Lecture 1/
November 3, 2025

ECS 235A, Computer and Information Security

November 3, 2025 ECS 235A, Computer and Information Security Slide 1

Example Flaws

e Use these to compare classification schemes
* First one: race condition (xterm)

e Second one: buffer overflow on stack leading to execution of injected
code (fingerd)

* Both are very well known, and fixes available!
* And should be installed everywhere ...

November 3, 2025 ECS 235A, Computer and Information Security Slide 2

Flaw #1: xterm

e xterm emulates terminal under X11 window system

* Must run as root user on UNIX systems
* No longer universally true; reason irrelevant here

* Log feature: user can log all input, output to file
e User names file

* |f file does not exist, xterm creates it, makes owner the user

* If file exists, xterm checks user can write to it, and if so opens file to append
log to it

November 3, 2025 ECS 235A, Computer and Information Security Slide 3

File Exists

* Check that user can write to file requires special system call
* Because root can append to any file, check in open will always succeed

Check that user can write to file “/usr/tom/X”
if (access (“/usr/tom/X”, W OK) == 0) {
Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O WRONLY|O APPEND))< 0) {

/* handle error: cannot open file */

November 3, 2025 ECS 235A, Computer and Information Security Slide 4

Problem

 Binding of file name “/usr/tom/X” to file object can change between
first and second lines
* left is at access; right is at open
* Note file opened is not file checked

after
attack

o access(“/usr/tom/xyzzy”, W_OK
access(“/usr/tom/xyzzy”, W_OK) (“/usr/tom/xyzzy”, W_OK)

November 3, 2025 ECS 235A, Computer and Information Security Slide 15-5

Flaw #2: fingerd

* Exploited by Internet Worm of 1988

* Recurs in many places, even now

e finger client send request for information to server fingerd (finger
daemon)
* Request is name of at most 512 chars
 What happens if you send more?

November 3, 2025 ECS 235A, Computer and Information Security Slide 6

Buffer Overflow

 Extra chars overwrite rest of
stack, as shown

* Can make those chars change
return address to point to
beginning of buffer

* If buffer contains small program
to spawn shell, attacker gets shell
on target system

November 3, 2025

gets local
variables

other return
state info

return address
of main

parameter
to gets

A\ 4

input buffer

main local
variables

ECS 235A, Computer and Information Security

after
message

gets local
variables

other return
state info

address of
input buffer

\4

program to
invoke shell

main local
variables

Slide 15-7

Frameworks

e Goals dictate structure of classification scheme

* Guide development of attack tool = focus is on steps needed to exploit
vulnerability

* Aid software development process = focus is on design and programming
errors causing vulnerabilities

* Following schemes classify vulnerability as n-tuple, each element of
n-tuple being classes into which vulnerability falls

* Some have 1 axis; others have multiple axes

November 3, 2025 ECS 235A, Computer and Information Security Slide 8

Research Into Secure Operating Systems
(RISOS)

e Goal: aid computer, system managers in understanding security issues
in OSes, and help determine how much effort required to enhance

system security

* Attempted to develop methodologies and software for detecting
some problems, and techniques for avoiding and ameliorating other

problems
* Examined Multics, TENEX, TOPS-10, GECOS, OS/MVT, SDS-940, EXEC-8

November 3, 2025 ECS 235A, Computer and Information Security Slide 9

Classification Scheme

* Incomplete parameter validation

* Inconsistent parameter validation

* Implicit sharing of privileged/confidential data

* Asynchronous validation/inadequate serialization

* Inadequate identification/authentication/authorization
e Violable prohibition/limit

* Exploitable logic error

November 3, 2025 ECS 235A, Computer and Information Security Slide 10

Incomplete Parameter Validation

 Parameter not checked before use

* Example: emulating integer division in kernel (RISC chip involved)
 Caller provided addresses for quotient, remainder
* Quotient address checked to be sure it was in user’s protection domain

* Remainder address not checked
* Set remainder address to address of process’ level of privilege
* Compute 25/5 and you have level 0 (kernel) privileges

* Check for type, format, range of values, access rights, presence (or
absence)

November 3, 2025 ECS 235A, Computer and Information Security Slide 11

Inconsistent Parameter Validation

e Each routine checks parameter is in proper format for that routine
but the routines require different formats

* Example: each database record 1 line, colons separating fields

* One program accepts colons, newlines as pat of data within fields
* Another program reads them as field and record separators
* This allows bogus records to be entered

