
ECS 153, Computer Security Spring Quarter 2016

Homework 4
Due: May 23, 2016 (Note this is a Monday) Points: 140

Questions
Remember to justify your answers.

1. (20 points) Given the security levels TOP SECRET, SECRET, CONFIDENTIAL, and UNCLASSIFIED (or-
dered from highest to lowest), and the categories A, B, and C, specify what type of access (read, write, both, or
neither) is allowed in each of the following situations. Assume that discretionary access controls allow anyone
access unless otherwise specified.

(a) Paul, cleared for (TOP SECRET, {A, C}), wants to access a document classified (SECRET, {B, C}).
(b) Anna, cleared for (CONFIDENTIAL, {C}), wants to access a document classified (CONFIDENTIAL, {B}).
(c) Jesse, cleared for (SECRET, {C}), wants to access a document classified (CONFIDENTIAL, {C}).
(d) Sammi, cleared for (TOP SECRET, {A, C}), wants to access a document classified (CONFIDENTIAL,

{A}).
(e) Robin, who has no clearances (and so works at the UNCLASSIFIED level), wants to access a document

classified (CONFIDENTIAL, {B}).

2. (20 points) Alice and Bob are creating RSA public keys. They select different moduli nAlice and nBob. Unknown
to both, nAlice and nBob have a common factor.

(a) How could Eve determine that nAlice and nBob have a common factor without factoring those moduli?
(b) Having determined that factor, show how Eve can now obtain the private keys of both Alice and Bob.

3. (100 points) This problem asks you to write a program using C or C++ that will introduce you to come com-
plexities of managing privileges, as well as obstacles you might encounter when doing computer security work.

A computer science student is helping out on a project that involves monitoring a network. The student’s job is
to write a program that will pluck the URLs for all HTTP traffic from the network. This requires root privileges,
but for policy reasons the professor who is running the project cannot give the student those privileges.

The professor’s solution is to create a small program, called runpriv, that will make a second program called
sniff, that the student will write, setuid to root. This way, the student can write the program to get the URLs
from the network, and execute it, without having root permissions and without asking a system administrator to
make the program privileged at each iteration.

The program runpriv works as follows:

(a) Check that the student is running the program by comparing the real UID of the process with that of the
student. (Assume you are the student for this testing.) If the test fails, print an error message and exit.

(b) Prompt the user for his or her password, and validate it against the authentication credential in the UC Davis
Central Authentication System (use the program kinit(1) for this). If the password entered is incorrect, print
an error message and exit.

(c) If the current working directory does not contain a file called sniff, print an error message and exit.
(d) If sniff is not owned by the student, or is not executable by the owner of the file, or can be read, written,

or executed by anyone else (except, of course, root), print an error message and exit. This step checks that
the student owns the file; that the student can execute it; and that no-one else has any rights over it.

(e) If sniff was created or modified over 1 minute ago, print an error message and exit.
(f) Change the ownership of sniff to root (UID 0), its group to proj (GID 95), and its protection mode to 4550

(meaning setuid to owner, and only readable and executable by the owner and group members — when
you call chmod(2), you must have the leading “0”, or you will get strange results. For this exercise, you
must use the chown(1) program to change the owner and group. This means you must execute that program
from runpriv, giving the appropriate arguments. (In the CSIF, the command will fail because there is no
group “proj” — just let the error message print, and continue.)

Version of May 13, 2016 at 12:36am Page 1 of 2



ECS 153, Computer Security Spring Quarter 2016

Your job is to write runpriv.

Please submit your program as described in the All About Homework handout. Don’t forget to include a
Makefile that will automatically compile your program. And as always, remember we will execute the program
on the CSIF systems, so be sure it works there.

Your program must be robust! Out of the 100 points for this program, 50 will come from the robustness and
security protections you add to it to keep it from being abused.

Extra Credit
4. (20 points) Prove that two users who perform a Diffie-Hellman key exchange will have the same shared key.

Version of May 13, 2016 at 12:36am Page 2 of 2


