
ECS 36A, May 21, 2025

May 21, 2025 ECS 36A, Spring Quarter 2025 1



Get File Status

int stat(const char *name, struct stat *buf)

int fstat(int fd, struct stat *buf)

• Get the status of the file name or the file associated with the 
descriptor fd

int lstat(const char *name, struct stat *buf)

• Get the status of the symbolic link rather than the file that the 
symbolic link points to

May 21, 2025 ECS 36A, Spring Quarter 2025 2



Representation of Status

struct stat { 

 dev_t st_dev;   /* ID of device containing file */ 

 ino_t st_ino;   /* inode number */ 

 mode_t st_mode;  /* protection */ 

 nlink_t st_nlink;  /* number of hard links */ 

 uid_t st_uid;   /* user ID of owner */ 

 gid_t st_gid;  /* group ID of owner */ 

 dev_t st_rdev;  /* device ID (if special file) */ 

 off_t st_size;  /* total size, in bytes */ 

 blksize_t st_blksize; /* blocksize for file system I/O */ 

 blkcnt_t st_blocks;  /* number of 512 byte blocks allocated */ 

 time_t st_atime;  /* time of last access */ 

 time_t st_mtime;  /* time of last modification */ 

 time_t st_ctime;  /* time of last status change */ 

};

May 21, 2025 ECS 36A, Spring Quarter 2025 3



Representation of Status

struct stat { 

 dev_t st_dev; /* ID of device containing file */ 

 ino_t st_ino; /* inode number */ 

 mode_t st_mode;  /* protection */ 

 nlink_t st_nlink;  /* number of hard links */ 

May 21, 2025 ECS 36A, Spring Quarter 2025 4

These two enable Linux to find the file: it goes first to the device with the device ID, and then looks for 
the inode, which contains information about where the fie is located as well as status information

This contains the user, group, and other rights as a set of 9 bits, as well as 3 bits indicating privilege

A hard link is an alternate name for the file; a soft link is a file that contains the name of the file with 
which it is linked. Linux keeps track of the number of hard links, but not soft links. Example: for a 
directory, the number of hard links is at least 2 (the link from the parent directory to it, and the link 
from "." to it)



Representation of Status

uid_t st_uid;   /* user ID of owner */ 

 gid_t st_gid;  /* group ID of owner */ 

 dev_t st_rdev;  /* device ID (if special file) */ 

 off_t st_size;  /* total size, in bytes */ 

 blksize_t st_blksize; /* blocksize for file system I/O */ 

 blkcnt_t st_blocks; /* number of 512 byte blocks allocated */ 

May 21, 2025 ECS 36A, Spring Quarter 2025 5

These are the user id (of the owner) and the group id of the file. A file can be in at most 1 group.

This is used for device files; they have a major and a minor number associated with them. Linux uses 
these to find the device driver (major number; it controls how the device does I/O), and passes the 
minor number to that driver.

These contain information about the size of the file. The first is the number of bytes in the file. The 
third contains the number of disk blocks that the file is using. The second is the number of bytes in 
each block on the device; this is useful for buffering.



Representation of Status

time_t st_atime;  /* time of last access */ 

 time_t st_mtime;  /* time of last modification */ 

 time_t st_ctime;  /* time of last status change */ 

};

May 21, 2025 ECS 36A, Spring Quarter 2025 6

These are the times of last file access, last modification (write), and last status change (when the file's 
metadata was changed; for example, changing protection mode). 



Example: filestat.c

• Goal is to list all attributes of files

• Linux (and some other systems) have extended attributes
• Two types: system attributes (set by system), user attributes (set by users)

• These vary from system to system

• So does how you access them (the MacOS system call has 2 more arguments 
than the Linux system call has, and uses a different system call for symbolic 
links)

• Not discussed here

May 21, 2025 ECS 36A, Spring Quarter 2025 7



Example: filestat.c

/* get the file information and complain on error */

if (lstat(fname, &stbuf) < 0){

    perror(fname);

    return(0);

}

/* print file name */

printf("%s:\n", fname);

May 21, 2025 ECS 36A, Spring Quarter 2025 8

• These are in the routine do_stat, which gets the information and prints it in 
an intelligible format. do_stat is called from main with 1 file name

• This uses lstat as we want information about the named file, even if it is a 
symbolic link

The information goes into a buffer, 
declared as struct stat stbuf

We need to take stbuf's address as it is 
declared as a variable and the file status 
data needs to be placed there



Example: filestat.c

/* print file system information */

printf("\t* File system information:\n");

printf("\t  Major ID of file's device: %d\n", (int) major(stbuf.st_dev));

printf("\t  Minor ID of file's device: %d\n", (int) minor(stbuf.st_dev));

printf("\t  Optimal file system blocksize: %ld\n", (long) stbuf.st_blksize);

printf("\t  File inode number %ld\n", (long) stbuf.st_ino);

May 21, 2025 ECS 36A, Spring Quarter 2025 9

This prints basic information about the file that is related to the file system

The major, minor IDs and the inode number  
are used to  locate the file metadata and 
contents

