
Lecture 7
October 11, 2023

ECS 235A, Computer and Information SecurityOctober 11, 2024 Slide 1

Public Key Cryptography

• Two keys
• Private key known only to individual
• Public key available to anyone

• Public key, private key inverses

• Idea
• Confidentiality: encipher using public key, decipher using private key
• Integrity/authentication: encipher using private key, decipher using public one

October 11, 2024 ECS 235A, Computer and Information Security Slide 2

Requirements

1. It must be computationally easy to encipher or decipher a message
given the appropriate key

2. It must be computationally infeasible to derive the private key from
the public key

3. It must be computationally infeasible to determine the private key
from a chosen plaintext attack

October 11, 2024 ECS 235A, Computer and Information Security Slide 3

RSA

• First described publicly in 1978
• Unknown at the time: Clifford Cocks developed a similar cryptosystem in

1973, but it was classified until recently

• Exponentiation cipher
• Relies on the difficulty of determining the number of numbers

relatively prime to a large integer n

October 11, 2024 ECS 235A, Computer and Information Security Slide 4

Background

• Totient function 𝜙(n)
• Number of positive integers less than n and relatively prime to n

• Relatively prime means with no factors in common with n

• Example: 𝜙(10) = 4
• 1, 3, 7, 9 are relatively prime to 10

• Example: 𝜙(21) = 12
• 1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20 are relatively prime to 21

October 11, 2024 ECS 235A, Computer and Information Security Slide 5

Algorithm

• Choose two large prime numbers p, q
• Let n = pq; then 𝜙(n) = (p–1)(q–1)
• Choose e < n such that e is relatively prime to 𝜙(n).
• Compute d such that ed mod 𝜙(n) = 1

• Public key: (e, n); private key: d
• Encipher: c = me mod n
• Decipher: m = cd mod n

October 11, 2024 ECS 235A, Computer and Information Security Slide 6

Example: Confidentiality

• Take p = 181, q = 1451, so n = 262631 and f(n) = 261000
• Alice chooses e = 154993, making d = 95857
• Bob wants to send Alice secret message PUPPIESARESMALL (152015

150804 180017 041812 001111); encipher using public key
• 152015154993 mod 262631 = 220160
• 150804154993 mod 262631 = 135824
• 180017154993 mod 262631 = 252355
• 041812154993 mod 262631 = 245799
• 001111154993 mod 262631 = 070707

• Bob sends 220160 135824 252355 245799 070707
• Alice uses her private key to decipher it

October 11, 2024 ECS 235A, Computer and Information Security Slide 7

Example: Authentication/Integrity

• Alice wants to send Bob the message PUPPIESARESMALL in such a way that
Bob knows it comes from her and nothing was changed during the
transmission
• Same public, private keys as before

• Encipher using private key:
• 15201595857 mod 262631 = 072798
• 15080495857 mod 262631 = 259757
• 18001795857 mod 262631 = 256449
• 04181295857 mod 262631 = 089234
• 00111195857 mod 262631 = 037974

• Alice sends 072798 259757 256449 089234 037974
• Bob receives, uses Alice’s public key to decipher it

October 11, 2024 ECS 235A, Computer and Information Security Slide 8

Example: Both (Sending)

• Same n as for Alice; Bob chooses e = 45593, making d = 235457
• Alice wants to send PUPPIESARESMALL (152015 150804 180017

041812 001111) confidentially and authenticated
• Encipher:
• (15201595857 mod 262631)45593 mod 262631 = 249123
• (15080495857 mod 262631) 45593 mod 262631 = 166008
• (18001795857 mod 262631) 45593 mod 262631 = 146608
• (04181295857 mod 262631) 45593 mod 262631 = 092311
• (00111195857 mod 262631) 45593 mod 262631 = 096768

• So Alice sends 249123 166008 146608 092311 096768

October 11, 2024 ECS 235A, Computer and Information Security Slide 9

Example: Both (Receiving)