November 3, 2025 ECS 235A, Computer and Information Security Slide 12

Legacy of RISOS

* First funded project examining vulnerabilities

* Valuable insight into nature of flaws

e Security is a function of site requirements and threats
* Small number of fundamental flaws recurring in many contexts
* OS security not critical factor in design of OSes

* Spurred additional research efforts into detection, repair of
vulnerabilities

November 3, 2025 ECS 235A, Computer and Information Security Slide 13

Program Analysis (PA)

* Goal: develop techniques to find vulnerabilities
* Tried to break problem into smaller, more manageable pieces

* Developed general strategy, applied it to several OSes
* Found previously unknown vulnerabilities

November 3, 2025 ECS 235A, Computer and Information Security Slide 14

Classification Scheme

Improper protection domain initialization and enforcement
* Improper choice of initial protection domain
* Improper isolation of implementation detail

Improper change
Improper naming
Improper deallocation or deletion

Improper validation

Improper synchronization
* Improper indivisibility
* Improper sequencing

Improper choice of operand or operation

November 3, 2025 ECS 235A, Computer and Information Security Slide 15

Improper Choice of Initial Protection Domain

* Initial incorrect assignment of privileges, security and integrity classes

* Example: on boot, protection mode of file containing identifiers of all
users can be altered by any user

* Under most policies, should not be allowed

November 3, 2025 ECS 235A, Computer and Information Security Slide 16

Improper Isolation of Implementation Detail

* Mapping an abstraction into an implementation in such a way that
the abstraction can be bypassed

 Example: virtual machines modulate length of time CPU is used by
each to send bits to each other

* Example: Having raw disk accessible to system as ordinary file,
enabling users to bypass file system abstraction and write directly to
raw disk blocks

November 3, 2025 ECS 235A, Computer and Information Security Slide 17

Improper Change

e Data is inconsistent over a period of time

* Example: xterm flaw
* Meaning of “/usr/tom/X” changes between access and open

 Example: parameter is validated, then accessed; but parameter is
changed between validation and access

* Burroughs B6700 allowed allowed this

November 3, 2025 ECS 235A, Computer and Information Security Slide 18

Improper Naming

* Multiple objects with same name

* Example: Trojan horse
* Joadmodule attack discussed earlier; “bin” could be a directory or a program

* Example: multiple hosts with same IP address
* Messages may be erroneously routed

November 3, 2025 ECS 235A, Computer and Information Security Slide 19

Improper Deallocation or Deletion

* Failing to clear memory or disk blocks (or other storage) after it is
freed for use by others

 Example: program that contains passwords that a user typed dumps
core
e Passwords plainly visible in core dump

November 3, 2025 ECS 235A, Computer and Information Security Slide 20

Improper Validation

* Inadequate checking of bounds, type, or other attributes or values
 Example: fingerd’s failure to check input length

November 3, 2025 ECS 235A, Computer and Information Security Slide 21

Improper Indivisibility

* Interrupting operations that should be uninterruptable
e Often: “interrupting atomic operations”

* Example: mkdir flaw (UNIX Version 7)

* Created directories by executing privileged operation to create file node of
type directory, then changed ownership to user

* On loaded system, could change binding of name of directory to be that of
password file after directory created but before change of ownership

* Attacker can change administrator’s password

November 3, 2025 ECS 235A, Computer and Information Security Slide 22

Improper Sequencing

* Required order of operations not enforced

* Example: one-time password scheme

e System runs multiple copies of its server

* Two users try to access same account
* Server 1 reads password from file
» Server 2 reads password from file
* Both validate typed password, allow user to log in
e Server 1 writes new password to file
e Server 2 writes new password to file

* Should have every read to file followed by a write, and vice versa; not two
reads or two writes to file in a row

November 3, 2025 ECS 235A, Computer and Information Security Slide 23

Improper Choice of Operand or Operation

e Calling inappropriate or erroneous instructions

* Example: cryptographic key generation software calling
pseudorandom number generators that produce predictable
sequences of numbers

November 3, 2025 ECS 235A, Computer and Information Security Slide 24

Legacy

* First to explore automatic detection of security flaws in programs and
systems

* Methods developed but not widely used
* Parts of procedure could not be automated
* Complexity

* Procedures for obtaining system-independent patterns describing flaws not
complete

November 3, 2025 ECS 235A, Computer and Information Security Slide 25

NRL Taxonomy

* Goals:
* Determine how flaws entered system
* Determine when flaws entered system
* Determine where flaws are manifested in system

