
Lecture 20
November 13, 2024

ECS 235A, Computer and Information SecurityNovember 13, 2024 Slide 1

Behavioral Analysis

• Run suspected malware in a confined area, typically a sandbox, that
simulates environment it will execute in
• Monitor it for some time period
• Look for anything considered “bad”; if it occurs, flag this as malware

November 13, 2024 ECS 235A, Computer and Information Security Slide 2

Example: Panorama

• Loads suspected malware into a Windows system, which is itself loaded
into Panorama and run
• Files belonging to suspect program are marked

• Test engine sends “sensitive” information to trusted application on
Windows
• Taint engine monitors flow of information around system

• So when suspect program and trusted application run, behavior of information can
be recorded in taint graphs

• Malware detection engine analyzes taint graphs for suspicious behavior
• Experimentally, Panorama tested against 42 malware samples, 56 benign

samples; no false negatives, 3 false positives

November 13, 2024 ECS 235A, Computer and Information Security Slide 3

Evasion

Malware can try to ensure malicious activity not triggered in analysis
environment
• Wait for a (relatively) long time
• Wait for a particular input or external event
• Identify malware is running in constrained environment
• Check various descriptor tables
• Run sequence of instructions that generate an exception if not in a virtual

machine (in 2010, estimates found 2.13% of malware samples did this)

November 13, 2024 ECS 235A, Computer and Information Security Slide 4

Data vs. Instructions

• Malicious logic is both
• Virus: written to program (data); then executes (instructions)

• Approach: treat “data” and “instructions” as separate types, and
require certifying authority to approve conversion
• Key are assumption that certifying authority will not make mistakes and

assumption that tools, supporting infrastructure used in certifying process are
not corrupt

November 13, 2024 ECS 235A, Computer and Information Security Slide 5

Example: Duff and UNIX

• Observation: users with execute permission usually have read
permission, too
• So files with “execute” permission have type “executable”; those without it,

type “data”
• Executable files can be altered, but type immediately changed to “data”

• Implemented by turning off execute permission
• Certifier can change them back

• So virus can spread only if run as certifier

November 13, 2024 ECS 235A, Computer and Information Security Slide 6

Containment

• Basis: a user (unknowingly) executes malicious logic, which then
executes with all that user’s privileges
• Limiting accessibility of objects should limit spread of malicious logic and

effects of its actions

• Approach draws on mechanisms for confinement

November 13, 2024 ECS 235A, Computer and Information Security Slide 7

Information Flow Metrics

• Idea: limit distance a virus can spread
• Flow distance metric fd(x):
• Initially, all information x has fd(x) = 0
• Whenever information y is shared, fd(y) increases by 1
• Whenever y1, …, yn used as input to compute z, fd(z) = max(fd(y1), …, fd(yn))

• Information x accessible if and only if for some parameter V, fd(x) < V

November 13, 2024 ECS 235A, Computer and Information Security Slide 8

Example

• Anne: VA = 3; Bill, Cathy: VB = VC = 2
• Anne creates program P containing virus
• Bill executes P
• P tries to write to Bill’s program Q; works, as fd(P) = 0, so fd(Q) = 1 < VB

• Cathy executes Q
• Q tries to write to Cathy’s program R; fails, as fd(Q) = 1, so fd(R) would be 2

• Problem: if Cathy executes P, R can be infected
• So, does not stop spread; slows it down greatly, though

November 13, 2024 ECS 235A, Computer and Information Security Slide 9

Implementation Issues

• Metric associated with information, not objects
• You can tag files with metric, but how do you tag the information in them?
• This inhibits sharing

• To stop spread, make V = 0
• Disallows sharing
• Also defeats purpose of multi-user systems, and is crippling in scientific and

developmental environments
• Sharing is critical here

November 13, 2024 ECS 235A, Computer and Information Security Slide 10

Reducing Protection Domain

• Application of principle of least privilege
• Basic idea: remove rights from process so it can only perform its

function
• Warning: if that function requires it to write, it can write anything
• But you can make sure it writes only to those objects you expect

November 13, 2024 ECS 235A, Computer and Information Security Slide 11

Example: ACLs and C-Lists

• s1 owns file f1 and s2 owns program p2 and file f3
• Suppose s1 can read, write f1, execute p2, write f3
• Suppose s2 can read, write, execute p2 and read f3

• s1 needs to run p2
• p2 contains Trojan horse

• So s1 needs to ensure p12 (subject created when s1 runs p2) can’t write to f3
• Ideally, p12 has capability { (s1, p2, x) } so no problem

• In practice, p12 inherits s1’s rights, so it can write to f3—bad! Note s1 does not own f3, so
can’t change its rights over f3

• Solution: restrict access by others

November 13, 2024 ECS 235A, Computer and Information Security Slide 12

Authorization Denial Subset

• Defined for each user si

• Contains ACL entries that others cannot exercise over objects si owns
• In example: R(s2) = { (s1, f3, w) }
• So when p12 tries to write to f3, as p12 owned by s1 and f3 owned by s2, system

denies access

• Problem: how do you decide what should be in your authorization
denial subset?

