Lecture 2 September 26, 2025

ECS 235A, Computer and Information Security

Administrative Stuff

- Some minor corrections to Homework 1:
 - I deleted the spurious "10 minutes" at the end of question 3; it was there by error
 - I added "In the Bell-LaPadula Model" to question 9 to clarify the specific model and context for the question
- There was no audio on the video for the last class; the slides are clear, though
 - No, it isn't your computer . . .

Security and Workplace Politics

- Politics in the workplace introduces risks, which makes politics in the workplace a security issue.
 - Decision making
 - Divisiveness
 - Exclusion
 - Groupthink
 - Limited resources

By Joshua Goldfarb, in https://www.securityweek.com/perspective-why-politics-in-the-workplace-is-a-cybersecurity-risk/

Design Principles

- Underlying concepts: simplicity, restriction
- Principles
 - Least Privilege
 - Fail-Safe Defaults
 - Economy of Mechanism
 - Complete Mediation
 - Open Design
 - Separation of Privilege
 - Least Common Mechanism
 - Least Astonishment

Overview

- Simplicity
 - Less to go wrong
 - Fewer possible inconsistencies
 - Easy to understand
- Restriction
 - Minimize access
 - Inhibit communication

Least Privilege

- A subject should be given only those privileges necessary to complete its task
 - Function, not identity, controls
 - Rights added as needed, discarded after use
 - Minimal protection domain

Related: Least Authority

- Principle of Least Authority (POLA)
 - Often considered the same as Principle of Least Privilege
 - Some distinguish them:
 - Permissions control what subject can do to an object directly
 - Authority controls what influence a subject has over an object (directly or indirectly, through other subjects)

Fail-Safe Defaults

- Default action is to deny access
- If action fails, system as secure as when action began

Economy of Mechanism

- Keep it as simple as possible
 - KISS Principle
- Simpler means less can go wrong
 - And when errors occur, they are easier to understand and fix
- Interfaces and interactions

Complete Mediation

- Check every access
- Usually done once, on first action
 - UNIX: access checked on open, not checked thereafter
- If permissions change after, may get unauthorized access

Open Design

- Security should not depend on secrecy of design or implementation
 - Popularly misunderstood to mean that source code should be public
 - "Security through obscurity"
 - Does not apply to information such as passwords or cryptographic keys

Separation of Privilege

- Require multiple conditions to grant privilege
 - Separation of duty
 - Defense in depth

Least Common Mechanism

- Mechanisms should not be shared
 - Information can flow along shared channels
 - Covert channels
- Isolation
 - Virtual machines
 - Sandboxes

Least Astonishment

- Security mechanisms should be designed so users understand why the mechanism works the way it does, and using mechanism is simple
 - Hide complexity introduced by security mechanisms
 - Ease of installation, configuration, use
 - Human factors critical here

Related: Psychological Acceptability

- Security mechanisms should not add to difficulty of accessing resource
 - Idealistic, as most mechanisms add some difficulty
 - Even if only remembering a password
 - Principle of Least Astonishment accepts this
 - Asks whether the difficulty is unexpected or too much for relevant population of users

Reference Monitor

- Reference monitor is access control concept of an abstract machine that mediates all accesses to objects by subjects
- Reference validation mechanism (RVM) is an implementation of the reference monitor concept.
 - Tamperproof
 - Complete (always invoked and can never be bypassed)
 - Simple (small enough to be subject to analysis and testing, the completeness of which can be assured)
 - Last engenders trust by providing evidence of correctness
- Note: RVM is almost always called a reference monitor too

Examples

- Security kernel combines hardware and software to implement reference monitor
- Trusted computing base (TCB) consists of all protection mechanisms within a system responsible for enforcing security policy
 - Includes hardware and software
 - Generalizes notion of security kernel

Policy and Reference Monitor

- Reference monitor implements a given policy
 - It has a tamperproof authorization database
 - Also maintains an audit trail (record of security-related events) for review
- More on this later; we need some background first

Security Policy

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state