* 3 different schemes used:
* Genesis of flaws
* Time of flaws
* Location of flaws

November 3, 2025 ECS 235A, Computer and Information Security Slide 26

Genesis of Flaws

, Nonreplicating
Trojan horse

Malicious — Trapdoor Replicating
Intentional Logic bomb __~Storage channel
- Covert channel\
NonmaI|C|ous\ Timing channel
Other

* Inadvertent (unintentional) flaws classified using RISOS categories; not shown
above
* |f most inadvertent, better design/coding reviews needed

* If most intentional, need to hire more trustworthy developers and do more security-related
testing

November 3, 2025 ECS 235A, Computer and Information Security Slide 27

Time of Flaws

Requirements/specifications/design

Development— Source code
™ Object code

Time of Introduction Maintenance

\Operation

* Development phase: all activities up to release of initial version of software

* Maintenance phase: all activities leading to changes in software performed under configuration
control

e Operation phase: all activities involving patching and not under configuration control

November 3, 2025 ECS 235A, Computer and Information Security Slide 28

Location of Flaw
/System initialization
Memory management
Operating system—_

/ i Process management/scheduling
Software —Application \ Device management

/ \ File management

Location Support
\Hardwa re Identification/authentication
Other/unknown

Privileged utilities
Unprivileged utilities
* Focus effort on locations where most flaws occur, or where most
serious flaws occur

November 3, 2025 ECS 235A, Computer and Information Security Slide 29

Legacy

* Analyzed 50 flaws

* Concluded that, with a large enough sample size, an analyst could study
relationships between pairs of classes
* This would help developers focus on most likely places, times, and causes of flaws

* Focused on social processes as well as technical details
* But much information required for classification not available for the 50 flaws

November 3, 2025 ECS 235A, Computer and Information Security Slide 30

Aslam’s Model

e Goal: treat vulnerabilities as faults and develop scheme based on fault
trees

* Focuses specifically on UNIX flaws

e Classifications uniqgue and unambiguous

* Organized as a binary tree, with a question at each node. Answer determines
branch you take

* Leaf node gives you classification

 Suited for organizing flaws in a database

November 3, 2025 ECS 235A, Computer and Information Security Slide 31

Top Level

* Coding faults: introduced during software development
* Example: fingerd's failure to check length of input string before storing it in
buffer
* Emergent faults: result from incorrect initialization, use, or application

 Example: allowing message transfer agent to forward mail to arbitrary file on
system (it performs according to specification, but results create a
vulnerability)

November 3, 2025 ECS 235A, Computer and Information Security Slide 32

Coding Faults

» Synchronization errors: improper serialization of operations, timing
window between two operations creates flaw
* Example: xterm flaw

* Condition validation errors: bounds not checked, access rights
ignored, input not validated, authentication and identification fails

* Example: fingerd flaw

November 3, 2025 ECS 235A, Computer and Information Security Slide 33

Emergent Faults

* Configuration errors: program installed incorrectly

* Example: tftp daemon installed so it can access any file; then anyone can copy
any file

* Environmental faults: faults introduced by environment

o

 Example: on some UNIX systems, any shell with “-” as first char of name is
interactive, so find a setuid shell script, create a link to name “-gotcha”, run it,
and you has a privileged interactive shell

November 3, 2025 ECS 235A, Computer and Information Security Slide 34

Legacy

* Tied security flaws to software faults

* Introduced a precise classification scheme

* Each vulnerability belongs to exactly 1 class of security flaws
e Decision procedure well-defined, unambiguous

November 3, 2025 ECS 235A, Computer and Information Security Slide 35

Comparison and Analysis

e Point of view

* If multiple processes involved in exploiting the flaw, how does that affect
classification?

» xterm, fingerd flaws depend on interaction of two processes (xterm and process to
switch file objects; fingerd and its client)

e Levels of abstraction

 How does flaw appear at different levels?
* Levels are abstract, design, implementation, etc.

