Lecture 21 November 15, 2024

Basics of Information Flow

- Bell-LaPadula Model embodies information flow policy
 - Given compartments A, B, info can flow from A to B iff B dom A
- So does Biba Model
 - Given compartments A, B, info can flow from A to B iff A dom B
- Variables x, y assigned compartments x, y as well as values
 - Confidentiality (Bel-LaPadula): if $\underline{x} = A$, $\underline{y} = B$, and $B \ dom \ A$, then y := x allowed but not x := y
 - Integrity (Biba): if $\underline{x} = A$, $\underline{y} = B$, and A dom B, then x := y allowed but not y := x
- For now, focus on confidentiality (Bell-LaPadula)
 - We'll get to integrity later

Entropy and Information Flow

- Idea: information flows from x to y as a result of a sequence of commands c if you can deduce information about x before c from the value in y after c
- Formally:
 - *s* time before execution of *c*, *t* time after
 - $H(x_s \mid y_t) < H(x_s \mid y_s)$
 - If no y at time s, then $H(x_s \mid y_t) < H(x_s)$

Example 1

- Command is x := y + z; where:
 - x does not exist initially (that is, has no value)
 - $0 \le y \le 7$, equal probability
 - z = 1 with probability 1/2, z = 2 or 3 with probability 1/4 each
- s state before command executed; t, after; so
 - $H(y_s) = H(y_t) = -8(1/8) \lg (1/8) = 3$
- You can show that $H(y_s \mid x_t) = (3/32) \lg 3 + 9/8 \approx 1.274 < 3 = H(y_s)$
 - Thus, information flows from y to x

Example 2

Command is

if
$$x = 1$$
 then $y := 0$ **else** $y := 1$;

where x, y equally likely to be either 0 or 1

- $H(x_s) = 1$ as x can be either 0 or 1 with equal probability
- $H(x_s \mid y_t) = 0$ as if $y_t = 1$ then $x_s = 0$ and vice versa
 - Thus, $H(x_s | y_t) = 0 < 1 = H(x_s)$
- So information flowed from x to y

Implicit Flow of Information

- Information flows from x to y without an *explicit* assignment of the form y := f(x)
 - f(x) an arithmetic expression with variable x
- Example from previous slide:

if
$$x = 1$$
 then $y := 0$ **else** $y := 1$;

• So must look for implicit flows of information to analyze program

Notation

- <u>x</u> means class of x
 - In Bell-LaPadula based system, same as "label of security compartment to which x belongs"
- $\underline{x} \le \underline{y}$ means "information can flow from an element in class of x to an element in class of y
 - Or, "information with a label placing it in class x can flow into class y"

Compiler-Based Mechanisms

- Detect unauthorized information flows in a program during compilation
- Analysis not precise, but secure
 - If a flow could violate policy (but may not), it is unauthorized
 - No unauthorized path along which information could flow remains undetected
- Set of statements *certified* with respect to information flow policy if flows in set of statements do not violate that policy

Example

```
if x = 1 then y := a;
else y := b;
```

- Information flows from x and a to y, or from x and b to y
- Certified only if $\underline{x} \le \underline{y}$ and $\underline{a} \le \underline{y}$ and $\underline{b} \le \underline{y}$
 - Note flows for *both* branches must be true unless compiler can determine that one branch will *never* be taken

Declarations

• Notation:

```
x: int class { A, B }
```

means x is an integer variable with security class at least $lub\{A, B\}$, so $lub\{A, B\} \le \underline{x}$

- Distinguished classes Low, High
 - Constants are always Low

Input Parameters

- Parameters through which data passed into procedure
- Class of parameter is class of actual argument

```
i_p: type class { i_p }
```

Output Parameters

- Parameters through which data passed out of procedure
 - If data passed in, called input/output parameter
- As information can flow from input parameters to output parameters, class must include this:

$$o_p$$
: type class { r_1 , ..., r_n }

where r_i is class of *i*th input or input/output argument

Example

```
proc sum(x: int class { A };
    var out: int class { A, B });
begin
    out := out + x;
end;
• Require x ≤ out and out ≤ out
```

