Lecture 11 October 17, 2025

ECS 235A, Computer and Information Security

Administrative Stuff

- Office hour change: Thursday's office hours are now 12:10pm—
 1:00pm in 2203 Watershed Sciences
 - They were 11:00am-11:50am
- The final project and video are due on Tuesday, December 9
 - This is the day of the final exam
 - The Canvas Term Project web page had it wrong; the PDF had it right

xkcd: Alice, Bob, and Eve ... A Love Triangle

I'M SURE YOU'VE HEARD ALL ABOUT THIS
SORDID AFFAIR IN THOSE GOSSIPY CRYPTOGRAPHIC
PROTOCOL SPECS WITH THOSE BUSYBODIES
SCHNEIER AND RIVEST, ALWAYS TAKING ALICE'S
SIDE, ALWAYS LABELING ME THE ATTACKER.

YES, It'S TRUE. I BROKE BOB'S
PRIVATE KEY AND EXTRACTED THE
TEXT OF HER MESSAGES. BUT DOES
ANYONE REALIZE HOW MUCH IT HURT?

HE SAID IT WAS NOTHING, BUT EVERYTHING FROM THE PUBLIC-KEY AUTHENTICATED SIGNATURES ON THE FILES TO THE LIPSTICK HEART SMEARED ON THE DISK SCREAMED "ALICE."

OIDN'T WANT TO BELIEVE.

OF COURSE ON SOME LEVEL

I REALIZED IT WAS A KNOWNPLAINTEXT ATTACK. BUT I

COULDN'T ADMIT IT UNTIL

SO BEFORE YOU SO QUICKLY LABEL
ME A THIRD PARTY TO THE COMMUNICATION, JUST REMEMBER:
I LOVED HIM FIRST. WE
HAD SOMETHING AND SHE
/ TORE IT AWAY. SHE'S
THE ATTACKER, NOT ME.
I
NOT EVE.

https://xkcd.com/177

Fast Exponentiation

- Idea: compute 2^5 mod 9
- Initially, base = 2 and value = 1
- 5 = 101 in binary so look at the rightmost bit of 101 ...
 - 1 bit gives value = value \times base mod 9 = 1 \times 2 mod 9 = 2 mod 9 = 2
 - Compute $base = base^2 \mod 9 = 2^2 \mod 9 = 4$
- Shift 101 right by 1 bit so look at the rightmost bit of 10 ...
 - The current bit is 0, meaning don't multiply the base by value
 - Compute $base = base^2 \mod 9 = 4^2 \mod 9 = 7$
- Shift 10 right by 1 bit so look at the rightmost bit of 1 ...
 - 1 bit gives value = value \times base mod 9 = 2 \times 7 mod 9 = 14 mod 9 = 5
 - Compute base = base² mod 9 = 7^2 mod 9 = 49 mod 9 = 4 (note this is ignored)
- 1 shifted right 1 bit is 0, so done; result is 5

Another Example

- Compute 12⁶⁴ mod 93
- In bits, $64 = 1_7 0_6 0_5 0_4 0_3 0_2 0_1$; we start with base = 12, value = 1
 - 1. Rightmost bit is 0, so $base = 12^2 \mod 93 = 51$; value = 1
 - 2. Shift right, rightmost bit is 0, so $base = 51^2 \mod 93 = 90$; value = 1
 - 3. Shift right, rightmost bit is 0, so $base = 90^2 \mod 93 = 9$; value = 1
 - 4. Shift right, rightmost bit is 0, so $base = 9^2 \mod 93 = 81$; value = 1
 - 5. Shift right, rightmost bit is 0, so $base = 81^2 \mod 93 = 51$; value = 1
 - 6. Shift right, rightmost bit is 0, so $base = 51^2 \mod 93 = 90$; value = 1
 - 7. Shift right, rightmost bit is 1, so:
 - value = value × base mod 93 = 1 × 90 mod 93 = 90 mod 93 = 90
 - $base = 90^2 \mod 93 = 9$ (note this is *ignored*)
- So $12^{64} \mod 93 = 90$

