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Administrative Stuff

• Office hour change: Thursday's office hours are now 12:10pm–
1:00pm in 2203 Watershed Sciences
• They were 11:00am–11:50am

• The final project and video are due on Tuesday, December 9
• This is the day of the final exam

• The Canvas Term Project web page had it wrong; the PDF had it right
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xkcd: Alice, Bob, and Eve … A Love Triangle
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https://xkcd.com/177



Fast Exponentiation

• Idea: compute 2^5 mod 9
• Initially, base = 2 and value = 1
• 5 = 101 in binary so look at the rightmost bit of 101 … 

• 1 bit gives value = value × base mod 9 = 1 × 2 mod 9 = 2 mod 9 = 2
• Compute base = base2 mod 9 = 22 mod 9 = 4

• Shift 101 right by 1 bit so look at the rightmost bit of 10 … 
• The current bit is 0, meaning don't multiply the base by value
• Compute base = base2 mod 9 = 42 mod 9 = 7

• Shift 10 right by 1 bit so look at the rightmost bit of 1 …
• 1 bit gives value = value × base mod 9 = 2 × 7 mod 9 = 14 mod 9 = 5
• Compute base = base2 mod 9 = 72 mod 9 = 49 mod 9 = 4 (note this is ignored)

• 1 shifted right 1 bit is 0, so done; result is 5
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Another Example

• Compute 1264 mod 93

• In bits, 64 = 17060504030201; we start with base = 12, value = 1
1. Rightmost bit is 0, so base = 122 mod 93 = 51; value = 1
2. Shift right, rightmost bit is 0, so base = 512 mod 93 = 90; value = 1
3. Shift right, rightmost bit is 0, so base = 902 mod 93 = 9; value = 1
4. Shift right, rightmost bit is 0, so base = 92 mod 93 = 81; value = 1
5. Shift right, rightmost bit is 0, so base = 812 mod 93 = 51; value = 1
6. Shift right, rightmost bit is 0, so base = 512 mod 93 = 90; value = 1
7. Shift right, rightmost bit is 1, so:

• value = value × base mod 93 = 1 × 90 mod 93 = 90 mod 93 = 90
• base = 902 mod 93 = 9 (note this is ignored)

• So 1264 mod 93 = 90
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Algorithm (in Python)

# compute g^k mod n

def fastexp(g, n, k):

    value = 1

    base = g

    while k != 0:

        r = k % 2

        if r == 1:

            value = (value * base) % n

        k = k // 2

        base = (base * base) % n

    return value
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Algorithm (in C)

/* compute g^k mod n */

long fastexp(int g, int n, int k)

{

    long value = 1;

    long base = g

    do{

        if (k&01)

            value = (value * base) % n;

        k >>= 1;

        base = (base * base) % n;

    }while (k);

    return value;

}
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Public Key Key Exchange

• Here interchange keys known
• eA, eB Alice and Bob’s public keys known to all

• dA, dB Alice and Bob’s private keys known only to owner

• Simple protocol
• ks is desired session key

Alice Bob
{ ks } eB
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Problem and Solution

• Vulnerable to forgery or replay
• Because eB known to anyone, Bob has no assurance 

that Alice sent message

• Simple fix uses Alice’s private key
• ks is desired session key

Alice Bob
{ { ks } dA } eB
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Notes

• Can include message enciphered with ks

• Assumes Bob has Alice’s public key, and vice versa
• If not, each must get it from public server

• If keys not bound to identity of owner, attacker Eve can launch a man-in-the-
middle attack (next slide; Cathy is public server providing public keys)
• Solution to this (binding identity to keys) discussed later as public key infrastructure (PKI)
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Man-in-the-Middle Attack

Alice Cathy
send Bob’s public key

Eve Cathy
send Bob’s public key

Eve Cathy
eB

Alice
eE

Eve

Alice Bob
{ ks } eE

Eve Bob
{ ks } eB

Eve intercepts request

Eve intercepts message
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Diffie-Hellman

• Compute a common, shared key
• Called a symmetric key exchange protocol

• Based on discrete logarithm problem
• Given integers n, g and prime number p, compute k such that n = gk mod p

• Solutions known for small p

• Solutions computationally infeasible as p grows large
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Algorithm

• Constants: prime p, integer g ≠ 0, 1, p–1
• Known to all participants

• Alice chooses private key kAlice, computes public key KAlice = gkAlice mod p

• Bob chooses private key kBob, computes public key KBob = gkBob mod p

• To communicate with Bob, Alice computes KAlice,Bob = KBob 
kAlice mod p

• To communicate with Alice, Bob computes KBob,Alice = KAlice 
kBob mod p

• It can be shown KAlice,Bob = KBob,Alice 
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Example

• Assume p = 121001 and g = 6981

• Alice chooses kAlice = 26784
• Then KAlice = 698126784 mod 121001 = 100025

• Bob chooses kBob = 5596
• Then KBob = 69815596 mod 121001 = 112706

• Shared key:
• KBob 

kAlice mod p = 11270626784 mod 121001 = 15970

• KAlice 
kBob mod p = 1000255596 mod 121001 = 15970
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Problems

• Using cipher requires knowledge of environment, and threats in the 
environment, in which cipher will be used
• Is the set of possible messages small?