Array Elements

• Information flowing out:

$$... := a[i]$$

Value of i, a[i] both affect result, so class is lub{ a[i], i}

• Information flowing in:

$$a[i] := ...$$

• Only value of a[i] affected, so class is $\underline{a[i]}$

Assignment Statements

$$x := y + z$$
;

• Information flows from y, z to x, so this requires lub{ \underline{y} , \underline{z} } $\leq \underline{x}$ More generally:

$$y := f(x_1, ..., x_n)$$

• the relation lub{ \underline{x}_1 , ..., \underline{x}_n } $\leq \underline{y}$ must hold

Compound Statements

$$x := y + z; a := b * c - x;$$

- First statement: $lub\{ \underline{y}, \underline{z} \} \leq \underline{x}$
- Second statement: $lub\{\underline{b}, \underline{c}, \underline{x}\} \leq \underline{a}$
- So, both must hold (i.e., be secure)

More generally:

$$S_1$$
; ... S_n ;

• Each individual S_i must be secure

Conditional Statements

```
if x + y < z then a := b else d := b * c - x; end
```

• Statement executed reveals information about x, y, z, so lub{ x, y, z} \leq glb{ a, d }

More generally:

```
if f(x_1, ..., x_n) then S_1 else S_2; end
```

- S_1 , S_2 must be secure
- lub{ \underline{x}_1 , ..., \underline{x}_n } \leq glb{ $\underline{y} \mid y$ target of assignment in S_1 , S_2 }

Iterative Statements

```
while i < n do begin a[i] := b[i]; i := i + 1; end
```

• Same ideas as for "if", but must terminate

More generally:

```
while f(x_1, ..., x_n) do S;
```

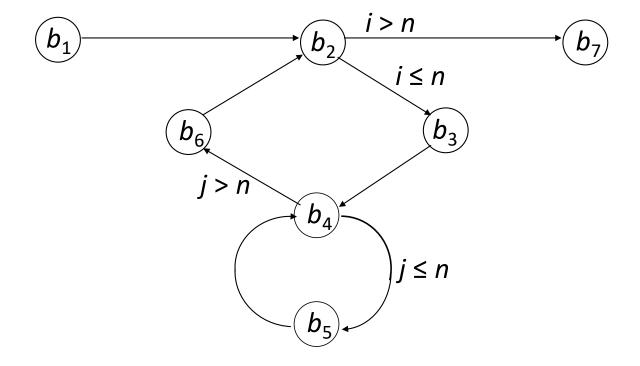
- Loop must terminate;
- S must be secure
- lub{ \underline{x}_1 , ..., \underline{x}_n } \leq glb{ $\underline{y} \mid y$ target of assignment in S }

Goto Statements

- No assignments
 - Hence no explicit flows
- Need to detect implicit flows
- Basic block is sequence of statements that have one entry point and one exit point
 - Control in block *always* flows from entry point to exit point

Example Program

Flow of Control



Immediate Forward Dominators

- Idea: when two paths out of basic block, implicit flow occurs
 - Because information says which path to take
- When paths converge, either:
 - Implicit flow becomes irrelevant; or
 - Implicit flow becomes explicit
- Immediate forward dominator of basic block b (written IFD(b)) is first basic block lying on all paths of execution passing through b

IFD Example

• In previous procedure:

• IFD
$$(b_1) = b_2$$
 one path

• IFD
$$(b_2) = b_7$$
 $b_2 \rightarrow b_7$ or $b_2 \rightarrow b_3 \rightarrow b_6 \rightarrow b_2 \rightarrow b_7$

• IFD
$$(b_3) = b_4$$
 one path

• IFD(
$$b_4$$
) = b_6 $b_4 \rightarrow b_6$ or $b_4 \rightarrow b_5 \rightarrow b_6$