Algorithm (in Python)

```
# compute q^k mod n
def fastexp(g, n, k):
    value = 1
    base = q
    while k != 0:
        r = k % 2
        if r == 1:
            value = (value * base) % n
        k = k // 2
        base = (base * base) % n
    return value
```

Algorithm (in C)

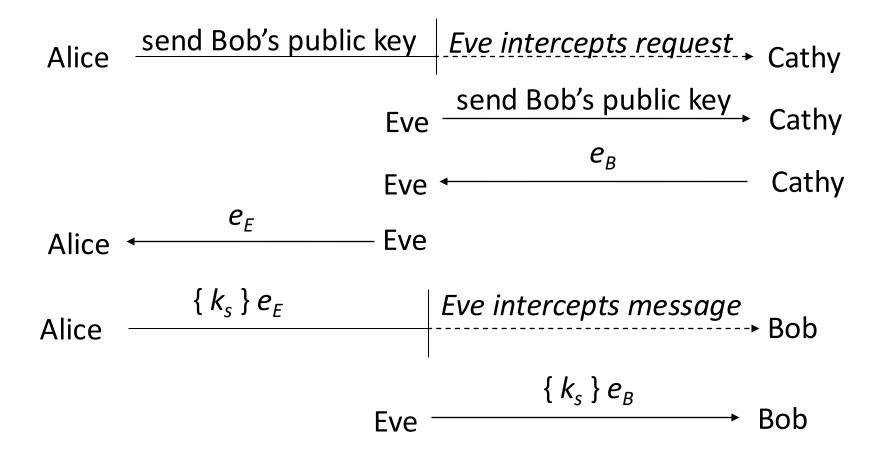
```
/* compute g^k mod n */
long fastexp(int g, int n, int k)
    long value = 1;
    long base = g
    do {
        if (k&01)
            value = (value * base) % n;
        k >>= 1;
        base = (base * base) % n;
    }while (k);
    return value;
```

Public Key Key Exchange

- Here interchange keys known
 - e_A , e_B Alice and Bob's public keys known to all
 - d_A , d_B Alice and Bob's private keys known only to owner
- Simple protocol
 - k_s is desired session key

Alice
$$\underbrace{\{k_s\}e_B}$$
 Bob

Problem and Solution


- Vulnerable to forgery or replay
 - Because e_B known to anyone, Bob has no assurance that Alice sent message
- Simple fix uses Alice's private key
 - k_s is desired session key

Alice
$$\{\{k_s\}d_A\}e_B$$
 Bob

Notes

- Can include message enciphered with k_s
- Assumes Bob has Alice's public key, and vice versa
 - If not, each must get it from public server
 - If keys not bound to identity of owner, attacker Eve can launch a man-in-the-middle attack (next slide; Cathy is public server providing public keys)
 - Solution to this (binding identity to keys) discussed later as public key infrastructure (PKI)

Man-in-the-Middle Attack

Diffie-Hellman

- Compute a common, shared key
 - Called a symmetric key exchange protocol
- Based on discrete logarithm problem
 - Given integers n, g and prime number p, compute k such that $n = g^k \mod p$
 - Solutions known for small p
 - Solutions computationally infeasible as *p* grows large

Algorithm

- Constants: prime p, integer $g \neq 0$, 1, p-1
 - Known to all participants
- Alice chooses private key k_{Alice} , computes public key $K_{Alice} = g^{k_{Alice}} \mod p$
- Bob chooses private key k_{Bob} , computes public key $K_{Bob} = g^{k_{Bob}} \mod p$
- To communicate with Bob, Alice computes $K_{Alice,Bob} = K_{Bob}^{k_{Alice}} \mod p$
- To communicate with Alice, Bob computes $K_{\text{Bob,Alice}} = K_{\text{Alice}}^{k_{\text{Bob}}} \mod p$
- It can be shown $K_{Alice,Bob} = K_{Bob,Alice}$

