
ECS 36A, May 19, 2025

May 19, 2025 ECS 36A, Spring Quarter 2025 1



System Calls

• Direct interface between the applications and the operating system

• They vary among operating systems
• We will deal with Linux system calls

• We'll look primarily at the file system calls

May 19, 2025 ECS 36A, Spring Quarter 2025 2



Opening a File: Basic Ideas

• Files represented by an integer
• 0 refers to the standard output
• 1 refers to the standard output
• 2 refers to the standard error

• To get a file descriptor from a file stream:

int fileno(FILE *fp)

   returns the file descriptor associated with file pointer fp

• You can now mix system and stdio calls provided you use the file descriptor 
in the same way you use the file pointer
• For example, if the file fp points to is open for reading, using the file descriptor to 

write to it will give you an error

May 19, 2025 ECS 36A, Spring Quarter 2025 3



Opening a File: Basic Ideas

• To get a file pointer from a file descriptor:

FILE *fdopen(int fd, char *mode)

 creates a file pointer (and corresponding structure) to file descriptor 
fd, which was opened as mode indicates

• You have to set mode the same way as you opened it

• The system maintains a rw-pointer at the spot (the file offset) where 
the next read or write will take place
• Unless there is an fseek or fsetpos, which moves the rw-pointer

May 19, 2025 ECS 36A, Spring Quarter 2025 4



Opening a File: Details

int open(const char *name, int flags)

• Opens the file name in the way flags indicate:
• O_RDONLY: open file for reading

• O_WRONLY: open file for writing

• O_RDWR: open file for reading and writing

• Other flags augment these
• O_APPEND: with O_WRONLY or O_RDWR, append rather than overwrite

• O_CREAT: create the file if it does not exist

• O_EXCL: with O_CREAT, fail if the file exists

May 19, 2025 ECS 36A, Spring Quarter 2025 5



Detour: File Permissions

• File protection, or mode, is 12 bits long; for us, the first 3 bits are 
irrelevant

• The other 9 bits are arranged in groups of 3:

r w x  r w x  r w x

• First 3 refer to owner (also called user)

• Second 3 refer to group

• Last 3 refer to everyone else (sometimes called other or world)

• Each r (read), w (write), x (execute) is a bit; 1 means allowed, 0 
means not allowed

May 19, 2025 ECS 36A, Spring Quarter 2025 6



Detour: umask

• Umask is a shell variable designed to mask file creation permissions

• Each bit of umask turns off the corresponding bit in the permissions 
when a file is created
• It's a safety mechanism so the file creator doesn't accidentally give others 

access they should not have

• Example: file is created with permission 666 (anyone can read or 
write it)
• Not a good idea!

• Set umask to 022 (group and other write bits set here)

• Result: the file is created with permission 644 (anyone can read it, but 
only the owner can write to it)

May 19, 2025 ECS 36A, Spring Quarter 2025 7



Creating a File

• When creating a file, a third argument specifies permissions:

int open(const char *name, int flags, mode_t mode)

• The file permissions are set to

mode&~umask

• Example: if umask is 077, and mode is 0644 (owner can write, everyone 
can read), the file is created with protection mode

0644&~077 = 0644&0700 = 0600

so only the owner can read or write the file

May 19, 2025 ECS 36A, Spring Quarter 2025 8



Example: showopen.c

umask(mask);

if ((fd = open(argv[1], O_WRONLY|O_CREAT, mode)) < 0){

        error(argv[1], ":", " ");

        error(strerror(errno), "\n", "");

}

May 19, 2025 ECS 36A, Spring Quarter 2025 9

Here, mask is the new umask, mode the desired protection mode.
• Both entered on command line as octal digits

Here's a sample run:
> showopen xyzzy 0666 022

> ls –l xyzzy

-rw-r--r-- 1 bishop bishop 0 May 22 21:58 xyzzy

First argument is file name
Second argument is protection mode
Third argument is umask

The main code:
Set the umask

Set the protection mode; if omitted, defaults to 666 
(anyone can read, write the file) but then the umask is 
applied