• Bob receives 249123 166008 146608 092311 096768
• Decipher:
• (249123235457 mod 262631)154993 mod 262631 = 152012
• (166008235457 mod 262631) 154993 mod 262631 = 150804
• (146608235457 mod 262631) 154993 mod 262631 = 180017
• (092311235457 mod 262631)154993 mod 262631 = 041812
• (096768235457 mod 262631) 154993 mod 262631 = 001111

• So Alice sent him 152015 150804 180017 041812 001111
• Which translates to PUP PIE SAR ESM ALL or PUPPIESARESMALL

October 11, 2024 ECS 235A, Computer and Information Security Slide 10

Security Services

• Confidentiality
• Only the owner of the private key knows it, so text enciphered with public key

cannot be read by anyone except the owner of the private key

• Authentication
• Only the owner of the private key knows it, so text enciphered with private

key must have been generated by the owner

October 11, 2024 ECS 235A, Computer and Information Security Slide 11

More Security Services

• Integrity
• Enciphered letters cannot be changed undetectably without knowing private

key

• Non-Repudiation
• Message enciphered with private key came from someone who knew it

October 11, 2024 ECS 235A, Computer and Information Security Slide 12

Warnings

• Encipher message in blocks considerably larger than the examples
here
• If only characters per block, RSA can be broken using statistical attacks (just

like symmetric cryptosystems)

• Attacker cannot alter letters, but can rearrange them and alter
message meaning
• Example: reverse enciphered message of text ON to get NO

October 11, 2024 ECS 235A, Computer and Information Security Slide 13

Checksums

• Mathematical function to generate a set of k bits from a set of n bits
(where k ≤ n).
• k is smaller than n except in unusual circumstances

• Example: ASCII parity bit
• ASCII has 7 bits; 8th bit is “parity”
• Even parity: even number of 1 bits
• Odd parity: odd number of 1 bits

October 11, 2024 ECS 235A, Computer and Information Security Slide 14

Example Use

• Bob receives “10111101” as bits.
• Sender is using even parity; 6 1 bits, so character was received correctly

• Note: could be garbled, but 2 bits would need to have been changed to preserve parity
• Sender is using odd parity; even number of 1 bits, so character was not

received correctly

October 11, 2024 ECS 235A, Computer and Information Security Slide 15

Definition of Cryptographic Checksum

Cryptographic checksum h: A®B:
1. For any x Î A, h(x) is easy to compute
2. For any y Î B, it is computationally infeasible to find x Î A such that h(x) = y
3. It is computationally infeasible to find two inputs x, x¢ Î A such that x ≠ x¢ and

h(x) = h(x¢)
– Alternate form (stronger): Given any x Î A, it is computationally infeasible to find a

different x¢ Î A such that h(x) = h(x¢).

October 11, 2024 ECS 235A, Computer and Information Security Slide 16

Collisions

• If x ≠ x¢ and h(x) = h(x¢), x and x¢ are a collision
• Pigeonhole principle: if there are n containers for n+1 objects, then at least

one container will have at least 2 objects in it.
• Application: if there are 32 files and 8 possible cryptographic checksum

values, at least one value corresponds to at least 4 files

October 11, 2024 ECS 235A, Computer and Information Security Slide 17

Keys

• Keyed cryptographic checksum: requires cryptographic key
• AES in chaining mode: encipher message, use last n bits. Requires a key to

encipher, so it is a keyed cryptographic checksum.

• Keyless cryptographic checksum: requires no cryptographic key
• SHA-512, SHA-3 are examples; older ones include MD4, MD5, RIPEM, SHA-0,

and SHA-1 (methods for constructing collisions are known for these)

October 11, 2024 ECS 235A, Computer and Information Security Slide 18

HMAC

• Make keyed cryptographic checksums from keyless cryptographic
checksums
• h keyless cryptographic checksum function that takes data in blocks of

b bytes and outputs blocks of l bytes. k¢ is cryptographic key of length
b bytes
• If short, pad with 0 bytes; if long, hash to length b

• ipad is 00110110 repeated b times
• opad is 01011100 repeated b times
• HMAC-h(k, m) = h(k¢ Å opad || h(k¢ Å ipad || m))
• Å exclusive or, || concatenation