Example

- Assume p = 121001 and g = 6981
- Alice chooses $k_{Alice} = 26784$
 - Then $K_{Alice} = 6981^{26784} \mod 121001 = 100025$
- Bob chooses $k_{Bob} = 5596$
 - Then $K_{\text{Bob}} = 6981^{5596} \mod 121001 = 112706$
- Shared key:
 - $K_{\text{Bob}}^{k_{\text{Alice}}} \mod p = 112706^{26784} \mod 121001 = 15970$
 - $K_{Alice}^{k_{Bob}} \mod p = 100025^{5596} \mod 121001 = 15970$

Problems

- Using cipher requires knowledge of environment, and threats in the environment, in which cipher will be used
 - Is the set of possible messages small?
 - Can an active wiretapper rearrange or change parts of the message?
 - Do the messages exhibit regularities that remain after encipherment?
 - Can the components of the message be misinterpreted?

Attack #1: Precomputation

- Set of possible messages M small
- Public key cipher f used
- Idea: precompute set of possible ciphertexts f(M), build table (m, f(m))
- When ciphertext f(m) appears, use table to find m
- Also called forward searches

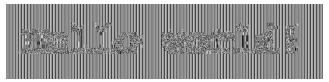
Example

- Cathy knows Alice will send Bob one of two messages: enciphered BUY, or enciphered SELL
- Using public key e_{Bob} , Cathy precomputes

$$m_1 = \{ BUY \} e_{Bob}, m_2 = \{ SELL \} e_{Bob}$$

- Cathy sees Alice send Bob m_2
- Cathy knows Alice sent SELL

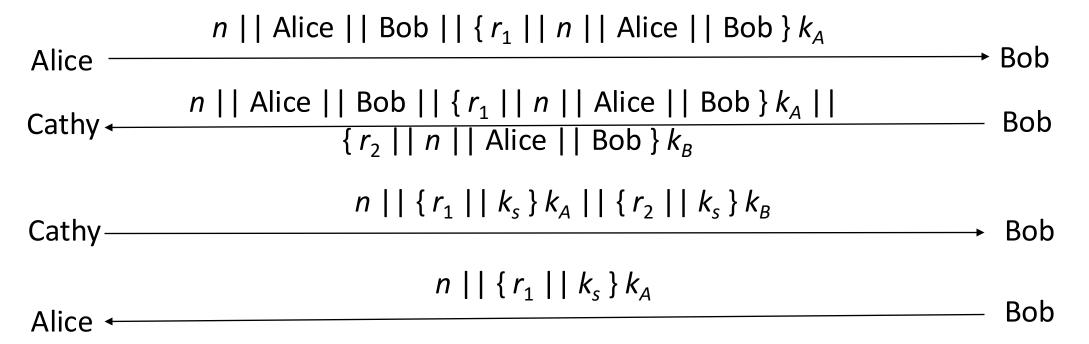
May Not Be Obvious


- Digitized sound
 - Seems like far too many possible plaintexts, as initial calculations suggest 2³² such plaintexts
 - Analysis of redundancy in human speech reduced this to about 100,000 ($\approx 2^{17}$), small enough for precomputation attacks

Misordered Blocks

- Alice sends Bob message
 - $n_{Bob} = 262631$, $e_{Bob} = 45539$, $d_{Bob} = 235457$
- Message is TOMNOTANN (191412 131419 001313)
- Enciphered message is 193459 029062 081227
- Eve intercepts it, rearranges blocks
 - Now enciphered message is 081227 029062 193459
- Bob gets enciphered message, deciphers it
 - He sees ANNNOTTOM, opposite of what Alice sent

Statistical Regularities


- If plaintext repeats, ciphertext may too
- Example using AES-128:
 - Input image: Hello world!
 - corresponding output image:

- Note you can still make out the words
- Fix: cascade blocks together (chaining); more details later