November 13, 2024 ECS 235A, Computer and Information Security Slide 13

Karger’s Scheme

• Base it on attribute of subject, object
• Interpose a knowledge-based subsystem to determine if requested

file access reasonable
• Sits between kernel and application

• Example: UNIX C compiler
• Reads from files with names ending in “.c”, “.h”
• Writes to files with names beginning with “/tmp/ctm” and assembly files with

names ending in “.s”

• When subsystem invoked, if C compiler tries to write to “.c” file,
request rejected

November 13, 2024 ECS 235A, Computer and Information Security Slide 14

Lai and Gray

• Implemented modified version of Karger’s scheme on UNIX system
• Allow programs to access (read or write) files named on command line
• Prevent access to other files

• Two types of processes
• Trusted: no access checks or restrictions
• Untrusted: valid access list (VAL) controls access and is initialized to command

line arguments plus any temporary files that the process creates

November 13, 2024 ECS 235A, Computer and Information Security Slide 15

File Access Requests

1. If file on VAL, use effective UID/GID of process to determine if
access allowed

2. If access requested is read and file is world-readable, allow access
3. If process creating file, effective UID/GID controls allowing creation

• Enter file into VAL as NNA (new non-argument); set permissions so no other
process can read file

4. Ask user. If yes, effective UID/GID controls allowing access; if no,
deny access

November 13, 2024 ECS 235A, Computer and Information Security Slide 16

Example

• Assembler invoked from compiler
• as x.s /tmp/ctm2345
• and creates temp file /tmp/as1111
• VAL is
• x.s /tmp/ctm2345 /tmp/as1111

• Now Trojan horse tries to copy x.s to another file
• On creation, file inaccessible to all except creating user so attacker cannot

read it (rule 3)
• If file created already and assembler tries to write to it, user is asked (rule 4),

thereby revealing Trojan horse

November 13, 2024 ECS 235A, Computer and Information Security Slide 17

Trusted Programs

• No VALs applied here
• UNIX command interpreters: csh, sh
• Program that spawn them: getty, login
• Programs that access file system recursively: ar, chgrp, chown, diff, du, dump,
find, ls, restore, tar
• Programs that often access files not in argument list: binmail, cpp, dbx, mail,
make, script, vi
• Various network daemons: fingerd, ftpd, sendmail, talkd, telnetd, tftpd

November 13, 2024 ECS 235A, Computer and Information Security Slide 18

Specifications

• Treat infection, execution phases of malware as errors
• Example
• Break programs into sequences of non-branching instructions
• Checksum each sequence, encrypt it, store it
• When program is run, processor recomputes checksums, and at each branch

compares with precomputed value; if they differ, an error has occurred

November 13, 2024 ECS 235A, Computer and Information Security Slide 19

N-Version Programming

• Implement several different versions of algorithm
• Run them concurrently
• Check intermediate results periodically
• If disagreement, majority wins

• Assumptions
• Majority of programs not infected
• Underlying operating system secure
• Different algorithms with enough equal intermediate results may be

infeasible
• Especially for malicious logic, where you would check file accesses

November 13, 2024 ECS 235A, Computer and Information Security Slide 20

Inhibit Sharing

• Use separation implicit in integrity policies
• Example: LOCK keeps single copy of shared procedure in memory
• Master directory associates unique owner with each procedure, and with

each user a list of other users the first trusts
• Before executing any procedure, system checks that user executing procedure

trusts procedure owner

November 13, 2024 ECS 235A, Computer and Information Security Slide 21

Multilevel Policies

• Put programs at the lowest security level, all subjects at higher levels
• By *-property, nothing can write to those programs
• By ss-property, anything can read (and execute) those programs