November 3, 2025 ECS 235A, Computer and Information Security Slide 36

xterm and PA Classification

* Implementation level

* xterm: improper change
* attacker’s program: improper deallocation or deletion
e operating system: improper indivisibility

November 3, 2025 ECS 235A, Computer and Information Security Slide 37

xterm and PA Classification

* Consider higher level of abstraction, where directory is simply an
object
 create, delete files maps to writing; read file status, open file maps to reading
* operating system: improper sequencing
* Duringread, a write occurs, violating Bernstein conditions
* Consider even higher level of abstraction

* attacker’s process: improper choice of initial protection domain

* Should not be able to write to directory containing log file
e Semantics of UNIX users require this at lower levels

November 3, 2025 ECS 235A, Computer and Information Security Slide 38

xterm and RISOS Classification

* Implementation level

* xterm: asynchronous validation/inadequate serialization
* attacker’s process: exploitable logic error and violable prohibition/limit
* operating system: inconsistent parameter validation

November 3, 2025 ECS 235A, Computer and Information Security Slide 39

xterm and RISOS Classification

* Consider higher level of abstraction, where directory is simply an
object (as before)
* all: asynchronous validation/inadequate serialization

* Consider even higher level of abstraction

* attacker’s process: inadequate identification/authentication/authorization
* Directory with log file not protected adequately
» Semantics of UNIX require this at lower levels

November 3, 2025 ECS 235A, Computer and Information Security Slide 40

Standards

* Descriptive databases used to identify vulnerabilities and weaknesses

e Examples:
 Common Vulnerabilities and Exposures (CVE)

« Common Weaknesses and Exposures (CWE)
* NIST National Vulnerability Database (NVD)

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-41

CVE

e Goal: create a standard identification catalogue for vulnerabilities

* So different vendors can identify vulnerabilities by one common identifier
* Created at MITRE Corp.

e Governance

* CVE Board provides input on nature of specific vulnerabilities, determines
whether 2 reported vulnerabilities overlap, and provides general direction
and very high-level management

* Numbering Authorities assign CVE numbers within a distinct scope, such as
for a particular vendor

* CVE Numbers: CVE-year-number
 Number begins at 1 each year, and is at least 4 digits

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-42

Structure of Entry

Main fields:

* CVE-ID: CVE identifier

* Description: what is the vulnerability

e References: vendor and CERT security advisories

e Date Entry Created: year month day as a string of 8 digits

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-43

Example: Buffer Overflow in GNU C Library

CVE-ID: CVE-2016-3706

Description: Stack-based buffer overflow in the getaddrinfo function in sysdeps/posix/getaddrinfo.c in the GNU C Library (aka glibc or libc6)
allows remote attackers to cause a denial of service (crash) via vectors involving hostent conversion. NOTE: this vulnerability exists because of
an incomplete fix for CVE-2013-4458

References:

* CONFIRM:https://sourceware.org/bugzilla/show_bug.cgi?id=20010

* CONFIRM:https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9

* CONFIRM:http://www-01.ibm.com/support/docview.wss?uid=swg21995039

* CONFIRM:https://source.android.com/security/bulletin/2017-12-01

* SUSE:openSUSE-SU-2016:1527

* URL:http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html

* SUSE:openSUSE-SU-2016:1779

* URL:http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html

* BID:88440

* URL:http://www.securityfocus.com/bid/88440

* BID:102073

* URL:http://www.securityfocus.com/bid/102073

Assigning CNA: N/A

Date Entry Created: 20160330

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-44

https://sourceware.org/bugzilla/show_bug.cgi?id=20010
https://sourceware.org/bugzilla/show_bug.cgi?id=20010
https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9
https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9
http://www-01.ibm.com/support/docview.wss?uid=swg21995039
http://www-01.ibm.com/support/docview.wss?uid=swg21995039
http://www-01.ibm.com/support/docview.wss?uid=swg21995039
http://www-01.ibm.com/support/docview.wss?uid=swg21995039
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
https://source.android.com/security/bulletin/2017-12-01
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html
http://www.securityfocus.com/bid/88440
http://www.securityfocus.com/bid/88440
http://www.securityfocus.com/bid/102073
http://www.securityfocus.com/bid/102073

CVE Use

e CVE database begun in 1999

 Contains some vulnerabilities from before 1999
* Currently over 82,000 entries

* Used by over 150 organizations
e Security vendors such as Symantec, Trend Micro, Tripwire
e Software and system vendors such as Apple, Juniper Networks, Red Hat, IBM
e Other groups such as CERT/CC, U.S. NIST

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-45

CVSS

 Common Vulnerability Scoring System (CVSS)

* Version 4.0
 Managed by FIRST (Forum for Internet Response Security Teams)

* Scores

CVSS-B: Base metrics — this measures severity, not risk
CVSS-BE: Base and environmental metrics