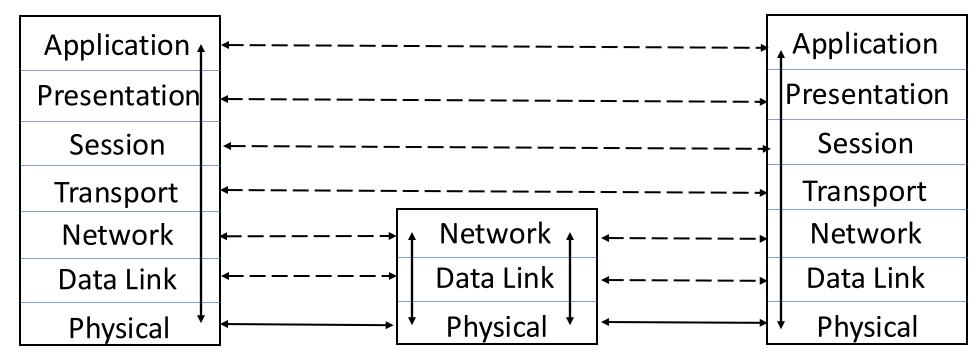
Type Flaw Attacks

- Assume components of messages in protocol have particular meaning
- Example: Otway-Rees:

The Attack

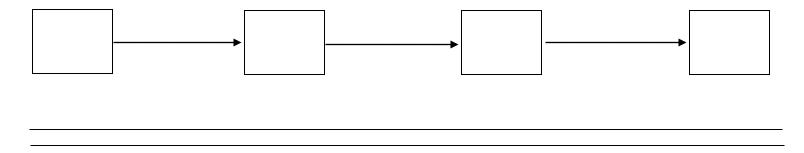
- Ichabod intercepts message from Bob to Cathy in step 2
- Ichabod replays this message, sending it to Bob
 - Slight modification: he deletes the cleartext names
- Bob expects $n \mid \mid \{r_1 \mid \mid k_s\} k_A \mid \mid \{r_2 \mid \mid k_s\} k_B$
- Bob gets $n \mid | \{r_1 \mid | n \mid | Alice \mid | Bob \} k_A \mid | \{r_2 \mid | n \mid | Alice \mid | Bob \} k_B$
- So Bob sees $n \mid \mid$ Alice $\mid \mid$ Bob as the session key and Ichabod knows this
- When Alice gets her part, she makes the same assumption
- Now Ichabod can read their encrypted traffic

Solution


- Tag components of cryptographic messages with information about what the component is
 - But the tags themselves may be confused with data ...

What These Mean

- Use of strong cryptosystems, well-chosen (or random) keys not enough to be secure
- Other factors:
 - Protocols directing use of cryptosystems
 - Ancillary information added by protocols
 - Implementation (not discussed here)
 - Maintenance and operation (not discussed here)


Networks and Cryptography

- ISO/OSI model
- Conceptually, each host communicates with peer at each layer

Link and End-to-End Protocols

Link Protocol

End-to-End (or E2E) Protocol

Encryption

- Link encryption
 - Each host enciphers message so host at "next hop" can read it
 - Message can be read at intermediate hosts
- End-to-end encryption
 - Host enciphers message so host at other end of communication can read it
 - Message cannot be read at intermediate hosts

Examples

- SSH protocol
 - Messages between client, server are enciphered, and encipherment, decipherment occur only at these hosts
 - End-to-end protocol
- PPP Encryption Control Protocol
 - Host gets message, deciphers it
 - Figures out where to forward it
 - Enciphers it in appropriate key and forwards it
 - Link protocol

Cryptographic Considerations

- Link encryption
 - Each host shares key with neighbor
 - Can be set on per-host or per-host-pair basis
 - Windsor, stripe, seaview each have own keys
 - One key for (windsor, stripe); one for (stripe, seaview); one for (windsor, seaview)
- End-to-end
 - Each host shares key with destination
 - Can be set on per-host or per-host-pair basis
 - Message cannot be read at intermediate nodes

Traffic Analysis

- Link encryption
 - Can protect headers of packets
 - Possible to hide source and destination
 - Note: may be able to deduce this from traffic flows
- End-to-end encryption
 - Cannot hide packet headers
 - Intermediate nodes need to route packet
 - Attacker can read source, destination