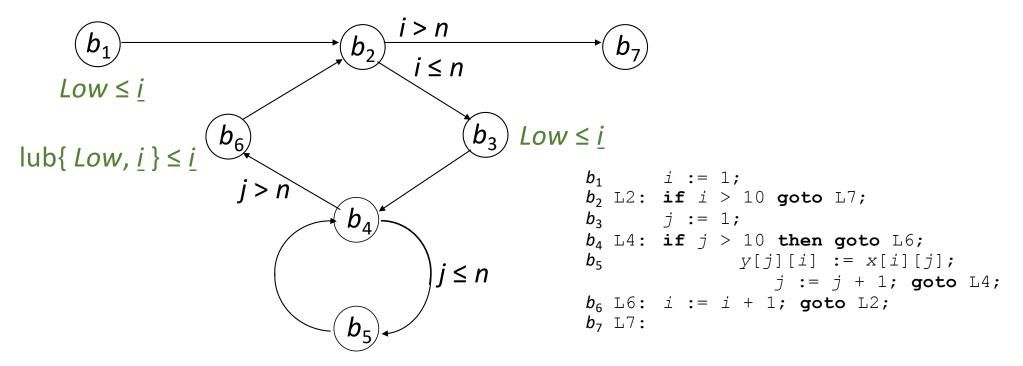
• IFD
$$(b_5) = b_4$$
 one path

• IFD
$$(b_6) = b_2$$
 one path

Requirements

- B_i is set of basic blocks along an execution path from b_i to IFD(b_i)
 - Analogous to statements in conditional statement
- x_{i1} , ..., x_{in} variables in expression selecting which execution path containing basic blocks in B_i used
 - Analogous to conditional expression
- Requirements for secure:
 - All statements in each basic blocks are secure
 - $lub\{\underline{x}_{i1}, ..., \underline{x}_{in}\} \le glb\{\underline{y} \mid y \text{ target of assignment in } B_i\}$

Example of Requirements



 $lub\{x[i][j], i, j\} \le y[j][i]\}$; $lub\{Low, j\} \le j$

Example of Requirements

Within each basic block:

```
b_1: Low \le \underline{i} b_3: Low \le \underline{j} b_6: lub\{Low, \underline{i}\} \le \underline{i} b_5: lub\{\underline{x[i][j]}, \underline{i}, \underline{j}\} \le \underline{y[j][i]}\}; lub\{Low, \underline{j}\} \le \underline{j}
```

- Combining, $lub\{x[i][j], i, j\} \le y[j][i]\}$
- From declarations, true when $lub\{x, i\} \le y$
- $B_2 = \{b_3, b_4, b_5, b_6\}$
 - Assignments to i, j, y[j][i]; conditional is $i \le 10$
 - Requires $\underline{i} \le \text{glb}\{\underline{i},\underline{j},\underline{y[j][i]}\}$
 - From declarations, true when $\underline{i} \leq \underline{y}$

Example (continued)

- $B_4 = \{ b_5 \}$
 - Assignments to j, y[j][i]; conditional is $j \le 10$
 - Requires $\underline{j} \le \text{glb}\{\underline{j}, \underline{y[j][i]}\}$
 - From declarations, means <u>i</u> ≤ <u>y</u>
- Result:
 - Combine lub{ \underline{x} , \underline{i} } \leq \underline{y} ; \underline{i} \leq \underline{y} ; \underline{i} \leq \underline{y}
 - Requirement is $lub\{\underline{x}, \underline{i}\} \le \underline{y}$

Procedure Calls

```
tm(a, b);
```

From previous slides, to be secure, $lub\{x, i\} \le y$ must hold

- In call, x corresponds to a, y to b
- Means that $lub\{\underline{a}, \underline{i}\} \leq \underline{b}$, or $\underline{a} \leq \underline{b}$

More generally:

```
proc pn(i_1, ..., i_m: int; var o_1, ..., o_n: int); begin S end;
```