Reading

ssize_t read(int fd, void *buf, size_t count)

• Read count bytes from file descriptor fd and save them in the area buf 
points to
• You have to allocate buf or create an array or variable to give the address of

• On success, returns the number of bytes read; this is never more than count 
but may be less

• If it returns 0, you've reached the end of file

• If it returns –1, an error occurred, and errno is set to indicate the error

May 19, 2025 ECS 36A, Spring Quarter 2025 10



Writing

ssize_t write(int fd, void *buf, size_t count)

• Writes count bytes from the address buf contains to file descriptor fd
• buf is the address of what you want written

• count is the number of bytes to write; it does not stop at the NUL ('\0') byte

• On success, returns the number of bytes written; this is never more than 
count but may be less

• If it returns 0, nothing was written

• If it returns –1, an error occurred, and errno is set to indicate the error

May 19, 2025 ECS 36A, Spring Quarter 2025 11



Example: main loop of catsys.c

for(i = 1; i < argc; i++){

 if ((fd = open(argv[i], O_RDONLY)) < 0){

  write(2, "Could not read ", 15);

  write(2, argv[i], (size_t) strlen(argv[i]));

  write(2, "\n", 1);

 }

 else{

  rv -= cat(fd);

  (void) close(fd);

 }

}

May 19, 2025 ECS 36A, Spring Quarter 2025 12

Main loop: process arguments 
one by one

open file for reading; on error, 
open returns 1; on success, it 
returns the file descriptor fd

These write to the standard 
error (file descriptor 2)

open worked; cat displays file 
(fd is the file descriptor); cat 
returns 0 on success, 1 on 
failure

close file disassociates fd from 
file; we ignore the return value
Not really necessary but it's 
good computing hygiene



Example: First Part of catsys.c

int cat(int fd)

{

 char x;       /* space for char that is read */

 int rv; /* number of chars read (or -1 on error) */

 while((rv = read(fd, &x, 1)) == 1){

  if (write(1, &x, 1) != 1){

   (void) write(2, "Could not write to screen\n", 26);

   return(-1);

  }

 }

May 19, 2025 ECS 36A, Spring Quarter 2025 13

Main loop: read in one char

Function definition; notice it uses 
a file descriptor, not pointer

Write it out

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Example: A Better First Part of catsys.c

int cat(int fd)

{

 char buffer[BUFSIZ];       /* space for what is read */

 int rv; /* number of chars read (or -1 on error) */

 while((rv = read(fd, buffer, BUFSIZ)) > 0){

  if (write(1, buffer, rv) != rv){

   (void) write(2, "Could not write to screen\n", 26);

   return(-1);

  }

 }

May 19, 2025 ECS 36A, Spring Quarter 2025 14

Main loop: read 
in a block of 
characters rather 
than just 1— 
hence "better"

Function definition; notice it uses 
a file descriptor, not pointer

Write it out; check you wrote it 
all out – may read less than 
BUFSIZ chars, hence test 
against rv 

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Example: Second Part of catsys.c

if (rv != 0){

  (void) write(2, "Error reading\n", 13);

  return(-1);

 }

 return(0);

May 19, 2025 ECS 36A, Spring Quarter 2025 15

if you get here and rv != 0, then 
read returned -1, and an error 
occurred

Return 0- to indicate there 
were no errors (success!)

Return -1 to indicate error

This writes to the standard 
error (file descriptor 2)



Seeking

off_t lseek(int fd, off_t offset, int whence)

• Move the rw-pointer associated with the file descriptor fd to offset  
according to whence
• whence is SEEK_SET (beginning), SEEK_CUR (current position), SEEK_END 

(end of file)

• It returns new rw-pointer offset in bytes from beginning of file

• Error handling
• If it returns –1, an error may have occurred, and if so errno is set to indicate 

the error

• Note: off_t is unsigned long int, so that could be a valid value of a very big file

May 19, 2025 ECS 36A, Spring Quarter 2025 16



Detecting Error in lseek

• If you are moving the rw-pointer to a given position x, this works:

if (lseek(fd, x, SEEK_SET) != x) . . .

