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Basics of Information Flow

• Bell-LaPadula Model embodies information flow policy
• Given compartments A, B, info can flow from A to B iff B dom A

• So does Biba Model
• Given compartments A, B, info can flow from A to B iff A dom B

• Variables x, y assigned compartments x, y as well as values
• Confidentiality (Bel-LaPadula): if x = A, y = B, and B dom A, then y := x allowed 

but not x := y
• Integrity (Biba): if x = A, y = B, and A dom B, then x := y allowed but not y := x

• For now, focus on confidentiality (Bell-LaPadula)
• We’ll get to integrity later
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Entropy and Information Flow

• Idea: information flows from x to y as a result of a sequence of 
commands c if you can deduce information about x before c from the 
value in y after c
• Formally:

• s time before execution of c, t time after
• H(xs | yt) < H(xs | ys)
• If no y at time s, then H(xs | yt) < H(xs)
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Example 1

• Command is x := y + z; where:
• x does not exist initially (that is, has no value)
• 0 ≤ y ≤ 7, equal probability
• z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each

• s state before command executed; t, after; so
• H(ys) = H(yt) = –8(1/8) lg (1/8) = 3

• You can show that H(ys | xt) = (3/32) lg 3 + 9/8 ≈ 1.274 < 3 = H(ys)
• Thus, information flows from y to x
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Example 2

• Command is
if x = 1 then y := 0 else y := 1;

 where x, y equally likely to be either 0 or 1
• H(xs) = 1 as x can be either 0 or 1 with equal probability
• H(xs | yt) = 0 as if yt = 1 then xs = 0 and vice versa

• Thus, H(xs | yt) = 0 < 1 = H(xs)

• So information flowed from x to y
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Implicit Flow of Information

• Information flows from x to y without an explicit assignment of the 
form y := f(x)
• f(x) an arithmetic expression with variable x

• Example from previous slide:
if x = 1 then y := 0 else y := 1;

• So must look for implicit flows of information to analyze program
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Notation

• x means class of x
• In Bell-LaPadula based system, same as “label of security compartment to 

which x belongs”

• x ≤ y means “information can flow from an element in class of x to an 
element in class of y
• Or, “information with a label placing it in class x can flow into class y”
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Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during 
compilation
• Analysis not precise, but secure

• If a flow could violate policy (but may not), it is unauthorized
• No unauthorized path along which information could flow remains 

undetected

• Set of statements certified with respect to information flow policy if 
flows in set of statements do not violate that policy
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Example

if x = 1 then y := a;
else y := b;

• Information flows from x and a to y, or from x and b to y
• Certified only if x ≤ y and a ≤ y and b ≤ y 

• Note flows for both branches must be true unless compiler can determine 
that one branch will never be taken
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Declarations

• Notation:
x: int class { A, B }

 means x is an integer variable with security class at least lub{ A, B }, so 
lub{ A, B } ≤ x
• Distinguished classes Low, High

• Constants are always Low
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Input Parameters

• Parameters through which data passed into procedure
• Class of parameter is class of actual argument

ip: type class { ip }
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Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters, 
class must include this:

op: type class { r1, …, rn }

 where ri is class of ith input or input/output argument 
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Example

proc sum(x: int class { A };
  var out: int class { A, B });

begin
  out := out + x;

end;
• Require x ≤ out and out ≤ out 
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Array Elements

• Information flowing out:
… := a[i]

 Value of i, a[i] both affect result, so class is lub{ a[i], i }
• Information flowing in:

a[i] := …

• Only value of a[i] affected, so class is a[i] 
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Assignment Statements

x := y + z;
• Information flows from y, z to x, so this requires lub{ y, z } ≤ x
More generally:
y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ≤ y must hold
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Compound Statements

x := y + z; a := b * c – x;
• First statement: lub{ y, z } ≤ x
• Second statement: lub{ b, c, x } ≤ a
• So, both must hold (i.e., be secure)
More generally:
S1; … Sn;

• Each individual Si must be secure
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Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤ 
glb{ a, d }

More generally:
if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }
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Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:
while f(x1, …, xn) do S;

