£CS 36A, May 19, 2025

System Calls

 Direct interface between the applications and the operating system

* They vary among operating systems
* We will deal with Linux system calls

 We'll look primarily at the file system calls

Opening a File: Basic ldeas

* Files represented by an integer
* O refers to the standard output
* 1 refers to the standard output
e 2 refers to the standard error

* To get a file descriptor from a file stream:
int fileno (FILE *fp)
returns the file descriptor associated with file pointer fp

* You can now mix system and stdio calls provided you use the file descriptor
in the same way you use the file pointer

* For example, if the file fp points to is open for reading, using the file descriptor to
write to it will give you an error

Opening a File: Basic ldeas

* To get a file pointer from a file descriptor:
FILE *fdopen(int fd, char *mode)

creates a file pointer (and corresponding structure) to file descriptor
fd, which was opened as mode indicates

* You have to set mode the same way as you opened it

* The system maintains a rw-pointer at the spot (the file offset) where
the next read or write will take place
* Unless there is an fseek or fsetpos, which moves the rw-pointer

Opening a File: Details

int open (const char *name, 1nt flags)

* Opens the file name in the way flags indicate:
* O_RDONLY: open file for reading
* O_WRONLY: open file for writing
* O_RDWR: open file for reading and writing

e Other flags augment these
* O_APPEND: with O_WRONLY or O_RDWR, append rather than overwrite
* O_CREAT: create the file if it does not exist
* O_EXCL: with O_CREAT, fail if the file exists

Detour: File Permissions

* File protection, or mode, is 12 bits long; for us, the first 3 bits are
irrelevant

* The other 9 bits are arranged in groups of 3:
rwX rwx rwx
* First 3 refer to owner (also called user)
* Second 3 refer to group
 Last 3 refer to everyone else (sometimes called other or world)

* Each r (read), w (write), x (execute) is a bit; 1 means allowed, O
means not allowed

Detour: umask

* Umask is a shell variable designed to mask file creation permissions

e Each bit of umask turns off the corresponding bit in the permissions
when a file is created

* |t's a safety mechanism so the file creator doesn't accidentally give others
access they should not have

* Example: file is created with permission 666 (anyone can read or
write it)
* Not a good idea!

* Set umask to 022 (group and other write bits set here)

e Result: the file is created with permission 644 (anyone can read it, but
only the owner can write to it)

Creating a File

 When creating a file, a third argument specifies permissions:
1nt open (const char *name, int flags, mode t mode)
* The file permissions are set to

mode&~umask

* Example: if umask is 077, and mode is 0644 (owner can write, everyone
can read), the file is created with protection mode

0644&~077 = 00644&0700 = 0600

so only the owner can read or write the file

Example: showopen.c

Here, mask is the new umask, mode the desired protection mode.
* Both entered on command line as octal digits

Here's d Samp|e run: First argument is file name

> showopen xyzzy 0666 023— Second argument is protection mode
> 1ls -1 xyzzy Third argument is umask

-rw—-r—-—-r—-— 1 bishop bishop 0 May 22 21:58 xyzzy

. . Set the protection mode; if omitted, defaults to 666
The main code: (anyone can read, write the file) but then the umask is
umask (mask) ; «— Set the umask applied /
if ((fd = open(argv[l], O WRONLY|O CREAT, mode)) < 0) {

error (argvi[1l], ", " ");

"") .
4

error (strerror (errno), "\n",

}

May 19, 2025 ECS 36A, Spring Quarter 2025 9

Reading

ssize t read(int fd, void *buf, size t count)

* Read count bytes from file descriptor fd and save them in the area buf
points to

* You have to allocate buf or create an array or variable to give the address of

* On success, returns the number of bytes read; this is never more than count
but may be less

* If it returns 0, you've reached the end of file
 |f it returns —1, an error occurred, and errno is set to indicate the error

Writing

ssize t write (int fd, void *buf, size t count)

* Writes count bytes from the address buf contains to file descriptor fd
* buf is the address of what you want written
* count is the number of bytes to write; it does not stop at the NUL ('\0') byte

* On success, returns the number of bytes written; this is never more than
count but may be less

* If it returns 0, nothing was written
If it returns =1, an error occurred, and errno is set to indicate the error

Example: main loop of catsys.C wainioop: process arguments

one by one
open file for reading; on error,
for(i = 1; i < argc; i++){ open returns 1; on success, it
<+ returns the file descriptor fd
if ((fd = open(argv[i], O RDONLY)) < 0){ ptor f

write (2, "Could not read ", 15) ¢

These write to the standard
write (2, argv[i], (size t) strlen(argv[i])) ; & arror (file descriptor 2)

write (2, "\n", 1); €4

} open worked; cat displays file
_ (fdisthe file descriptor); cat
elsed returns 0 on success, 1 on
rv -= cat (fd);

close file disassociates fd from failure

(void) close (fd); *— file; we ignore the return value
} Not really necessary but it's
\ good computing hygiene

May 19, 2025 ECS 36A, Spring Quarter 2025 12

Example: First Part of catsys.c

Function definition; notice it uses
a file descriptor, not pointer

int cat (int fd) €
{

char x; /* space for char that is read */
int rv; /* number of chars read (or -1 on error) */
| Main loop: read in one char
while ((rv = read(fd, &x, 1)) == 1){ <
if (write(1l, &x, 1) != 1){ < Write it out