• Example: Trusted Solaris system
• All executables, trusted data stored below user region, so user applications

cannot alter them

November 13, 2024 ECS 235A, Computer and Information Security Slide 22

Proof-Carrying Code

• Code consumer (user) specifies safety requirement
• Code producer (author) generates proof code meets this requirement
• Proof integrated with executable code
• Changing the code invalidates proof

• Binary (code + proof) delivered to consumer
• Consumer validates proof
• Example statistics on Berkeley Packet Filter: proofs 300–900 bytes,

validated in 0.3 –1.3 ms
• Startup cost higher, runtime cost considerably shorter

November 13, 2024 ECS 235A, Computer and Information Security Slide 23

Detecting Statistical Changes

• Example: application had 3 programmers working on it, but statistical
analysis shows code from a fourth person—may be from a Trojan
horse or virus!
• Or libraries …

• Other attributes: more conditionals than in original; look for identical
sequences of bytes not common to any library routine; increases in
file size, frequency of writing to executables, etc.
• Denning: use intrusion detection system to detect these

November 13, 2024 ECS 235A, Computer and Information Security Slide 24

Entropy for Information Flow

• Random variables
• Joint probability
• Conditional probability
• Entropy (or uncertainty in bits)
• Joint entropy
• Conditional entropy
• Applying it to secrecy of ciphers

ECS 235A, Computer and Information Security Slide 25November 13, 2024

Random Variable

• Variable that represents outcome of an event
• X represents value from roll of a fair die; probability for rolling n: p(X=n) = 1/6
• If die is loaded so 2 appears twice as often as other numbers, p(X=2) = 2/7

and, for n ≠ 2, p(X=n) = 1/7

• Note: p(X) means specific value for X doesn’t matter
• Example: all values of X are equiprobable

ECS 235A, Computer and Information Security Slide 26November 13, 2024

Joint Probability

• Joint probability of X and Y, p(X, Y), is probability that X and Y
simultaneously assume particular values
• If X, Y independent, p(X, Y) = p(X)p(Y)

• Roll die, toss coin
• p(X=3, Y=heads) = p(X=3)p(Y=heads) = 1/6 ´ 1/2 = 1/12

ECS 235A, Computer and Information Security Slide 27November 13, 2024

Two Dependent Events

• X = roll of red die, Y = sum of red, blue die rolls

• Formula:
p(X=1, Y=11) = p(X=1)p(Y=11) = (1/6)(2/36) = 1/108

• But if the red die (X) rolls 1, the most their sum (Y) can be is 7
• The problem is X and Y are dependent

p(Y=2) = 1/36 p(Y=3) = 2/36 p(Y=4) = 3/36 p(Y=5) = 4/36
p(Y=6) = 5/36 p(Y=7) = 6/36 p(Y=8) = 5/36 p(Y=9) = 4/36
p(Y=10) = 3/36 p(Y=11) = 2/36 p(Y=12) = 1/36

ECS 235A, Computer and Information Security Slide 28November 13, 2024

Conditional Probability

• Conditional probability of X given Y, p(X | Y), is probability that X takes
on a particular value given Y has a particular value
• Continuing example …
• p(Y=7 | X=1) = 1/6
• p(Y=7 | X=3) = 1/6

ECS 235A, Computer and Information Security Slide 29November 13, 2024

Relationship

• p(X, Y) = p(X | Y) p(Y) = p(X) p(Y | X)
• Example:

p(X=3,Y=8) = p(X=3|Y=8) p(Y=8) = (1/5)(5/36) = 1/36

• Note: if X, Y independent:
p(X|Y) = p(X)

ECS 235A, Computer and Information Security Slide 30November 13, 2024

Entropy

• Uncertainty of a value, as measured in bits
• Example: X value of fair coin toss; X could be heads or tails, so 1 bit of

uncertainty
• Therefore entropy of X is H(X) = 1

• Formal definition: random variable X, values x1, …, xn; so
 Si p(X = xi) = 1; then entropy is:

 H(X) = –Si p(X=xi) lg p(X=xi)

ECS 235A, Computer and Information Security Slide 31November 13, 2024

Heads or Tails?

