£CS 36A, May 21, 2025



Get File Status

int stat (const char *name, struct stat *buf)
int fstat(int f£d, struct stat *buf)

e Get the status of the file name or the file associated with the
descriptor fd

int lstat (const char *name, struct stat *buf)

* Get the status of the symbolic link rather than the file that the
symbolic link points to



Representation of Status

struct stat {

dev t st dev; /* ID of device containing file */
ino t st ino; /* inode number */

mode t st mode; /* protection */

nlink t st nlink; /* number of hard links */

uid t st uid; /* user ID of owner */

gid t st gid; /* group ID of owner */

dev t st rdev; /* device ID (if special file) */
off t st size; /* total size, in bytes */
blksize t st blksize; /* blocksize for file system I/0 */
blkcnt t st blocks; /* number of 512 byte blocks allocated */
time t st atime; /* time of last access */

time t st mtime; /* time of last modification */

time t st ctime; /* time of last status change */

Y

May 21, 2025 ECS 36A, Spring Quarter 2025



Representation of Status

struct stat {
dev t st dev; /* ID of device containing file */
ino t st ino; /* inode number */
These two enable Linux to find the file: it goes first to the device with the device ID, and then looks for
the inode, which contains information about where the fie is located as well as status information

mode t st mode; /* protection */
This contains the user, group, and other rights as a set of 9 bits, as well as 3 bits indicating privilege

nlink t st nlink; /* number of hard links */
A hard link is an alternate name for the file; a soft link is a file that contains the name of the file with
which it is linked. Linux keeps track of the number of hard links, but not soft links. Example: for a
directory, the number of hard links is at least 2 (the link from the parent directory to it, and the link
from "." to it)



Representation of Status

uid t st uid; /* user ID of owner */
gid t st gid; /* group ID of owner */

These are the user id (of the owner) and the group id of the file. A file can be in at most 1 group.
dev_t st rdev; /* device ID (if special file) */

This is used for device files; they have a major and a minor number associated with them. Linux uses
these to find the device driver (major number; it controls how the device does I/0), and passes the
minor number to that driver.

off t st size; /* total size, in bytes */
blksize t st blksize; /* blocksize for file system I/O */
blkcnt t st blocks; /* number of 512 byte blocks allocated */

These contain information about the size of the file. The first is the number of bytes in the file. The
third contains the number of disk blocks that the file is using. The second is the number of bytes in
each block on the device; this is useful for buffering.



Representation of Status

time t st atime; /* time of last access */
time t st mtime; /* time of last modification */
time t st ctime; /* time of last status change */

These are the times of last file access, last modification (write), and last status change (when the file's
metadata was changed; for example, changing protection mode).

s



Example: filestat.c

e Goal is to list all attributes of files

* Linux (and some other systems) have extended attributes
* Two types: system attributes (set by system), user attributes (set by users)
* These vary from system to system

* So does how you access them (the MacOS system call has 2 more arguments

than the Linux system call has, and uses a different system call for symbolic
links)

 Not discussed here



Example: filestat.c

 These are in the routine do_stat, which gets the information and prints it in
an intelligible format. do_stat is called from main with 1 file name

* This uses Istat as we want information about the named file, even if it is a
symbolic link

/* get the file information and complain on error */

if (lstat (fname, &stbuf) < 0)

‘\ The information goes into a buffer,

perror (fname) ; declared as struct stat stbuf

return (0) ; _
(V) We need to take stbuf's address as it is

} declared as a variable and the file status
data needs to be placed there

/* print file name */

printf ("%s:\n", fname);

May 21, 2025 ECS 36A, Spring Quarter 2025



Example: filestat.c

This prints basic information about the file that is related to the file system

The major, minor IDs and the inode number
/* print file system information */ are used to locate the file metadata and

printf ("\t* File system information:\n"); contents
printf ("\t Major ID of file's device: %d\n", (int)| major(stbuf.st dev));
printf ("\t Minor ID of file's device: %d\n", (int)| minor (stbuf.st dev));

printf ("\t Optimal file system blocksize: %1d\n", [(long) stbuf.st blksize);

y

printf ("\t File inode number %1ld\n", (long) stbuf.st ino);

Optimal blocksize is the block
size of the file system
containing the file

May 21, 2025 ECS 36A, Spring Quarter 2025 9



Example: filestat.c

Print information about device files
e Character special devices are character-oriented, like terminals

* Block special devices are block-oriented, like hard drives
File type encoded in st_ mode field

if (S_ISBLK(stbuf.st mode) || S_ISCHR(stbuf.st mode)) {

printf ("\t File is a devide interface:\n");

printf ("\t\tMajor device nymber (driver number): %d\n",

(int) major (stbuf.st rdev)):;
drintf ("\t\tMinor device ny@imber (driver dependent): %d\n",

