
ECS 36A, May 16, 2025

May 16, 2025 ECS 36A, Spring Quarter 2025 1

Sorting

• Function is:

void qsort(void *base, size_t nmemb, size_t size,

 int (*compar)(const void *, const void *));

• Here compar is function that takes 2 pointers to elements of the
array base, with nmemb members of size size

• compar returns negative if first is less than second; 0 if the two are
equal; and positive if the first is greater than the second

• You supply compar

May 16, 2025 ECS 36A, Spring Quarter 2025 2

Example compar()

int cmp(const void *x, const void *y)

{

 int *px, *py;

 px = (int *) x;

 py = (int *) y;

 return(*px - *py);

}

May 16, 2025 ECS 36A, Spring Quarter 2025 3

Calling qsort()

int arr[100]; /* array of integers to be sorted */

int narr; /* number of integers in arr */

/* . . . put random numbers into arr */

/* now sort them */

qsort(arr, narr, sizeof(int),

 (int (*)(const void *, const void *)) cmp);

May 16, 2025 ECS 36A, Spring Quarter 2025 4

Oops . . .

Remember qsort()? Here is its call:
qsort(base, nelts, sizeof(double),

 (int (*)(const void *, const void *)) cmp);

I used this for cmp:
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 return(*px – *py);

}

What is wrong with this?

May 16, 2025 ECS 36A, Spring Quarter 2025 5

Oops . . .

It’s the *px – *py — if it returns something less than 1.0, the function
returns 0 (equal), even if there is a difference of (say) 0.5 or –0.5
int cmp(const void *x, const void *y){

 double *px, *py;

 px = (double *)x;

 py = (double *)y;

 if (*px > *py) return(1);

 else if (*px < *py) return(-1);

 return(0);

}

The lines in red replace the return in the earlier version

May 16, 2025 ECS 36A, Spring Quarter 2025 6

Random Numbers

• int rand(void)
• Generate pseudorandom number between 0 and RAND_MAX inclusive

• This function is dangerous — avoid it!! In older versions, it is not
pseudorandom in the low order bits. (On newer Linux systems, it’s OK)

• long random(void)

• Generate pseudorandom number between 0 and 231–1 inclusive

• All require a starting point – called a seed

May 16, 2025 ECS 36A, Spring Quarter 2025 7

Random Number Seeds

• void srand(unsigned int seed)
• Initialize the rand() pseudorandom number generator with seed

• void srandom(unsigned int seed)

• Initialize the random() pseudorandom number generator with seed

• Pick seed as randomly as possible

• There are defaults, useful for regenerating the same sequence for
debugging
• rand/srand default seed is 1

• random/srandom default seed is 1

May 16, 2025 ECS 36A, Spring Quarter 2025 8

Random Numbers

• Linux has a pool of bits generated from sources such as hardware
timings and other natural sources that are considered random
• They are not generated by an algorithm as pseudorandom numbers are

getrandom(void *buf, size_t sz, unsigned int flags)

• Generates sz random bytes and store them in the given buf

• Returns number of bytes stored in buf

• Flags:
• GRND_NONBLOCK prevents getrandom() from blocking; if it would block it

returns –1 and sets errno to EAGAIN
• GRND_RANDOM draws from a random source more limited than the one

used when this flag is given (avoid using this one)

May 16, 2025 ECS 36A, Spring Quarter 2025 9

Example Use

unsigned int rnd;

int count;

count = getrandom(&rnd, sizeof(unsigned int), GRND_NONBLOCK);

if (count == –1)

 perror("getrandom");

else

 for(i = 0; i < count; i++)

 printf("0x%02x\n", count, (rnd>>i)&0xff);

May 16, 2025 ECS 36A, Spring Quarter 2025 10

String Functions

• strcpy, strcat, strcmp, strncpy, strncat, strncmp, strlen
• You’ve seen these

• char *strdup(char *s): make a duplicate of string s
• Space is malloc’ed

• char *strchr(char *s, int c): return pointer to first occurrence of
character c in s; NULL if not there

• char *strrchr(char *s, int c): like strchr, but points to last occurrence

• char *strstr(char *s, char *t): like strchr, but looks for first occurrence
of string t

May 16, 2025 ECS 36A, Spring Quarter 2025 11

String Functions

• char *strtok(char *s, char *delim): breaks a string into a sequence of
0 or more nonempty tokens (substrings)
• On first call, s points to string to be parsed

• On subsequent calls for the same string, set s to NULL

• delim is a string of characters that delimit tokens

• strtok returns NULL when there are no more tokens to return

• strtok always returns a nonempty token

• Warning: strtok overwrites delimiters with ‘\0’, so don’t give it a read-only
string

• int strcasecmp(char *a, char *b): ignore case during comparison

May 16, 2025 ECS 36A, Spring Quarter 2025 12

Memory Functions

• void *memcpy(void *dest, void *src, unsigned int n): copy n bytes
from src to dest
• Behavior undefined if src, dest overlap

• int memcmp(void *s1, void *s2, unsigned int n): compare first n bytes
of s1 and s2; returns negative, zero, positive depending on whether
s1 is less than, equal to, greater than s2

May 16, 2025 ECS 36A, Spring Quarter 2025 13

Bug: Stack Smashing

• Problem: failure to check input
length

• Going back to the stack, here is
what it looks like when a
function is called:

May 16, 2025 ECS 36A, Spring Quarter 2025 14

variable

return address

other control stuff

parameter

The Program bad2.c

#include <stdio.h>

char *gets(char *);

int main(void)

{

 int above = 100;

 char input[24];

 int below = 200;

 printf("BEFORE INPUT: above = %#010x; below = %#010x\n", above, below);

 if (gets(input) == NULL){

 fprintf(stderr, "Unexpected EOF\n");

 return(1);

 }

 printf(" AFTER INPUT: above = %#010x; below = %#010x\n", above, below);

 return(0);

}

May 16, 2025 ECS 36A, Spring Quarter 2025 15

A Program Run

• BEFORE INPUT: above = 0x00000064; below = 0x000000c8

• aaaaaaaaaaaaaaaaaaaaaaaaaa

• AFTER INPUT: above = 0x00000064; below = 0x00006161

May 16, 2025 ECS 36A, Spring Quarter 2025 16

26 a's (overflowing input by 2 chars) 'a' is represented by the number
0x61 in the computer

May Change Variable Values Unexpectedly

• Here is the stack frame after
gets is called

May 16, 2025 ECS 36A, Spring Quarter 2025 17

input

return address

other control stuff

parameter

above

below

variables in
main()

control data
and parameters
for gets()

	Slide 1: ECS 36A, May 16, 2025
	Slide 2: Sorting
	Slide 3: Example compar()
	Slide 4: Calling qsort()
	Slide 5: Oops . . .
	Slide 6: Oops . . .
	Slide 7: Random Numbers
	Slide 8: Random Number Seeds
	Slide 9: Random Numbers
	Slide 10: Example Use
	Slide 11: String Functions
	Slide 12: String Functions
	Slide 13: Memory Functions
	Slide 14: Bug: Stack Smashing
	Slide 15: The Program bad2.c
	Slide 16: A Program Run
	Slide 17: May Change Variable Values Unexpectedly