- S must be secure
- For all j and k, if $\underline{i}_j \leq \underline{o}_k$, then $\underline{x}_j \leq \underline{y}_k$
- For all j and k, if $o_j \le o_k$, then $y_j \le y_k$

Exceptions

Exceptions (cont)

- When sum overflows, integer overflow trap
 - Procedure exits
 - Value of sum is MAXINT/y
 - Information flows from y to sum, but sum ≤ y never checked
- Need to handle exceptions explicitly
 - Idea: on integer overflow, terminate loop

```
on integer_overflow_exception sum do z := 1;
```

- Now information flows from sum to z, meaning $\underline{sum} \le \underline{z}$
- This is false (<u>sum</u> = { x } dominates <u>z</u> = Low)

Infinite Loops

```
proc copy(x: integer 0..1 class { x };
                var y: integer 0..1 class Low);
begin
     y := 0;
     while x = 0 do
          (* nothing *);
     y := 1;
end
```

- If x = 0 initially, infinite loop
- If x = 1 initially, terminates with y set to 1
- No explicit flows, but implicit flow from x to y

Semaphores

Use these constructs:

```
wait(x): if x = 0 then block until x > 0; x := x - 1; signal(x): x := x + 1;
```

- x is semaphore, a shared variable
- Both executed atomically

Consider statement

wait (sem);
$$x := x + 1$$
;

- Implicit flow from sem to x
 - Certification must take this into account!

Flow Requirements

- Semaphores in signal irrelevant
 - Don't affect information flow in that process
- Statement S is a wait
 - shared(S): set of shared variables read
 - Idea: information flows out of variables in shared(S)
 - fglb(S): glb of assignment targets following S
 - So, requirement is shared(S) ≤ fglb(S)
- begin S_1 ; ... S_n end
 - All S_i must be secure
 - For all i, $\underline{\text{shared}(S_i)} \leq \text{fglb}(S_i)$

Example

begin

```
x := y + z; (* S_1 *)

wait(sem); (* S_2 *)

a := b * c - x; (* S_3 *)
```

end

- Requirements:
 - $lub\{ \underline{y}, \underline{z} \} \leq \underline{x}$
 - $lub\{\underline{b}, \underline{c}, \underline{x}\} \leq \underline{a}$
 - <u>sem</u> ≤ <u>a</u>
 - Because fglb(S_2) = \underline{a} and shared(S_2) = sem

Concurrent Loops

- Similar, but wait in loop affects all statements in loop
 - Because if flow of control loops, statements in loop before wait may be executed after wait
- Requirements
 - Loop terminates
 - All statements S_1 , ..., S_n in loop secure
 - lub{ $\underline{\text{shared}(S_1)}$, ..., $\underline{\text{shared}(S_n)}$ } $\leq \underline{\text{glb}(t_1, ..., t_m)}$
 - Where t_1 , ..., t_m are variables assigned to in loop

Loop Example

```
while i < n do begin a[i] := item; (* S_1 *)

wait(sem); (* S_2 *)

i := i + 1; (* S_3 *)
```

end

- Conditions for this to be secure:
 - Loop terminates, so this condition met
 - S_1 secure if lub{ i, item $\} \le a[i]$
 - S_2 secure if $\underline{sem} \le \underline{i}$ and $\underline{sem} \le \underline{a}[\underline{i}]$
 - S₃ trivially secure

cobegin/coend

cobegin

coend

- No information flow among statements
 - For S_1 , lub{ \underline{y} , \underline{z} } $\leq \underline{x}$
 - For S_2 , lub{ \underline{b} , \underline{c} , \underline{y} } $\leq \underline{a}$
- Security requirement is both must hold
 - So this is secure if $lub\{ \underline{y}, \underline{z} \} \le \underline{x} \land lub\{ \underline{b}, \underline{c}, \underline{y} \} \le \underline{a}$

Soundness

- Above exposition intuitive
- Can be made rigorous:
 - Express flows as types
 - Equate certification to correct use of types
 - Checking for valid information flows same as checking types conform to semantics imposed by security policy