October 11, 2024 ECS 235A, Computer and Information Security Slide 19

Strength of HMAC-h

• Depends on the strength of the hash function h
• Attacks on HMAC-MD4, HMAC-MD5, HMAC-SHA-0, and HMAC-SHA-1

recover partial or full keys
• Note all of MD4, MD5, SHA-0, and SHA-1 have been broken

October 11, 2024 ECS 235A, Computer and Information Security Slide 20

Digital Signature

• Construct that authenticates origin, contents of message in a manner
provable to a disinterested third party (a “judge”)
• Sender cannot deny having sent message (service is

“nonrepudiation”)
• Limited to technical proofs

• Inability to deny one’s cryptographic key was used to sign
• One could claim the cryptographic key was stolen or compromised

• Legal proofs, etc., probably required; not dealt with here

October 11, 2024 ECS 235A, Computer and Information Security Slide 21

Common Error

• Symmetric: Alice, Bob share key k
• Alice sends m || { m } k to Bob
• { m } k means m enciphered with key k, || means concatenation

 Claim: This is a digital signature
WRONG

This is not a digital signature
• Why? Third party cannot determine whether Alice or Bob generated

message

October 11, 2024 ECS 235A, Computer and Information Security Slide 22

Classical Digital Signatures

• Require trusted third party
• Alice, Bob each share keys with trusted party Cathy

• To resolve dispute, judge gets { m } kAlice, { m } kBob, and has Cathy decipher
them; if messages matched, contract was signed

Alice Bob

Cathy Bob

Cathy Bob

{ m }kAlice

{ m }kAlice

{ m }kBob

October 11, 2024 ECS 235A, Computer and Information Security Slide 23

Public Key Digital Signatures

• Basically, Alice enciphers the message, or its cryptographic hash, with
her private key
• In case of dispute or question of origin or whether changes have been

made, a judge can use Alice’s public key to verify the message came
from Alice and has not been changed since being signed

October 11, 2024 ECS 235A, Computer and Information Security Slide 24

RSA Digital Signatures

• Alice’s keys are (eAlice,nAlice) (public key), dAlice (private key)
• In what follows, we use eAlice to represent the public key

• Alice sends Bob
m || { m } dAlice

• In case of dispute, judge computes
{ { m } dAlice } eAlice

• and if it is m, Alice signed message
• She’s the only one who knows dAlice!

October 11, 2024 ECS 235A, Computer and Information Security Slide 25

RSA Digital Signatures

• Use private key to encipher message
• Protocol for use is critical

• Key points:
• Never sign random documents, and when signing, always sign hash and never

document
• Don’t just encipher message and then sign, or vice versa

• Changing public key and private key can cause problems
• Messages can be forwarded, so third party cannot tell if original sender sent it to her

October 11, 2024 ECS 235A, Computer and Information Security Slide 26

Attack #1

• Example: Alice, Bob communicating
• nA = 262631, eA = 154993, dA = 95857
• nB = 288329, eB = 22579, dB = 138091

• Alice asks Bob to sign 225536 so she can verify she has the right
public key:
• c = mdB mod nB = 225536138091 mod 288329 = 271316

• Now she asks Bob to sign the statement AYE (002404):
• c = mdB mod nB = 002404138091 mod 288329 = 182665

October 11, 2024 ECS 235A, Computer and Information Security Slide 27

Attack #1

• Alice computes:
• new message NAY (130024) by (002404)(225536) mod 288329 = 130024
• corresponding signature (271316)(182665) mod 288329 = 218646

• Alice now claims Bob signed NAY (130024), and as proof supplies
signature 218646
• Judge computes ceB mod nB = 21864622579 mod 288329 = 130024
• Signature validated; Bob is toast

October 11, 2024 ECS 235A, Computer and Information Security Slide 28

Preventing Attack #1

• Do not sign random messages
• This would prevent Alice from getting the first message

• When signing, always sign the cryptographic hash of a message, not
the message itself

October 11, 2024 ECS 235A, Computer and Information Security Slide 29

Attack #2: Bob’s Revenge

• Bob, Alice agree to sign contract LUR (112017)
• But Bob really wants her to sign contract EWM (042212), but knows she won’t