CVSS-BT: Base and threat metrics

CVSS-BTE: Base, threat, and environmental metrics

November 3, 2025 ECS 235A, Computer and Information Security

Slide 46

CVSS-B

* Exploitability metrics
e Attack Vector (AV):

* Network (N): vulnerable system is on the network, set of attackers is anywhere on the
Internet

* Adjacent (A): vulnerable system is on the network, set of attackers limited to logically
adjacent topology

* Local (L): vulnerable system is not on the network, attacker's path via r/w/x capabilities
* Physical (P): attacker must physically manipulate the vulnerable system

e Attack Complexity (AC):
* Low (L): attacker must take no measurable action to exploit vulnerability

e High (H): success depends on evading or circumventing security techniques such as ASLR
or gathering target-specific secrets

November 3, 2025 ECS 235A, Computer and Information Security Slide 47

CVSS-B

* More exploitability metrics

e Attack Requirements (AT):
* None (N): attack does not depend on deployment, execution condition conditions

* Present (P): attack depends on specific deployment, execution condition conditions such as a
race condition or being able to inject code into a network connection

 Privileges Required (PR):
 None (N): attacker need not authenticate
* Low (L): attacker needs ordinary user privileges
* High (H): attacker needs significant privileges (eg., administrative, root)
* User Interaction (Ul):
* None (N): no user interaction other than that of the attacker
* Passive (P): limited interaction by targeted user with vulnerable system,
* Active (A): Targeted user must perform specific, conscious interaction with vulnerable system

November 3, 2025 ECS 235A, Computer and Information Security Slide 48

CVSS-B

* Impact metrics
. Confldentlallty (VC)

None (N): no loss of confidentiality within vulnerable system

* Low (L): access to some confidential information, but attacker does not control what
information and it doesn't cause direct, serious loss to vulnerable system

* High (H): total loss of confidentiality, so attacker can see everything; or, the attacker can
only see some information, but that information poses a direct, serious loss

Confidentiality impact to the subsequent system (SC)
* As above, but to a system attacked from the first

Integrity (VI): as with VC

Integrity impact to the subsequent system (SI): as with SC
Availability (VA): as with VC

 Availability impact to the subsequent system (SA): as with SC

November 3, 2025 ECS 235A, Computer and Information Security Slide 49

CVSS-B

* Exploit maturity E:
* Unreported (U): no knowledge of public proof-of-concept exploits, of
reported attempts to exploit, of public solutions to ameliorate it

* Proof-of-concept (P): public proof-of-concept exploits, no knowledge of
reported attempts to exploit, of public solutions to ameliorate it

» Attacked (A): attacks have been reported, or tools to simplify exploiting
vulnerability are available

* Not defined (X): no threat intelligence available; treated as A when calculating
score

November 3, 2025 ECS 235A, Computer and Information Security Slide 50

Environmental Metrics

* Confidentiality Requirements (CR)
* Low (L): Loss of confidentiality has a limited bad effect on organization,

associated people

 Medium (M): Loss of confidentiality has a serious bad effect on organization,
associated people

* High (H): Loss of confidentiality has a catastrophic bad effect on organization,
associated people

* Integrity Requirements (IR): see CR
* Availability Requirements AR): see CR

November 3, 2025 ECS 235A, Computer and Information Security Slide 51

Other Metrics

* Modified base metric: adds Not Defined (X) as default

* For subsequent systems (SC, Sl, SA), lowest value is Negligible (N), not None
* Also for subsequent systems integrity, highest severity level is Safety (S)

* Supplemental metrics
 Safety (S)
* Automatable (AU)
* Provider Urgency (U)
e Recovery (R)
* Value Density (V)
* Vulnerability Response Effort (RE)

November 3, 2025 ECS 235A, Computer and Information Security Slide 52

Example: CVSS Vector

CVSS:4.0/AV:N/AC:L/AT:N/PR:H/UI:N/

Attackers can attack over the Internet (AV:N), and complexity of attack is low
(AC:L); the attack does not depend on conditions on the vulnerable systems
(AT:N) but requires administrative/root privileges (PR:H); it does not require
anyone (except the attacker) to do anything

VC:L/VI:N/VA:N/

There is some loss of confidentiality, but not of integrity or availability
SC:N/SI:N/SA:N

There is no loss of confidentiality, integrity, or availability to any downstream
system