(Int) minor (stbuf.st rdev));

True if file is block special True if file is character special

May 21, 2025 ECS 36A, Spring Quarter 2025

10



Example: filestat.c

This prints the type of file (function is *ftype(mode_t fperms))

st_mode encodes file type;

here we use macros to test for
else if (S ISDIR(f perms)) ret “drrectory") ; the file type

if (S ISREG(f perms)) return("regular file");

else 1if (S ISCHR(f perms)) return("character special device");

else 1if (S ISBLK(f perms)) return("block special device");

else 1f (S ISFIFO(f perms)) return("fifo (named pipe)");

else 1f (S ISLNK(f perms)) return("symbolic link");

else 1f (S ISSOCK(f perms)) return("socket"); Example of defensive
/* should never get here, but just in case .*<—1—17”————;wogmnwnmg
sprintf (perm buf, "*** unknown type (%00) ***", (f perms>>12) &0xf);

return (perm buf);

ay 21,2025 ECS 36A, Spring Quarter 2025 11



Example: filestat.c

Now we handle symbolic links by printing the name of the file they are linked to. Note the link

contains the name but that is not terminated by a NUL ('\0') byte. st_mode encodes file type; here we use
if (S ISLNK (stbuf.st mode)id a macro to see if it is a symbolic link
printf (" ["); - Allocate space; all the link file contains is
if ((lname = malloc (stbuf.st size+l)) == NULL) the name of another file, so it's file size
perror ("malloc"); plus 1.
else 1f ((r = readlink(fname, lname, stbuf.st size + 1)) < 0)
perror ("readlink") ;
Read the link

else 1f (r > stbuf.st size)

fpriﬂtET§f§€f£$~lii:§£iff;ffiFents changed during read ***");
else(

lname [stbuf.st size] = '\0'; Check for an unexpgcted chan.ge. If thfe file narT1e is

- different than the size of the link obtained earlier,
then the link was changed and the space allocated for
the name is now be too small.

printf ("%$s", lname);

}

| printf ("]"); Read the link

ay 21,2025 ECS 36A, Spring Quarter 2025 12



Example: filestat.c

* The number of links is, essentially, the number of names for the file.

* The sizes are self-explanatory. The reason for the 512 bytes for the
bocks is because some file systems can split disk blocks into
fragments of 512 bytes.

printf ("\t Number of hard links: %$1ld\n", (long) stbuf.st nlink);

printf ("\t Number of bytes in file: %1d\n", (long) stbuf.st size);

printf ("\t Number of 512 byte blocks allocated: $1d\n", (long)
stbuf.st blocks);



Example: filestat.c

These are the bits for permissions. There are 12 of them
* The first 3 are privilege bits

* The next 3 are the user rights (read, write, execute) These are the shifts
* The next 3 are the group rights (read, write, execute) needed to make the
* The next 3 are the other rights (read, write, execute) corresponding bits
/* how many bits to shift left to get the set needed */ be the ow ones in
#define PRIV 9 /* privilege bits */ the word; we can
#define USER 6 /* permissions for UID */ _ then and them with

#define GROUP 3 /* permissions for GID */ « / 7 to get them
#define OTHER 0 /* permissions for everyone else */ privileges corresponding to the

char *p rights[] = { "setuid", "setgid", "sticky" }; /privilege bits

]
]

char *f rights[] = { "read", "write", "execute" }; <« permissions corresponding to the
char *d rights[] = { "list", "modify", "search" }; permission bits for files bits for files
char perm buf[128]; /* big enough to hold response */ permissions corresponding to the
small buffm permission, privilege names permission bits for files bits for
directories

ay 21,2025 ECS 36A, Spring Quarter 2025 14



. £ The parameters are:
Exa M p | €. fl/EStat. c  what, which says which set of rights (USER,

GROUP, OTHER) are to be printed
if (S ISDIR(f perms)) £ perms, which is the set of permission bits
rights = d rights;

else This tests whether it's a directory, and sets the rights names
rights = f rights; appropriately. d rights give the names of directory rights,
and £ rights the names of file rights.

switch (what) {
case USER: case GROUP: case OTHER:

bits = (f perms>>what) &07; | Now we get the set of bits for the proper set of permissions;

break; \ it's shifted by the appropriate number of bits and the low-
default : order 3 bits are extracted

return ("*** internal error ***"),;
} - — | "Can't happen" so we check for it (remember,
perm buf[0] = '"\O0';

May 21, 2025 ECS 36A, Spring Quarter 2025 15



Example: filestat.c

switch (bits) {

case 7: /* read, write, and execute / list, modify, and search */
( ) strcpy(perm buf, rights[0]);
( ) strcat(perm buf, ", ");
(void) strcat (perm buf, rights[1l]);
( ) strcat (perm buf, , and ") ;
( ) (

void " ; . . .
, = 5 Proceed in the obvious way: build
void) strcat(perm buf, rights(2]); perm buf's contents to list the rights.
break; There are 8 of these, from 0 to 7. These
case 6: /* read and write */ are the first two.