• Alice enciphers, then signs:
• (meB mod nA)dA mod nA = (11201722579 mod 288329)95857 mod 262631 = 42390

• Bob now changes his public key
• Computes r such that 042212r mod 288329 = 112017; one such r = 9175
• Computes reB mod f(nB) = (9175)(22579) mod 287184 = 102661
• Replace public key with (102661,288329), private key with 161245

• Bob claims contract was EWM
• Judge computes:

• (42390154993 mod 262631)161245 mod 288329 = 042212, which is EWM
• Verified; now Alice is toast

October 11, 2024 ECS 235A, Computer and Information Security Slide 30

Preventing Attack #2

• Obvious thought: instead of encrypting message and then signing it,
sign the message and then encrypt it
• May not work due to surreptitious forwarding attack
• Idea: Alice sends Cathy an encrypted signed message; Cathy deciphers it, re-

enciphers it with Bob’s public key, and then sends message and signature to
Bob – now Bob thinks the message came from Alice (right) and was intended
for him (wrong)

• Several ways to solve this:
• Put sender and recipient in the message; changing recipient invalidates

signature
• Sign message, encrypt it, then sign the result

October 11, 2024 ECS 235A, Computer and Information Security Slide 31

El Gamal Digital Signature

• Relies on discrete log problem
• Choose p prime, g, d < p; compute y = gd mod p

• Public key: (y, g, p); private key: d
• To sign contract m:
• Choose k relatively prime to p–1, and not yet used
• Compute a = gk mod p
• Find b such that m = (da + kb) mod p–1
• Signature is (a, b)

• To validate, check that
• yaab mod p = gm mod p

October 11, 2024 ECS 235A, Computer and Information Security Slide 32

Example

• Alice chooses p = 262643, g = 9563, d = 3632, giving y = 274598
• Alice wants to send Bob signed contract PUP (152015)
• Chooses k = 601 (relatively prime to 262642)
• This gives a = gk mod p = 9563601 mod 29 = 202897
• Then solving 152015 = (3632´202897 + 601b) mod 262642 gives b = 225835
• Alice sends Bob message m = 152015 and signature (a,b) = (202897, 225835)

• Bob verifies signature: gm mod p = 9563152015 mod 262643 = 157499
and yaab mod p = 27459202897202897225835 mod 262643 = 157499
• They match, so Alice signed

October 11, 2024 ECS 235A, Computer and Information Security Slide 33

Attack

• Eve learns k, corresponding message m, and signature (a, b)
• Extended Euclidean Algorithm gives d, the private key

• Example from above: Eve learned Alice signed last message with k = 5
m = (da + kb) mod p–1 ⇒ 152015 = (202897d + 601´225835) mod 262642

 giving Alice’s private key d = 3632

October 11, 2024 ECS 235A, Computer and Information Security Slide 34

Notation

• X ® Y : { Z || W } kX,Y
• X sends Y the message produced by concatenating Z and W enciphered by key

kX,Y, which is shared by users X and Y

• A ® T : { Z } kA || { W } kA,T
• A sends T a message consisting of the concatenation of Z enciphered using kA,

A’s key, and W enciphered using kA,T, the key shared by A and T

• r1, r2 nonces (nonrepeating random numbers)

October 11, 2024 ECS 235A, Computer and Information Security Slide 35

Key Exchange Algorithms

• Goal: Alice, Bob get shared key
• Key cannot be sent in clear

• Attacker can listen in
• Key can be sent enciphered, or derived from exchanged data plus data not known to an

eavesdropper
• Alice, Bob may trust third party
• All cryptosystems, protocols publicly known

• Only secret data is the keys, ancillary information known only to Alice and Bob needed to
derive keys

• Anything transmitted is assumed known to attacker

October 11, 2024 ECS 235A, Computer and Information Security Slide 36

Symmetric Key Exchange

• Bootstrap problem: how do Alice, Bob begin?
• Alice can’t send it to Bob in the clear!