November 3, 2025 ECS 235A, Computer and Information Security Slide 53

CWE

e Database listing weaknesses underlying CVE vulnerabilities
* Developed by CVE list developers, with help from NIST, vulnerabilities
research community

e Organized as a list
* Can also be viewed as a graph as some weaknesses are refinements of others
* Not a tree as some nodes have multiple parents

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-54

Types of Entries

* Category entry: identifies set of entries with a characteristic of the current entry

* Chain entry: sequence of distinct weaknesses that can be linked together within software
* One weakness can create necessary conditions to enable another weakness to be exploited

 Compound element composite entry: multiple weaknesses that must be present to
enable an exploit

* View entry: view of the CWE database for particular weakness or set of weaknesses.

. IWeo/kness variant entry: weakness described in terms of a particular technology or
anguage

* Weakness base entry: more abstract description of weakness than a weakness variant
entry, but in sufficient detail to lead to specific methods of detection and remediation

* Weakness class: describes weakness independently of any specific language or
technology.

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-55

Abstraction Level of Weaknesses

* Goal is to avoid problem of different classifications depending on the
layer of abstraction

e Levels:

* Class: weakness at an abstract level, independent of any programming
language or environment

* Base: weakness at an abstract level, with enough detail to enable
development of methods of detection, prevention, remediation

e Variant: weakness at a low level, usually tied to specific technology, system,
programming language

* Useful demarcation of vulnerabilities related to design,
implementation, or both

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-56

Examples

* CWE-631, Resource-Specific Weaknesses (a view entry)
e Child: CWE-632, Weaknesses that Affect Files or Directories
e Child: CWE-633, Weaknesses that Affect Memory
e Child: CWE-634, Weaknesses that Affect System Processes

 CWE-680, Integer Overflow to Buffer Overflow (a chain entry)
* Begins with integer overflow (CWE-190)
* Leads to failure to restrict some operations to bounds of buffer (CWE-119)

e CWE-61, UNIX Symbolic Link (Symlink) Following (a composite entry)

* Requires 5 weaknesses to be present before it can be exploited
e CWE-362, CWE-340, CWE-216, CWE-386, CWE-732

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-57

	Slide 1: Lecture 17 November 3, 2025
	Slide 2: Example Flaws
	Slide 3: Flaw #1: xterm
	Slide 4: File Exists
	Slide 5: Problem
	Slide 6: Flaw #2: fingerd
	Slide 7: Buffer Overflow
	Slide 8: Frameworks
	Slide 9: Research Into Secure Operating Systems (RISOS)
	Slide 10: Classification Scheme
	Slide 11: Incomplete Parameter Validation
	Slide 12: Inconsistent Parameter Validation
	Slide 13: Legacy of RISOS
	Slide 14: Program Analysis (PA)
	Slide 15: Classification Scheme
	Slide 16: Improper Choice of Initial Protection Domain
	Slide 17: Improper Isolation of Implementation Detail
	Slide 18: Improper Change
	Slide 19: Improper Naming
	Slide 20: Improper Deallocation or Deletion
	Slide 21: Improper Validation
	Slide 22: Improper Indivisibility
	Slide 23: Improper Sequencing
	Slide 24: Improper Choice of Operand or Operation
	Slide 25: Legacy
	Slide 26: NRL Taxonomy
	Slide 27: Genesis of Flaws
	Slide 28: Time of Flaws
	Slide 29: Location of Flaw
	Slide 30: Legacy
	Slide 31: Aslam’s Model
	Slide 32: Top Level
	Slide 33: Coding Faults
	Slide 34: Emergent Faults
	Slide 35: Legacy
	Slide 36: Comparison and Analysis
	Slide 37: xterm and PA Classification
	Slide 38: xterm and PA Classification
	Slide 39: xterm and RISOS Classification
	Slide 40: xterm and RISOS Classification
	Slide 41: Standards
	Slide 42: CVE
	Slide 43: Structure of Entry
	Slide 44: Example: Buffer Overflow in GNU C Library
	Slide 45: CVE Use
	Slide 46: CVSS
	Slide 47: CVSS-B
	Slide 48: CVSS-B
	Slide 49: CVSS-B
	Slide 50: CVSS-B
	Slide 51: Environmental Metrics
	Slide 52: Other Metrics
	Slide 53: Example: CVSS Vector
	Slide 54: CWE
	Slide 55: Types of Entries
	Slide 56: Abstraction Level of Weaknesses
	Slide 57: Examples