(void) strcpy(perm buf, rights[0]);
(void) strcat(perm buf, " and ");
(void) strcat(perm buf, rights[1l]);
break;

May 21, 2025 ECS 36A, Spring Quarter 2025 16



Example: filestat.c

* Now the time. These format the time and put it into an array.

char p time[1024];

The time is placed in this array

char *timefmt = "$%$A, %B %e, %Y at %1:%M:%S%Sp %2";

e Time format string; the result looks like this:
%A = full name of day of week %Y = full year %S = seconds (0-59)
%B = full name of month %l = hour of day (1-12) %p = AM or PM
%e = day of month (1-31) %M = minutes (0-59) %Z =time zone

* So this comes out as:
Wednesday, May 21, 2025 at 5:27:32AM PDT

May 21, 2025 ECS 36A, Spring Quarter 2025

17



Example: filestat.c

* This is the function that takes the internal representation of time (tock) and
converts it into the string on the previous slide

char *prtime(time t tock)

{

struct tm ticktock;

Convert internal time representation to a time
ticktock = *localtime(&tock);"’-ﬂﬂmu"e

1f (!strftime(p time, sizeof(p time), timefmt, &ticktock))

sprintf (p time, "%1d", tock); \

return (p_time); Now convert it into a string formatted as the
timefmt requires, and storeitinp time

If the conversion fails, return the internal time
representation

May 21, 2025 ECS 36A, Spring Quarter 2025 18



Closing a File

int close(int fd)
* Disassociates the file associated with fd
* fd no longer is bound to any file and can be reused
* On success, it returns 0
* On failure, it returns —1 and puts the error code in errno



Deleting a File

int unlink(const char *name)
e Deletes file name from the file system

* If there are other links to it, the file's storage is still being used
* If the file is open, that's a link

* On success, it returns O
* On failure, it returns —1 and puts the error code in errno



Example: Deleting Files

$ touch xyzzy « Create a file (touch either creates the file or changes the modification time

S 1n xyzzy plugh €————— Gjve it a second name (/n stands for "link")

$ 1ls -1 S . . : : L
The —i option lists the inode number; each file has a single inode number, so 1 file with 2

total 36  names will show both file names and they have the same inode

4134245867 -rwxr-xr—-x 1 bishop bishop 21288 May 23 23:15 filestat
403 211 -rw-r--r—-- 1 bishop bishop 7365 May 23 23:15 filestat.c
41342458660 \-rw——————— 2 bishop bishop 0 May 23 23:22

4134245866/ —rw——————— 2 bishop bishop 0 May 23 23:22

These two files have the same inode number and so are different names for the same
file

May 21, 2025 ECS 36A, Spring Quarter 2025 21



Example: Deleting Files

$ rm Xyzzy < Now delete the original file
rm: remove regular empty file 'xyzzy'? y €———— Verifying so| don't delete the wrong thing!

$ 1s -il
¥~ The —i option lists the inode number
total 36

4134245867 -rwxr-xr—-x 1 bishop bishop 21288 May 23 23:15 filestat
4035671211 -rw-r—--r—-- 1 bishop bishop 7365 May 23 23:15 filestat.c

41342458606 )-rw——————— 1 bishop bishop 0 May 23 23:22

12:~/ecs36a/0521S

The other name for the deleted file shows up, and it has the same inode number as
before; so it is really the same file with a different name

May 21, 2025 ECS 36A, Spring Quarter 2025 22



	Slide 1: ECS 36A, May 21, 2025
	Slide 2: Get File Status
	Slide 3: Representation of Status
	Slide 4: Representation of Status
	Slide 5: Representation of Status
	Slide 6: Representation of Status
	Slide 7: Example: filestat.c
	Slide 8: Example: filestat.c
	Slide 9: Example: filestat.c
	Slide 10: Example: filestat.c
	Slide 11: Example: filestat.c
	Slide 12: Example: filestat.c
	Slide 13: Example: filestat.c
	Slide 14: Example: filestat.c
	Slide 15: Example: filestat.c
	Slide 16: Example: filestat.c
	Slide 17: Example: filestat.c
	Slide 18: Example: filestat.c
	Slide 19: Closing a File
	Slide 20: Deleting a File
	Slide 21: Example: Deleting Files
	Slide 22: Example: Deleting Files