• Assume trusted third party, Cathy
• Alice and Cathy share secret key kA
• Bob and Cathy share secret key kB

• Use this to exchange shared key ks

October 11, 2024 ECS 235A, Computer and Information Security Slide 37

Simple Protocol

Alice Cathy
{ request for session key to Bob } kA

Alice Cathy
{ ks } kA || { ks } kB

Alice Bob
{ ks } kB

October 11, 2024 ECS 235A, Computer and Information Security Slide 38

Problems

• How does Bob know he is talking to Alice?
• Replay attack: Eve records message from Alice to Bob, later replays it; Bob

may think he’s talking to Alice, but he isn’t
• Session key reuse: Eve replays message from Alice to Bob, so Bob re-uses

session key

• Protocols must provide authentication and defense against replay

October 11, 2024 ECS 235A, Computer and Information Security Slide 39

Session, Interchange Keys

• Alice wants to send a message m to Bob
• Assume public key encryption
• Alice generates a random cryptographic key ks and uses it to encipher m

• To be used for this message only
• Called a session key

• She enciphers ks with Bob’s public key kB
• kB enciphers all session keys Alice uses to communicate with Bob
• Called an interchange key

• Alice sends { m } ks { ks } kB

October 11, 2024 ECS 235A, Computer and Information Security Slide 40

Benefits

• Limits amount of traffic enciphered with single key
• Standard practice, to decrease the amount of traffic an attacker can obtain

• Prevents some attacks
• Example: Alice will send Bob message that is either “BUY” or “SELL”. Eve

computes possible ciphertexts { “BUY” } kB and { “SELL” } kB. Eve intercepts
enciphered message, compares, and gets plaintext at once

October 11, 2024 ECS 235A, Computer and Information Security Slide 41

Needham-Schroeder

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || ks } kB } kA

Alice Bob
{ Alice || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

October 11, 2024 ECS 235A, Computer and Information Security Slide 42

Argument: Alice talking to Bob

• Second message
• Enciphered using key only she, Cathy knows

• So Cathy enciphered it
• Response to first message

• As r1 in it matches r1 in first message

• Third message
• Alice knows only Bob can read it

• As only Bob can derive session key from message
• Any messages enciphered with that key are from Bob

October 11, 2024 ECS 235A, Computer and Information Security Slide 43

Argument: Bob talking to Alice

• Third message
• Enciphered using key only he, Cathy know

• So Cathy enciphered it
• Names Alice, session key

• Cathy provided session key, says Alice is other party

• Fourth message
• Uses session key to determine if it is replay from Eve

• If not, Alice will respond correctly in fifth message
• If so, Eve can’t decipher r2 and so can’t respond, or responds incorrectly

October 11, 2024 ECS 235A, Computer and Information Security Slide 44

Denning-Sacco Modification

• Assumption: all keys are secret
• Question: suppose Eve can obtain session key. How does that affect

protocol?
• In what follows, Eve knows ks

Eve Bob
{ Alice || ks } kB

Eve Bob
{ r2 } ks

Eve Bob
{ r2 – 1 } ks

October 11, 2024 ECS 235A, Computer and Information Security Slide 45

Problem and Solution

• In protocol above, Eve impersonates Alice
• Problem: replay in third step
• First in previous slide

• Solution: use time stamp T to detect replay
• Weakness: if clocks not synchronized, may either reject valid

messages or accept replays
• Parties with either slow or fast clocks vulnerable to replay
• Resetting clock does not eliminate vulnerability

October 11, 2024 ECS 235A, Computer and Information Security Slide 46

Needham-Schroeder with
Denning-Sacco Modification

Alice Cathy
Alice || Bob || r1

Alice Cathy
{ Alice || Bob || r1 || ks || { Alice || T || ks } kB } kA

Alice Bob
{ Alice || T || ks } kB

Alice Bob
{ r2 } ks

Alice Bob
{ r2 – 1 } ks

October 11, 2024 ECS 235A, Computer and Information Security Slide 47

Kerberos

• Authentication system
• Based on Needham-Schroeder with Denning-Sacco modification
• Central server plays role of trusted third party (“Cathy”)

• Ticket
• Issuer vouches for identity of requester of service

• Authenticator
• Identifies sender

October 11, 2024 ECS 235A, Computer and Information Security Slide 48