• Can an active wiretapper rearrange or change parts of the message?

• Do the messages exhibit regularities that remain after encipherment?

• Can the components of the message be misinterpreted?
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Attack #1: Precomputation

• Set of possible messages M small

• Public key cipher f used

• Idea: precompute set of possible ciphertexts f(M), build table (m, f(m))

• When ciphertext f(m) appears, use table to find m

• Also called forward searches
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Example

• Cathy knows Alice will send Bob one of two messages: enciphered 
BUY, or enciphered SELL

• Using public key eBob, Cathy precomputes

 m1 = { BUY } eBob, m2 = { SELL } eBob

• Cathy sees Alice send Bob m2

• Cathy knows Alice sent SELL
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May Not Be Obvious

• Digitized sound
• Seems like far too many possible plaintexts, as initial calculations suggest 232 

such plaintexts

• Analysis of redundancy in human speech reduced this to about 100,000 (≈ 217), 
small enough for precomputation attacks
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Misordered Blocks

• Alice sends Bob message
• nBob = 262631, eBob = 45539, dBob = 235457

• Message is TOMNOTANN (191412 131419 001313)

• Enciphered message is 193459 029062 081227

• Eve intercepts it, rearranges blocks
• Now enciphered message is 081227 029062 193459

• Bob gets enciphered message, deciphers it
• He sees ANNNOTTOM, opposite of what Alice sent
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Statistical Regularities

• If plaintext repeats, ciphertext may too

• Example using AES-128:
• Input image:

• corresponding output image:

• Note you can still make out the words

• Fix: cascade blocks together (chaining); more details later
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Type Flaw Attacks

• Assume components of messages in protocol have particular meaning

• Example: Otway-Rees:

Alice Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA

Cathy Bob
n || Alice || Bob || { r1 || n || Alice || Bob } kA || 

{ r2 || n || Alice || Bob } kB

Cathy Bob
n || { r1 || ks } kA || { r2 || ks } kB

Alice Bob
n || { r1 || ks } kA
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The Attack

• Ichabod intercepts message from Bob to Cathy in step 2

• Ichabod replays this message, sending it to Bob
• Slight modification: he deletes the cleartext names

• Bob expects n || { r1 || ks } kA || { r2 || ks } kB

• Bob gets n || { r1 || n || Alice || Bob } kA || { r2 || n || Alice || Bob } kB

• So Bob sees  n || Alice || Bob as the session key — and Ichabod knows 
this

• When Alice gets her part, she makes the same assumption

• Now Ichabod can read their encrypted traffic

October 17, 2025 ECS 235A, Computer and Information Security Slide 22



Solution

• Tag components of cryptographic messages with information about 
what the component is
• But the tags themselves may be confused with data …
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What These Mean

• Use of strong cryptosystems, well-chosen (or random) keys not 
enough to be secure

• Other factors:
• Protocols directing use of cryptosystems

• Ancillary information added by protocols

• Implementation (not discussed here)

• Maintenance and operation (not discussed here)
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Networks and Cryptography

• ISO/OSI model

• Conceptually, each host communicates with peer at each layer

Physical

Data Link

Network

Transport

Session

Presentation

Application

Physical

Data Link

Network

Physical

Data Link

Network

Transport

Session

Presentation

Application
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Link and End-to-End Protocols

Link Protocol

End-to-End (or E2E) Protocol
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Encryption

• Link encryption
• Each host enciphers message so host at “next hop” can read it

• Message can be read at intermediate hosts

• End-to-end encryption
• Host enciphers message so host at other end of communication can read it

• Message cannot be read at intermediate hosts
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Examples

• SSH protocol
• Messages between client, server are enciphered, and encipherment, 

decipherment occur only at these hosts

• End-to-end protocol

• PPP Encryption Control Protocol
• Host gets message, deciphers it

• Figures out where to forward it

• Enciphers it in appropriate key and forwards it

• Link protocol
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Cryptographic Considerations

• Link encryption
• Each host shares key with neighbor

• Can be set on per-host or per-host-pair basis
• Windsor, stripe, seaview each have own keys

• One key for (windsor, stripe); one for (stripe, seaview); one for (windsor, seaview)

• End-to-end
• Each host shares key with destination

• Can be set on per-host or per-host-pair basis

• Message cannot be read at intermediate nodes
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Traffic Analysis

• Link encryption
• Can protect headers of packets

• Possible to hide source and destination
• Note: may be able to deduce this from traffic flows

• End-to-end encryption
• Cannot hide packet headers

• Intermediate nodes need to route packet

• Attacker can read source, destination
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