
Lecture 21
November 15, 2024

ECS 235A, Computer and Information SecurityNovember 15, 2024 Slide 1

Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• For now, focus on confidentiality (Bell-LaPadula)
• We’ll get to integrity later

November 15, 2024 ECS 235A, Computer and Information Security Slide 2

Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of
commands c if you can deduce information about x before c from the
value in y after c
• Formally:

• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)

November 15, 2024 ECS 235A, Computer and Information Security Slide 3

Example 1

• Command is x := y + z; where:
• x does not exist initially (that is, has no value)
• 0 ≤ y ≤ 7, equal probability
• z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3

• You can show that H(ys | xt) = (3/32) lg 3 + 9/8 ≈ 1.274 < 3 = H(ys)
• Thus, information flows from y to x

November 15, 2024 ECS 235A, Computer and Information Security Slide 4

Example 2

• Command is
if x = 1 then y := 0 else y := 1;

 where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa

• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y

November 15, 2024 ECS 235A, Computer and Information Security Slide 5

Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program

November 15, 2024 ECS 235A, Computer and Information Security Slide 6

Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an
element in class of y
• Or, “information with a label placing it in class x can flow into class y”

November 15, 2024 ECS 235A, Computer and Information Security Slide 7

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation
• Analysis not precise, but secure

• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains

undetected

• Set of statements certified with respect to information flow policy if
flows in set of statements do not violate that policy

November 15, 2024 ECS 235A, Computer and Information Security Slide 8

Example

if x = 1 then y := a;
else y := b;

• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y

• Note flows for both branches must be true unless compiler can determine
that one branch will never be taken

November 15, 2024 ECS 235A, Computer and Information Security Slide 9

Declarations

• Notation:
x: int class { A, B }

 means x is an integer variable with security class at least lub{ A, B }, so
lub{ A, B } ≤ x
• Distinguished classes Low, High

• Constants are always Low

November 15, 2024 ECS 235A, Computer and Information Security Slide 10

Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }

November 15, 2024 ECS 235A, Computer and Information Security Slide 11

Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters,
class must include this:

op: type class { r1, …, rn }

 where ri is class of ith input or input/output argument

November 15, 2024 ECS 235A, Computer and Information Security Slide 12

Example

proc sum(x: int class { A };
 var out: int class { A, B });

begin
 out := out + x;

end;
• Require x ≤ out and out ≤ out

November 15, 2024 ECS 235A, Computer and Information Security Slide 13

Array Elements

• Information flowing out:
… := a[i]

 Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …

• Only value of a[i] affected, so class is a[i]

November 15, 2024 ECS 235A, Computer and Information Security Slide 14

Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ≤ y must hold

November 15, 2024 ECS 235A, Computer and Information Security Slide 15

Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;

• Each individual Si must be secure

November 15, 2024 ECS 235A, Computer and Information Security Slide 16

Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤
glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

November 15, 2024 ECS 235A, Computer and Information Security Slide 17

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }

November 15, 2024 ECS 235A, Computer and Information Security Slide 18

Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and

one exit point
• Control in block always flows from entry point to exit point

November 15, 2024 ECS 235A, Computer and Information Security Slide 19

Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

 var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:
end;

November 15, 2024 ECS 235A, Computer and Information Security Slide 20

Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

November 15, 2024 ECS 235A, Computer and Information Security Slide 21

Immediate Forward Dominators

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first
basic block lying on all paths of execution passing through b

November 15, 2024 ECS 235A, Computer and Information Security Slide 22

IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path

November 15, 2024 ECS 235A, Computer and Information Security Slide 23

Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }

November 15, 2024 ECS 235A, Computer and Information Security Slide 24

Example of Requirements

November 15, 2024 ECS 235A, Computer and Information Security

b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

Low ≤ i

Low ≤ i
lub{ Low, i } ≤ i

lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j

b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5 y[j][i] := x[i][j];
 j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:

Slide 25

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y

November 15, 2024 ECS 235A, Computer and Information Security Slide 26

Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y

November 15, 2024 ECS 235A, Computer and Information Security Slide 27

Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk

• For all j and k, if oj ≤ ok, then yj ≤ yk

November 15, 2024 ECS 235A, Computer and Information Security Slide 28

Exceptions

proc copy(x: integer class { x };
 var y: integer class Low);
var sum: integer class { x };
 z: int class Low;
begin
 y := z := sum := 0;
 while z = 0 do begin
 sum := sum + x;
 y := y + 1;
 end
end

November 15, 2024 ECS 235A, Computer and Information Security Slide 29

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of sum is MAXINT/y
• Information flows from y to sum, but sum ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)

November 15, 2024 ECS 235A, Computer and Information Security Slide 30

Infinite Loops

proc copy(x: integer 0..1 class { x };
 var y: integer 0..1 class Low);
begin
 y := 0;
 while x = 0 do
 (* nothing *);
 y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

November 15, 2024 ECS 235A, Computer and Information Security Slide 31

Semaphores

Use these constructs:
wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!

November 15, 2024 ECS 235A, Computer and Information Security Slide 32

Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)

November 15, 2024 ECS 235A, Computer and Information Security Slide 33

Example

begin

 x := y + z; (* S1 *)

 wait(sem); (* S2 *)

 a := b * c – x; (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem

November 15, 2024 ECS 235A, Computer and Information Security Slide 34

Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop

November 15, 2024 ECS 235A, Computer and Information Security Slide 35

Loop Example

while i < n do begin

 a[i] := item; (* S1 *)

 wait(sem); (* S2 *)

 i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure

November 15, 2024 ECS 235A, Computer and Information Security Slide 36

cobegin/coend

cobegin

 x := y + z; (* S1 *)

 a := b * c – y; (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a

November 15, 2024 ECS 235A, Computer and Information Security Slide 37

Soundness

• Above exposition intuitive
• Can be made rigorous:

• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to

semantics imposed by security policy

November 15, 2024 ECS 235A, Computer and Information Security Slide 38