• Loop must terminate;
• S must be secure
• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }
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Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows
• Basic block is sequence of statements that have one entry point and 

one exit point
• Control in block always flows from entry point to exit point
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Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

      var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5  y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:
end;
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Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n
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Immediate Forward Dominators

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or
• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first 
basic block lying on all paths of execution passing through b
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IFD Example

• In previous procedure:
• IFD(b1) = b2 one path
• IFD(b2) = b7 b2®b7 or b2®b3®b6®b2®b7

• IFD(b3) = b4 one path
• IFD(b4) = b6 b4®b6 or b4®b5®b6

• IFD(b5) = b4 one path
• IFD(b6) = b2 one path
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Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path 
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure
• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }
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Example of Requirements
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b1 b2 b7

b6 b3

b4

b5

i > n
i ≤ n

j > n

j ≤ n

Low ≤ i

Low ≤ i
lub{ Low, i } ≤ i

lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j

b1 i := 1;
b2 L2: if i > 10 goto L7;
b3 j := 1;
b4 L4: if j > 10 then goto L6;
b5  y[j][i] := x[i][j];
     j := j + 1; goto L4;
b6 L6: i := i + 1; goto L2;
b7 L7:
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Example of Requirements

• Within each basic block:
b1: Low ≤ i  b3: Low ≤ j  b6: lub{ Low, i } ≤ i
b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j
• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }
• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10
• Requires i ≤ glb{ i, j, y[j][i] }
• From declarations, true when i ≤ y
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Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10
• Requires j ≤ glb{ j, y[j][i] }
• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y
• Requirement is lub{ x, i } ≤ y
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Procedure Calls

tm(a, b);
From previous slides, to be secure, lub{ x, i } ≤ y must hold
• In call, x corresponds to a, y to b
• Means that lub{ a, i } ≤ b, or a ≤ b 
More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure
• For all j and k, if ij ≤ ok, then xj ≤ yk

• For all j and k, if oj ≤ ok, then  yj ≤ yk
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Exceptions

proc copy(x: integer class { x };
     var y: integer class Low);
var sum: integer class { x };
    z: int class Low;
begin
     y := z := sum := 0;
     while z = 0 do begin
          sum := sum + x;
          y := y + 1;
     end
end
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Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits
• Value of sum is MAXINT/y
• Information flows from y to sum, but sum ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;
• Now information flows from sum to z, meaning sum ≤ z
• This is false (sum = { x } dominates z = Low)
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Infinite Loops

proc copy(x: integer 0..1 class { x };
                var y: integer 0..1 class Low);
begin
     y := 0;
     while x = 0 do
          (* nothing *);
     y := 1;
end
• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y
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Semaphores

Use these constructs:
wait(x):   if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;
• x is semaphore, a shared variable
• Both executed atomically

Consider statement
wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!
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Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)
• fglb(S): glb of assignment targets following S
• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure
• For all i, shared(Si) ≤ fglb(Si)
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Example

begin

    x := y + z;       (* S1 *)

    wait(sem);        (* S2 *)

    a := b * c – x;   (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x
• lub{ b, c, x } ≤ a
• sem ≤ a

• Because fglb(S2) = a and shared(S2) = sem
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Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be 

executed after wait

• Requirements
• Loop terminates
• All statements S1, …, Sn in loop secure
• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)

• Where t1, …, tm are variables assigned to in loop
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Loop Example

while i < n do begin

    a[i] := item;    (* S1 *)

    wait(sem);       (* S2 *)

    i := i + 1;      (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met
• S1 secure if lub{ i, item } ≤ a[i]
• S2 secure if sem ≤ i and sem ≤ a[i]
• S3 trivially secure
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cobegin/coend

cobegin

     x := y + z;       (* S1 *)

     a := b * c – y;   (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x
• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x Ù lub{ b, c, y } ≤ a
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Soundness

• Above exposition intuitive
• Can be made rigorous:

• Express flows as types
• Equate certification to correct use of types
• Checking for valid information flows same as checking types conform to 

semantics imposed by security policy
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