(void) write (2, ;'Sould not write to screen\n", 26);

return (-1) ; - __ This writes to the standard

| \ —error (file descriptor 2)
Return -1 to indicate error

May 19, 2025 ECS 36A, Spring Quarter 2025 13

Example: A Better First Part of catsys.c

Function definition; notice it uses

- a file descriptor, not pointer
int cat(int fd) Main loop: read
{ in a block of
char buffer [BUFSIZ]; /* space for what is read * characters rather

than just 1—

rror) */ hence "better"
Write it out; check you wrote it
all out — may read less than
BUFSIZ chars, hence test

if (write(l, buffer, rv) != rv) {€ against rv

int rv; /* number of chars read (or -1 o

while ((rv = read(fd, buffer, BUFSIZ)) > 0){

(void) write (2, ;'Sould not write to screen\n", 26);

return(-1) ; —

J This writes to the standard
} error (file descriptor 2)

Return -1 to indicate error

May 19, 2025 ECS 36A, Spring Quarter 2025 14

Example: Second Part of catsys.c

. ‘ if you get here and rv =0, then
it (rv .= 0 read returned -1, and an error

(void) write (2, "Error reading\n", 13); occurred

return(-1);
\ This writes to the standard

J error (file descriptor 2)

return(0); Return -1 to indicate error

Return O- to indicate there
were no errors (success!)

May 19, 2025 ECS 36A, Spring Quarter 2025 15

Seeking

off t lseek(int fd, off t offset, 1int whence)

* Move the rw-pointer associated with the file descriptor fd to offset
according to whence

 whence is SEEK_SET (beginning), SEEK_CUR (current position), SEEK_END
(end of file)

* |t returns new rw-pointer offset in bytes from beginning of file

* Error handling

* If it returns —1, an error may have occurred, and if so errno is set to indicate
the error

* Note: off tis unsigned long int, so that could be a valid value of a very big file

Detecting Error in [seek

* If you are moving the rw-pointer to a given position x, this works:

1f (lseek (fd, x, SEEK SET) != x)
 Otherwise, do this:
errno = 0; /* clear any existing error code */
1f (lseek(fd, offset, whence) == -1 && errno != 0) {

/* . . . Handle error . . . */

Redoing stats2.c

* Earlier program used standard |/O functions fopen, fpos, fread, etc.

* stats2s.c uses system calls instead

* The only standard I/O function used is sprintf (because it lets us convert
integers and floating-point numbers into strings easily)

Example: Output and Error Functions

/* write to standard output */ sis the output string
)

volid outdump (char *s . ,
File descriptor 1 means the standard output

{

(void) write(l, s, strlen(s) * sizeof(char)):;

}

. s is the error message
/* write to standard iiiii—ii————,,,—————— g

o1d errdump (char *s : :
Vet ump {) File descriptor 2 means the standard error

{

(void) write (2, s, strlen(s) * sizeof(char)):;

May 19, 2025 ECS 36A, Spring Quarter 2025

19

Example: Print System Error Message

/* write a system error message to standard error */

/* handled like perror (3) */
void perrdump (char *s)« s is the error string
{
int oops = errno; /* remember the current error number */
Save the error number in
errdump (s) ; case errdump resets it
errdump (": ")

Print the user part of the
errdump (strerror (oops)) ; message

errdump ("\n") ;
Translate the saved error number

into a printable string

May 19, 2025 ECS 36A, Spring Quarter 2025 20

Example: main loop of statsZs.c

for (1 = optind; argv[i] != NULL; 1++){
/* open the file */
1f ((fd = open(argv[i], O RDONLY)) < 0) {

perrdump (argv[i]) ;

Main loop: process arguments
one by one

open file for reading; on error,
open returns 1; on success, it
returns the file descriptor fd

Write out the system error
message, add 1 to buber of
failures, and continue

rv++,; <4
continue;

}

/* do the test */

bintest (argv[i], £fd);

/* done with this file */

(void) close(fd); =—
}

May 19, 2025 ECS 36A, Spring Quarter 2025

open worked; bintest develops
statistics for file (fd is the file
descriptor)

close file disassociates fd from
file; we ignore the return value
Not really necessary but it's
good computing hygiene

21

Example: bintest Main Loop

Here, fd is the file descriptor
of the file

/* go to the position, sTrors */

errno = 0;
1f (lseek(fd, skip, SEEK CUR) == -1 && errno != 0) {

perrdump ("lseek™) ; *-\\\\\\\\ Need to check errno if Iseek

break; returns -1, as -1 is a value
Iseek might legitimately
return

}
/* if done, break out of the loop */

1f ((x = read(fd, &ch, sizeof(char))) == 0)

break; ———_ifreadreturns0, at EOF and

else if (x != 1) so drop out of loop

perrdump ("read"); if read returns 1, it read a

break; char; otherwise it's an error

May 19, 2025 ECS 36A, Spring Quarter 2025

	Slide 1: ECS 36A, May 19, 2025
	Slide 2: System Calls
	Slide 3: Opening a File: Basic Ideas
	Slide 4: Opening a File: Basic Ideas
	Slide 5: Opening a File: Details
	Slide 6: Detour: File Permissions
	Slide 7: Detour: umask
	Slide 8: Creating a File
	Slide 9: Example: showopen.c
	Slide 10: Reading
	Slide 11: Writing
	Slide 12: Example: main loop of catsys.c
	Slide 13: Example: First Part of catsys.c
	Slide 14: Example: A Better First Part of catsys.c
	Slide 15: Example: Second Part of catsys.c
	Slide 16: Seeking
	Slide 17: Detecting Error in lseek
	Slide 18: Redoing stats2.c
	Slide 19: Example: Output and Error Functions
	Slide 20: Example: Print System Error Message
	Slide 21: Example: main loop of stats2s.c
	Slide 22: Example: bintest Main Loop