• Otherwise, do this:

errno = 0;  /* clear any existing error code */

if (lseek(fd, offset, whence) == –1 && errno != 0){

 /* . . . Handle error . . . */

May 19, 2025 ECS 36A, Spring Quarter 2025 17



Redoing stats2.c

• Earlier program used standard I/O functions fopen, fpos, fread, etc.

• stats2s.c uses system calls instead
• The only standard I/O function used is sprintf (because it lets us convert 

integers and floating-point numbers into strings easily)

May 19, 2025 ECS 36A, Spring Quarter 2025 18



Example: Output and Error Functions

/* write to standard output */

void outdump(char *s)

{

 (void) write(1, s, strlen(s) * sizeof(char));

}

/* write to standard error */

void errdump(char *s)

{

 (void) write(2, s, strlen(s) * sizeof(char));

}

May 19, 2025 ECS 36A, Spring Quarter 2025 19

s is the output string

File descriptor 1 means the standard output

s is the error message

File descriptor 2 means the standard error



Example: Print System Error Message

/* write a system error message to standard error */

/* handled like perror(3)                         */

void perrdump(char *s)

{

    int oops = errno;    /* remember the current error number */

    errdump(s);

    errdump(": ");

    errdump(strerror(oops));

    errdump("\n");

}

May 19, 2025 ECS 36A, Spring Quarter 2025 20

s is the error string

Save the error number in 
case errdump resets it

Print the user part of the 
message

Translate the saved error number 
into a printable string



Example: main loop of stats2s.c

for (i = optind; argv[i] != NULL; i++){

        /* open the file */

        if ((fd = open(argv[i], O_RDONLY)) < 0){

                perrdump(argv[i]);

                rv++;

                continue;

        }

        /* do the test */

        bintest(argv[i], fd);

        /* done with this file */

        (void) close(fd);

}

May 19, 2025 ECS 36A, Spring Quarter 2025 21

Main loop: process arguments 
one by one

open file for reading; on error, 
open returns 1; on success, it 
returns the file descriptor fd

Write out the system error 
message, add 1 to buber of 
failures, and continue

open worked; bintest develops 
statistics for file (fd is the file 
descriptor)

close file disassociates fd from 
file; we ignore the return value
Not really necessary but it's 
good computing hygiene



Example: bintest Main Loop

/* go to the position, and check for errors */

errno = 0;

if (lseek(fd, skip, SEEK_CUR) == -1 && errno != 0){

        perrdump("lseek");

        break;

}

/* if done, break out of the loop */

if ((x = read(fd, &ch, sizeof(char))) == 0)

        break;

else if (x != 1){

        perrdump("read");

        break;

}

May 19, 2025 ECS 36A, Spring Quarter 2025 22

Here, fd  is the file descriptor 
of the file

Need to check errno if lseek 
returns -1, as -1 is a value 
lseek might legitimately 
return

if read returns 0, at EOF and 
so drop out of loop

if read returns 1, it read a 
char; otherwise it's an error


	Slide 1: ECS 36A, May 19, 2025
	Slide 2: System Calls
	Slide 3: Opening a File: Basic Ideas
	Slide 4: Opening a File: Basic Ideas
	Slide 5: Opening a File: Details
	Slide 6: Detour: File Permissions
	Slide 7: Detour: umask
	Slide 8: Creating a File
	Slide 9: Example: showopen.c
	Slide 10: Reading
	Slide 11: Writing
	Slide 12: Example: main loop of catsys.c
	Slide 13: Example: First Part of catsys.c
	Slide 14: Example: A Better First Part of catsys.c
	Slide 15: Example: Second Part of catsys.c
	Slide 16: Seeking
	Slide 17: Detecting Error in lseek
	Slide 18: Redoing stats2.c
	Slide 19: Example: Output and Error Functions
	Slide 20: Example: Print System Error Message
	Slide 21: Example: main loop of stats2s.c
	Slide 22: Example: bintest Main Loop