Optimal blocksize is the block 
size of the file system 
containing the file



Example: filestat.c

if (S_ISBLK(stbuf.st_mode) || S_ISCHR(stbuf.st_mode)){

 printf("\t  File is a device interface:\n");

 printf("\t\tMajor device number (driver number): %d\n", 

      (int) major(stbuf.st_rdev));

 printf("\t\tMinor device number (driver dependent): %d\n",

      (int) minor(stbuf.st_rdev));

}

May 21, 2025 ECS 36A, Spring Quarter 2025 10

Print information about device files
• Character special devices are character-oriented, like terminals
• Block special devices are block-oriented, like hard drives
File type encoded in st_mode field

True if file is block special True if file is character special



Example: filestat.c

if (S_ISREG(f_perms)) return("regular file");

 else if (S_ISDIR(f_perms)) return("directory");

 else if (S_ISCHR(f_perms)) return("character special device");

 else if (S_ISBLK(f_perms)) return("block special device");

 else if (S_ISFIFO(f_perms)) return("fifo (named pipe)");

 else if (S_ISLNK(f_perms)) return("symbolic link");

 else if (S_ISSOCK(f_perms)) return("socket");

 /* should never get here, but just in case . . . */

 sprintf(perm_buf, "*** unknown type (%0o) ***", (f_perms>>12)&0xf);

 return(perm_buf);

}
ay 21, 2025 ECS 36A, Spring Quarter 2025 11

Example of defensive 
programming

This prints the type of file (function is *ftype(mode_t fperms))

st_mode encodes file type; 
here we use macros to test for 
the file type



Example: filestat.c

if (S_ISLNK(stbuf.st_mode)){

 printf(" [");

 if ((lname = malloc(stbuf.st_size+1)) == NULL)

  perror("malloc");

 else if ((r = readlink(fname, lname, stbuf.st_size + 1)) < 0)

  perror("readlink");

 else if (r > stbuf.st_size)

  fprintf(stderr, "*** Link contents changed during read ***");

 else{

  lname[stbuf.st_size] = '\0';

  printf("%s", lname);

 }

 printf("]");

}
ay 21, 2025 ECS 36A, Spring Quarter 2025 12

st_mode encodes file type; here we use 
a macro to see if it is a symbolic link

Now we handle symbolic links by printing the name of the file they are linked to. Note the link 
contains the name but that is not terminated by a NUL ('\0') byte.

Allocate space; all the link file contains is 
the name of another file, so it's file size 
plus 1.

Check for an unexpected change. If the file name is 
different than the size of the link obtained earlier, 
then the link was changed and the space allocated for 
the name is now be too small.

Read the link

Read the link



Example: filestat.c

printf("\t  Number of hard links: %ld\n", (long) stbuf.st_nlink);

printf("\t  Number of bytes in file: %ld\n", (long) stbuf.st_size);

printf("\t  Number of 512 byte blocks allocated: %ld\n", (long) 

        stbuf.st_blocks);

ay 21, 2025 ECS 36A, Spring Quarter 2025 13

• The number of links is, essentially, the number of names for the file.
• The sizes are self-explanatory. The reason for the 512 bytes for the 

bocks is because some file systems can split disk blocks into 
fragments of 512 bytes.



Example: filestat.c

/* how many bits to shift left to get the set needed */

#define PRIV 9 /* privilege bits */

#define USER 6 /* permissions for UID */

#define GROUP 3 /* permissions for GID */

#define OTHER 0 /* permissions for everyone else */

char *p_rights[] = { "setuid", "setgid", "sticky" };

char *f_rights[] = { "read", "write", "execute" };

char *d_rights[] = { "list", "modify", "search" };

char perm_buf[128]; /* big enough to hold response */

ay 21, 2025 ECS 36A, Spring Quarter 2025 14

These are the bits for permissions. There are 12 of them
• The first 3 are privilege bits
• The next 3 are the user rights (read, write, execute)
• The next 3 are the group rights (read, write, execute)
• The next 3 are the other rights (read, write, execute)

These are the shifts 
needed to make the 
corresponding bits 
be the low ones in 
the word; we can 
then and them with 
7 to get them

privileges corresponding to the 
privilege bits

permissions corresponding to the 
permission bits for files bits for files

permissions corresponding to the 
permission bits for files bits for 
directories

small buffer to hold permission, privilege names



Example: filestat.c

if (S_ISDIR(f_perms))

 rights = d_rights;

else

 rights = f_rights;

switch(what){

case USER: case GROUP: case OTHER:

 bits = (f_perms>>what)&07;

 break;

default:

 return("*** internal error ***");

}

perm_buf[0] = '\0';

May 21, 2025 ECS 36A, Spring Quarter 2025 15

This tests whether it's a directory, and sets the rights names 
appropriately. d_rights give the names of directory rights, 
and f_rights the names of file rights.

