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System Calls

• Direct interface between the applications and the operating system

• They vary among operating systems
• We will deal with Linux system calls

• We'll look primarily at the file system calls
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Opening a File: Basic Ideas

• Files represented by an integer
• 0 refers to the standard output
• 1 refers to the standard output
• 2 refers to the standard error

• To get a file descriptor from a file stream:

int fileno(FILE *fp)

   returns the file descriptor associated with file pointer fp

• You can now mix system and stdio calls provided you use the file descriptor 
in the same way you use the file pointer
• For example, if the file fp points to is open for reading, using the file descriptor to 

write to it will give you an error
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Opening a File: Basic Ideas

• To get a file pointer from a file descriptor:

FILE *fdopen(int fd, char *mode)

 creates a file pointer (and corresponding structure) to file descriptor 
fd, which was opened as mode indicates

• You have to set mode the same way as you opened it

• The system maintains a rw-pointer at the spot (the file offset) where 
the next read or write will take place
• Unless there is an fseek or fsetpos, which moves the rw-pointer
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Opening a File: Details

int open(const char *name, int flags)

• Opens the file name in the way flags indicate:
• O_RDONLY: open file for reading

• O_WRONLY: open file for writing

• O_RDWR: open file for reading and writing

• Other flags augment these
• O_APPEND: with O_WRONLY or O_RDWR, append rather than overwrite

• O_CREAT: create the file if it does not exist

• O_EXCL: with O_CREAT, fail if the file exists
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Detour: File Permissions

• File protection, or mode, is 12 bits long; for us, the first 3 bits are 
irrelevant

• The other 9 bits are arranged in groups of 3:

r w x  r w x  r w x

• First 3 refer to owner (also called user)

• Second 3 refer to group

• Last 3 refer to everyone else (sometimes called other or world)

• Each r (read), w (write), x (execute) is a bit; 1 means allowed, 0 
means not allowed
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Detour: umask

• Umask is a shell variable designed to mask file creation permissions

• Each bit of umask turns off the corresponding bit in the permissions 
when a file is created
• It's a safety mechanism so the file creator doesn't accidentally give others 

access they should not have

• Example: file is created with permission 666 (anyone can read or 
write it)
• Not a good idea!

• Set umask to 022 (group and other write bits set here)

• Result: the file is created with permission 644 (anyone can read it, but 
only the owner can write to it)
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Creating a File

• When creating a file, a third argument specifies permissions:

int open(const char *name, int flags, mode_t mode)

• The file permissions are set to

mode&~umask

• Example: if umask is 077, and mode is 0644 (owner can write, everyone 
can read), the file is created with protection mode

0644&~077 = 0644&0700 = 0600

so only the owner can read or write the file
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Example: showopen.c

umask(mask);

if ((fd = open(argv[1], O_WRONLY|O_CREAT, mode)) < 0){

        error(argv[1], ":", " ");

        error(strerror(errno), "\n", "");

}
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Here, mask is the new umask, mode the desired protection mode.
• Both entered on command line as octal digits

Here's a sample run:
> showopen xyzzy 0666 022

> ls –l xyzzy

-rw-r--r-- 1 bishop bishop 0 May 22 21:58 xyzzy

First argument is file name
Second argument is protection mode
Third argument is umask

The main code:
Set the umask

Set the protection mode; if omitted, defaults to 666 
(anyone can read, write the file) but then the umask is 
applied



Reading

ssize_t read(int fd, void *buf, size_t count)

• Read count bytes from file descriptor fd and save them in the area buf 
points to
• You have to allocate buf or create an array or variable to give the address of

• On success, returns the number of bytes read; this is never more than count 
but may be less

• If it returns 0, you've reached the end of file

• If it returns –1, an error occurred, and errno is set to indicate the error
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Writing

ssize_t write(int fd, void *buf, size_t count)

• Writes count bytes from the address buf contains to file descriptor fd
• buf is the address of what you want written

• count is the number of bytes to write; it does not stop at the NUL ('\0') byte

• On success, returns the number of bytes written; this is never more than 
count but may be less

• If it returns 0, nothing was written

• If it returns –1, an error occurred, and errno is set to indicate the error
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Example: main loop of catsys.c

for(i = 1; i < argc; i++){

 if ((fd = open(argv[i], O_RDONLY)) < 0){

  write(2, "Could not read ", 15);

  write(2, argv[i], (size_t) strlen(argv[i]));

  write(2, "\n", 1);

 }

 else{

  rv -= cat(fd);

  (void) close(fd);

 }

}
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Main loop: process arguments 
one by one

open file for reading; on error, 
open returns 1; on success, it 
returns the file descriptor fd

