK);

if (count == –1)

 perror("getrandom");

else

 for(i = 0; i < count; i++)

  printf("0x%02x\n", count, (rnd>>i)&0xff);
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String Functions

• strcpy, strcat, strcmp, strncpy, strncat, strncmp, strlen
• You’ve seen these

• char *strdup(char *s): make a duplicate of string s
• Space is malloc’ed

• char *strchr(char *s, int c): return pointer to first occurrence of 
character c in s; NULL if not there

• char *strrchr(char *s, int c): like strchr, but points to last occurrence

• char *strstr(char *s, char *t): like strchr, but looks for first occurrence 
of string t
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String Functions

• char *strtok(char *s, char *delim): breaks a string into a sequence of 
0 or more nonempty tokens (substrings)
• On first call, s points to string to be parsed

• On subsequent calls for the same string, set s to NULL

• delim is a string of characters that delimit tokens

• strtok returns NULL when there are no more tokens to return

• strtok always returns a nonempty token

• Warning: strtok overwrites delimiters with ‘\0’, so don’t give it a read-only 
string

• int strcasecmp(char *a, char *b): ignore case during comparison
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Memory Functions

• void *memcpy(void *dest, void *src, unsigned int n): copy n bytes 
from src to dest
• Behavior undefined if src, dest overlap

• int memcmp(void *s1, void *s2, unsigned int n): compare first n bytes 
of s1 and s2; returns negative, zero, positive depending on whether 
s1 is less than, equal to, greater than s2
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Bug: Stack Smashing

• Problem: failure to check input 
length

• Going back to the stack, here is 
what it looks like when a 
function is called:
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The Program bad2.c

#include <stdio.h>

char *gets(char *);

int main(void)

{

 int above = 100;

 char input[24];

 int below = 200;

 printf("BEFORE INPUT: above = %#010x; below =  %#010x\n", above, below);

 if (gets(input) == NULL){

  fprintf(stderr, "Unexpected EOF\n");

  return(1);

 }

 printf(" AFTER INPUT: above = %#010x; below =  %#010x\n", above, below);

 return(0);

}

May 16, 2025 ECS 36A, Spring Quarter 2025 15



A Program Run

• BEFORE INPUT: above = 0x00000064; below =  0x000000c8

• aaaaaaaaaaaaaaaaaaaaaaaaaa

• AFTER INPUT: above = 0x00000064; below = 0x00006161
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May Change Variable Values Unexpectedly

• Here is the stack frame after 
gets is called
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