The parameters are:
• what, which says which set of rights (USER, 

GROUP, OTHER) are to be printed
• f_perms, which is the set of permission bits

Now we get the set of bits for the proper set of permissions; 
it's shifted by the appropriate number of bits and the low-
order 3 bits are extracted

"Can't happen" so we check for it (remember, 



Example: filestat.c

switch(bits){

case 7: /* read, write, and execute / list, modify, and search */

 (void) strcpy(perm_buf, rights[0]);

 (void) strcat(perm_buf, ", ");

 (void) strcat(perm_buf, rights[1]);

 (void) strcat(perm_buf, ", and ");

 (void) strcat(perm_buf, rights[2]);

 break;

case 6: /* read and write */

 (void) strcpy(perm_buf, rights[0]);

 (void) strcat(perm_buf, " and ");

 (void) strcat(perm_buf, rights[1]);

 break;

May 21, 2025 ECS 36A, Spring Quarter 2025 16

Proceed in the obvious way: build 
perm_buf's contents to list the rights.
There are 8 of these, from 0 to 7. These 
are the first two.



Example: filestat.c

• Now the time. These format the time and put it into an array.

char p_time[1024];

char *timefmt = "%A, %B %e, %Y at %l:%M:%S%p %Z";

May 21, 2025 ECS 36A, Spring Quarter 2025 17

• Time format string; the result looks like this:
 %A = full name of day of week %Y = full year  %S = seconds (0-59)
 %B = full name of month  %l = hour of day (1-12) %p = AM or PM
 %e = day of month (1-31)  %M = minutes (0-59) %Z =time zone
• So this comes out as:

Wednesday, May 21, 2025 at  5:27:32AM PDT

The time is placed in this array



Example: filestat.c

• This is the function that takes the internal representation of time (tock) and 
converts it into the string on the previous slide

char *prtime(time_t tock)

{

 struct tm ticktock;

 

 ticktock = *localtime(&tock);

 if (!strftime(p_time, sizeof(p_time), timefmt, &ticktock))

   sprintf(p_time, "%ld", tock);

 return(p_time);

}

May 21, 2025 ECS 36A, Spring Quarter 2025 18

Convert internal time representation to a time 
structure

Now convert it into a string formatted as the
timefmt requires, and store it in p_time

If the conversion fails, return the internal time 
representation



Closing a File

int close(int fd)

• Disassociates the file associated with fd

• fd no longer is bound to any file and can be reused

• On success, it returns 0

• On failure, it returns –1 and puts the error code in errno

May 21, 2025 ECS 36A, Spring Quarter 2025 19



Deleting a File

int unlink(const char *name)

• Deletes file name from the file system

• If there are other links to it, the file's storage is still being used
• If the file is open, that's a link

• On success, it returns 0

• On failure, it returns –1 and puts the error code in errno

May 21, 2025 ECS 36A, Spring Quarter 2025 20



Example: Deleting Files

$ touch xyzzy

$ ln xyzzy plugh

$ ls -il

total 36

4134245867 -rwxr-xr-x 1 bishop bishop 21288 May 23 23:15 filestat

4035671211 -rw-r--r-- 1 bishop bishop  7365 May 23 23:15 filestat.c

4134245866 -rw------- 2 bishop bishop   0 May 23 23:22 plugh

4134245866 -rw------- 2 bishop bishop   0 May 23 23:22 xyzzy

May 21, 2025 ECS 36A, Spring Quarter 2025 21

Create a file (touch either creates the file or changes the modification time 

Give it a second name (ln stands for "link")

The –i option lists the inode number; each file has a single inode number, so 1 file with 2 
names will show both file names and they have the same inode

These two files have the same inode number and so are different names for the same 
file



Example: Deleting Files

$ rm xyzzy

rm: remove regular empty file 'xyzzy'? y

$ ls -il

total 36

4134245867 -rwxr-xr-x 1 bishop bishop 21288 May 23 23:15 filestat

4035671211 -rw-r--r-- 1 bishop bishop  7365 May 23 23:15 filestat.c

4134245866 -rw------- 1 bishop bishop   0 May 23 23:22 plugh

bishop@COE-CS-pc12:~/ecs36a/0521$

May 21, 2025 ECS 36A, Spring Quarter 2025 22

Now delete the original file

Verifying so I don't delete the wrong thing!

The –i option lists the inode number

The other name for the deleted file shows up, and it has the same inode number as 
before; so it is really the same file with a different name


	Slide 1: ECS 36A, May 21, 2025
	Slide 2: Get File Status
	Slide 3: Representation of Status
	Slide 4: Representation of Status
	Slide 5: Representation of Status
	Slide 6: Representation of Status
	Slide 7: Example: filestat.c
	Slide 8: Example: filestat.c
	Slide 9: Example: filestat.c
	Slide 10: Example: filestat.c
	Slide 11: Example: filestat.c
	Slide 12: Example: filestat.c
	Slide 13: Example: filestat.c
	Slide 14: Example: filestat.c
	Slide 15: Example: filestat.c
	Slide 16: Example: filestat.c
	Slide 17: Example: filestat.c
	Slide 18: Example: filestat.c
	Slide 19: Closing a File
	Slide 20: Deleting a File
	Slide 21: Example: Deleting Files
	Slide 22: Example: Deleting Files

