Lecture 2 September 27, 2024

Design Principles

- Simplicity, restriction
- Principles
 - Least Privilege
 - Fail-Safe Defaults
 - Economy of Mechanism
 - Complete Mediation
 - Open Design
 - Separation of Privilege
 - Least Common Mechanism
 - Least Astonishment

Overview

• Simplicity

- Less to go wrong
- Fewer possible inconsistencies
- Easy to understand
- Restriction
 - Minimize access
 - Inhibit communication

Least Privilege

- A subject should be given only those privileges necessary to complete its task
 - Function, not identity, controls
 - Rights added as needed, discarded after use
 - Minimal protection domain

Related: Least Authority

- Principle of Least Authority (POLA)
 - Often considered the same as Principle of Least Privilege
 - Some make distinction:
 - *Permissions* control what subject can do to an object directly
 - *Authority* controls what influence a subject has over an object (directly or indirectly, through other subjects)

Fail-Safe Defaults

- Default action is to deny access
- If action fails, system as secure as when action began

Economy of Mechanism

- Keep it as simple as possible
 - KISS Principle
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix
- Interfaces and interactions

Complete Mediation

- Check every access
- Usually done once, on first action
 - UNIX: access checked on open, not checked thereafter
- If permissions change after, may get unauthorized access

Open Design

- Security should not depend on secrecy of design or implementation
 - Popularly misunderstood to mean that source code should be public
 - "Security through obscurity"
 - Does not apply to information such as passwords or cryptographic keys

Separation of Privilege

- Require multiple conditions to grant privilege
 - Separation of duty
 - Defense in depth

Least Common Mechanism

- Mechanisms should not be shared
 - Information can flow along shared channels
 - Covert channels
- Isolation
 - Virtual machines
 - Sandboxes

Least Astonishment

- Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 - Hide complexity introduced by security mechanisms
 - Ease of installation, configuration, use
 - Human factors critical here

Related: Psychological Acceptability

- Security mechanisms should not add to difficulty of accessing resource
 - Idealistic, as most mechanisms add some difficulty
 - Even if only remembering a password
 - Principle of Least Astonishment accepts this
 - Asks whether the difficulty is unexpected or too much for relevant population of users

Key Points

- Principles of secure design underlie all security-related mechanisms
- Require:
 - Good understanding of goal of mechanism and environment in which it is to be used
 - Careful analysis and design
 - Careful implementation

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Confidentiality

- X set of entities, I information
- I has the *confidentiality* property with respect to X if no x ∈ X can obtain information from I
- I can be disclosed to others
- Example:
 - X set of students
 - I final exam answer key
 - I is confidential with respect to X if students cannot obtain final exam answer key

Integrity

- X set of entities, I information
- I has the *integrity* property with respect to X if all x ∈ X trust information in I
- Types of integrity:
 - Trust *I*, its conveyance and protection (data integrity)
 - *I* information about origin of something or an identity (origin integrity, authentication)
 - *I* resource: means resource functions as it should (assurance)

Availability

- X set of entities, I resource
- I has the *availability* property with respect to X if all $x \in X$ can access I
- Types of availability:
 - Traditional: *x* gets access or not
 - Quality of service: promised a level of access (for example, a specific level of bandwidth); *x* meets it or not, even though some access is achieved

Policy Models

- Abstract description of a policy or class of policies
- Focus on points of interest in policies
 - Security levels in multilevel security models
 - Separation of duty in Clark-Wilson model
 - Conflict of interest in Chinese Wall model

Mechanisms

- Entity or procedure that enforces some part of the security policy
 - Access controls (like bits to prevent someone from reading a homework file)
 - Disallowing people from bringing CDs and floppy disks into a computer facility to control what is placed on systems

Entities

- Subject: active entity
 - Causes information to flow or system state to change
 - Examples: processes, some devices
 - At a higher layer of abstraction: users, other computers
- Object: passive entity
 - Contains or receives information
 - Examples: files, some devices
 - At a higher layer of abstraction: file server, network

Reference Monitor

- Reference monitor is access control concept of an abstract machine that mediates all accesses to objects by subjects
- *Reference validation mechanism* (RVM) is an implementation of the reference monitor concept.
 - Tamperproof
 - Complete (always invoked and can never be bypassed)
 - Simple (small enough to be subject to analysis and testing, the completeness of which can be assured)
 - Last engenders trust by providing evidence of correctness
- Note: RVM is almost always called a reference monitor too

Examples

- Security kernel combines hardware and software to implement reference monitor
- *Trusted computing base* (*TCB*) consists of all protection mechanisms within a system responsible for enforcing security policy
 - Includes hardware and software
 - Generalizes notion of security kernel

Policy and Reference Monitor

- Reference monitor implements a given policy
 - It has a tamperproof authorization database
 - Also maintains an audit trail (record of security-related events) for review
- More on this later; we need some background first