These write to the standard 
error (file descriptor 2)

open worked; cat displays file 
(fd is the file descriptor); cat 
returns 0 on success, 1 on 
failure

close file disassociates fd from 
file; we ignore the return value
Not really necessary but it's 
good computing hygiene



Example: First Part of catsys.c

int cat(int fd)

{

 char x;       /* space for char that is read */

 int rv; /* number of chars read (or -1 on error) */

 while((rv = read(fd, &x, 1)) == 1){

  if (write(1, &x, 1) != 1){

   (void) write(2, "Could not write to screen\n", 26);

   return(-1);

  }

 }
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Main loop: read in one char

Function definition; notice it uses 
a file descriptor, not pointer

Write it out

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Example: A Better First Part of catsys.c

int cat(int fd)

{

 char buffer[BUFSIZ];       /* space for what is read */

 int rv; /* number of chars read (or -1 on error) */

 while((rv = read(fd, buffer, BUFSIZ)) > 0){

  if (write(1, buffer, rv) != rv){

   (void) write(2, "Could not write to screen\n", 26);

   return(-1);

  }

 }
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Main loop: read 
in a block of 
characters rather 
than just 1— 
hence "better"

Function definition; notice it uses 
a file descriptor, not pointer

Write it out; check you wrote it 
all out – may read less than 
BUFSIZ chars, hence test 
against rv 

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Example: Second Part of catsys.c

if (rv != 0){

  (void) write(2, "Error reading\n", 13);

  return(-1);

 }

 return(0);
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if you get here and rv != 0, then 
read returned -1, and an error 
occurred

Return 0- to indicate there 
were no errors (success!)

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Seeking

off_t lseek(int fd, off_t offset, int whence)

• Move the rw-pointer associated with the file descriptor fd to offset  
according to whence
• whence is SEEK_SET (beginning), SEEK_CUR (current position), SEEK_END 

(end of file)

• It returns new rw-pointer offset in bytes from beginning of file

• Error handling
• If it returns –1, an error may have occurred, and if so errno is set to indicate 

the error

• Note: off_t is unsigned long int, so that could be a valid value of a very big file
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Detecting Error in lseek

• If you are moving the rw-pointer to a given position x, this works:

if (lseek(fd, x, SEEK_SET) != x) . . .

• Otherwise, do this:

errno = 0;  /* clear any existing error code */

if (lseek(fd, offset, whence) == –1 && errno != 0){

 /* . . . Handle error . . . */
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Redoing stats2.c

• Earlier program used standard I/O functions fopen, fpos, fread, etc.

• stats2s.c uses system calls instead
• The only standard I/O function used is sprintf (because it lets us convert 

integers and floating-point numbers into strings easily)
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Example: Output and Error Functions

/* write to standard output */

void outdump(char *s)

{

 (void) write(1, s, strlen(s) * sizeof(char));

}

/* write to standard error */

void errdump(char *s)

{

 (void) write(2, s, strlen(s) * sizeof(char));

}
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s is the output string

File descriptor 1 means the standard output

s is the error message

File descriptor 2 means the standard error



Example: Print System Error Message

/* write a system error message to standard error */

/* handled like perror(3)                         */

void perrdump(char *s)

{

    int oops = errno;    /* remember the current error number */

    errdump(s);

    errdump(": ");

    errdump(strerror(oops));

    errdump("\n");

}
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s is the error string

Save the error number in 
case errdump resets it

Print the user part of the 
message

Translate the saved error number 
into a printable string



Example: main loop of stats2s.c

for (i = optind; argv[i] != NULL; i++){

        /* open the file */

        if ((fd = open(argv[i], O_RDONLY)) < 0){

                perrdump(argv[i]);

                rv++;

                continue;

        }

        /* do the test */

        bintest(argv[i], fd);

        /* done with this file */

        (void) close(fd);

}
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Main loop: process arguments 
one by one

open file for reading; on error, 
open returns 1; on success, it 
returns the file descriptor fd

Write out the system error 
message, add 1 to buber of 
failures, and continue

open worked; bintest develops 
statistics for file (fd is the file 
descriptor)

close file disassociates fd from 
file; we ignore the return value
Not really necessary but it's 
good computing hygiene



Example: bintest Main Loop

/* go to the position, and check for errors */

errno = 0;

if (lseek(fd, skip, SEEK_CUR) == -1 && errno != 0){

        perrdump("lseek");

        break;

}

/* if done, break out of the loop */

if ((x = read(fd, &ch, sizeof(char))) == 0)

        break;

else if (x != 1){

        perrdump("read");

        break;

}
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Here, fd  is the file descriptor 
of the file

Need to check errno if lseek 
returns -1, as -1 is a value 
lseek might legitimately 
return

if read returns 0, at EOF and 
so drop out of loop

if read returns 1, it read a 
char; otherwise it's an error
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