• H(X) = – p(X=heads) lg p(X=heads) – p(X=tails) lg p(X=tails)
 = – (1/2) lg (1/2) – (1/2) lg (1/2)
 = – (1/2) (–1) – (1/2) (–1) = 1
• Confirms previous intuitive result

ECS 235A, Computer and Information Security Slide 32November 13, 2024

n-Sided Fair Die

H(X) = –Si p(X = xi) lg p(X = xi)
As p(X = xi) = 1/n, this becomes
H(X) = –Si (1/n) lg (1/ n) = –n(1/n) (–lg n)
so
H(X) = lg n
which is the number of bits in n, as expected

ECS 235A, Computer and Information Security Slide 33November 13, 2024

Ann, Pam, and Paul

Ann, Pam twice as likely to win as Paul
W represents the winner. What is its entropy?
• w1 = Ann, w2 = Pam, w3 = Paul
• p(W=w1) = p(W=w2) = 2/5, p(W=w3) = 1/5

• So H(W) = –Si p(W=wi) lg p(W=wi)
 = – (2/5) lg (2/5) – (2/5) lg (2/5) – (1/5) lg (1/5)
 = – (4/5) + lg 5 ≈ –1.52
• If all equally likely to win, H(W) = lg 3 ≈ 1.58

ECS 235A, Computer and Information Security Slide 34November 13, 2024

Joint Entropy

• X takes values from { x1, …, xn }, and Si p(X=xi) = 1
• Y takes values from { y1, …, ym }, and Si p(Y=yi) = 1
• Joint entropy of X, Y is:

H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)

ECS 235A, Computer and Information Security Slide 35November 13, 2024

Example

X: roll of fair die, Y: flip of coin
As X, Y are independent:
 p(X=1, Y=heads) = p(X=1) p(Y=heads) = 1/12
and
H(X, Y) = –Sj Si p(X=xi, Y=yj) lg p(X=xi, Y=yj)
 = –2 [6 [(1/12) lg (1/12)]] = lg 12

ECS 235A, Computer and Information Security Slide 36November 13, 2024

Conditional Entropy (Equivocation)

• X takes values from { x1, …, xn } and Si p(X=xi) = 1
• Y takes values from { y1, …, ym } and Si p(Y=yi) = 1
• Conditional entropy of X given Y=yj is:

H(X | Y=yj) = –Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)
• Conditional entropy of X given Y is:

H(X | Y) = –Sj p(Y=yj) Si p(X=xi | Y=yj) lg p(X=xi | Y=yj)

ECS 235A, Computer and Information Security Slide 37November 13, 2024

Example

• X roll of red die, Y sum of red, blue roll
• Note p(X=1|Y=2) = 1, p(X=i|Y=2) = 0 for i ≠ 1
• If the sum of the rolls is 2, both dice were 1

• Thus
H(X|Y=2) = –Si p(X=xi|Y=2) lg p(X=xi|Y=2) = 0

ECS 235A, Computer and Information Security Slide 38November 13, 2024

Example (con’t)

• Note p(X=i, Y=7) = 1/6
• If the sum of the rolls is 7, the red die can be any of 1, …, 6 and the blue die

must be 7–roll of red die

• H(X|Y=7) = –Si p(X=xi|Y=7) lg p(X=xi|Y=7)
 = –6 (1/6) lg (1/6) = lg 6

ECS 235A, Computer and Information Security Slide 39November 13, 2024

Example: Perfect Secrecy

• Cryptography: knowing the ciphertext does not decrease the
uncertainty of the plaintext
• M = { m1, …, mn } set of messages
• C = { c1, …, cn } set of messages
• Cipher ci = E(mi) achieves perfect secrecy if H(M | C) = H(M)

ECS 235A, Computer and Information Security Slide 40November 13, 2024

Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• For now, focus on confidentiality (Bell-LaPadula)
• We’ll get to integrity later

November 13, 2024 ECS 235A, Computer and Information Security Slide 41

Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of
commands c if you can deduce information about x before c from the
value in y after c
• Formally:
• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)

November 13, 2024 ECS 235A, Computer and Information Security Slide 42

Example 1

• Command is x := y + z; where:
• x does not exist initially (that is, has no value)
• 0 ≤ y ≤ 7, equal probability
• z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3

• You can show that H(ys | xt) = (3/32) lg 3 + 9/8 ≈ 1.274 < 3 = H(ys)
• Thus, information flows from y to x

November 13, 2024 ECS 235A, Computer and Information Security Slide 43

Example 2

• Command is
if x = 1 then y := 0 else y := 1;

 where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa
• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y

November 13, 2024 ECS 235A, Computer and Information Security Slide 44

Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program

November 13, 2024 ECS 235A, Computer and Information Security Slide 45

Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an
element in class of y
• Or, “information with a label placing it in class x can flow into class y”

November 13, 2024 ECS 235A, Computer and Information Security Slide 46

