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Example Flaws

e Use these to compare classification schemes
* First one: race condition (xterm)

e Second one: buffer overflow on stack leading to execution of injected
code (fingerd)

* Both are very well known, and fixes available!
* And should be installed everywhere ...
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Flaw #1: xterm

e xterm emulates terminal under X11 window system

* Must run as root user on UNIX systems
* No longer universally true; reason irrelevant here

* Log feature: user can log all input, output to file
e User names file

* |f file does not exist, xterm creates it, makes owner the user

* If file exists, xterm checks user can write to it, and if so opens file to append
log to it
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File Exists

* Check that user can write to file requires special system call
* Because root can append to any file, check in open will always succeed

Check that user can write to file “/usr/tom/X”
if (access (“/usr/tom/X”, W OK) == 0) {
Open “/usr/tom/X” to append log entries
if ((fd = open(“/usr/tom/X”, O WRONLY|O APPEND))< 0) {

/* handle error: cannot open file */
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Problem

 Binding of file name “/usr/tom/X” to file object can change between
first and second lines
* left is at access; right is at open
* Note file opened is not file checked

after
attack

o access(“/usr/tom/xyzzy”, W_OK
access(“/usr/tom/xyzzy”, W_OK) (“/usr/tom/xyzzy”, W_OK)
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Flaw #2: fingerd

* Exploited by Internet Worm of 1988

* Recurs in many places, even now

e finger client send request for information to server fingerd (finger
daemon)
* Request is name of at most 512 chars
 What happens if you send more?
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Buffer Overflow

 Extra chars overwrite rest of
stack, as shown

* Can make those chars change
return address to point to
beginning of buffer

* If buffer contains small program
to spawn shell, attacker gets shell
on target system
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Frameworks

e Goals dictate structure of classification scheme

* Guide development of attack tool = focus is on steps needed to exploit
vulnerability

* Aid software development process = focus is on design and programming
errors causing vulnerabilities

* Following schemes classify vulnerability as n-tuple, each element of
n-tuple being classes into which vulnerability falls

* Some have 1 axis; others have multiple axes
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Research Into Secure Operating Systems
(RISOS)

e Goal: aid computer, system managers in understanding security issues
in OSes, and help determine how much effort required to enhance

system security

* Attempted to develop methodologies and software for detecting
some problems, and techniques for avoiding and ameliorating other

problems
* Examined Multics, TENEX, TOPS-10, GECOS, OS/MVT, SDS-940, EXEC-8
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Classification Scheme

* Incomplete parameter validation

* Inconsistent parameter validation

* Implicit sharing of privileged/confidential data

* Asynchronous validation/inadequate serialization

* Inadequate identification/authentication/authorization
e Violable prohibition/limit

* Exploitable logic error
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Incomplete Parameter Validation

 Parameter not checked before use

* Example: emulating integer division in kernel (RISC chip involved)
 Caller provided addresses for quotient, remainder
* Quotient address checked to be sure it was in user’s protection domain

* Remainder address not checked
* Set remainder address to address of process’ level of privilege
* Compute 25/5 and you have level 0 (kernel) privileges

* Check for type, format, range of values, access rights, presence (or
absence)
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Inconsistent Parameter Validation

e Each routine checks parameter is in proper format for that routine
but the routines require different formats

* Example: each database record 1 line, colons separating fields

* One program accepts colons, newlines as pat of data within fields
* Another program reads them as field and record separators
* This allows bogus records to be entered
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Legacy of RISOS

* First funded project examining vulnerabilities

* Valuable insight into nature of flaws

e Security is a function of site requirements and threats
* Small number of fundamental flaws recurring in many contexts
* OS security not critical factor in design of OSes

* Spurred additional research efforts into detection, repair of
vulnerabilities
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Program Analysis (PA)

* Goal: develop techniques to find vulnerabilities
* Tried to break problem into smaller, more manageable pieces

* Developed general strategy, applied it to several OSes
* Found previously unknown vulnerabilities
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Classification Scheme

Improper protection domain initialization and enforcement
* Improper choice of initial protection domain
* Improper isolation of implementation detail

Improper change
Improper naming
Improper deallocation or deletion

Improper validation

Improper synchronization
* Improper indivisibility
* Improper sequencing

Improper choice of operand or operation
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Improper Choice of Initial Protection Domain

* Initial incorrect assignment of privileges, security and integrity classes

* Example: on boot, protection mode of file containing identifiers of all
users can be altered by any user

* Under most policies, should not be allowed
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Improper Isolation of Implementation Detail

* Mapping an abstraction into an implementation in such a way that
the abstraction can be bypassed

 Example: virtual machines modulate length of time CPU is used by
each to send bits to each other

* Example: Having raw disk accessible to system as ordinary file,
enabling users to bypass file system abstraction and write directly to
raw disk blocks
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Improper Change

e Data is inconsistent over a period of time

* Example: xterm flaw
* Meaning of “/usr/tom/X” changes between access and open

 Example: parameter is validated, then accessed; but parameter is
changed between validation and access

* Burroughs B6700 allowed allowed this
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Improper Naming

* Multiple objects with same name

* Example: Trojan horse
* Joadmodule attack discussed earlier; “bin” could be a directory or a program

* Example: multiple hosts with same IP address
* Messages may be erroneously routed
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Improper Deallocation or Deletion

* Failing to clear memory or disk blocks (or other storage) after it is
freed for use by others

 Example: program that contains passwords that a user typed dumps
core
e Passwords plainly visible in core dump
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Improper Validation

* Inadequate checking of bounds, type, or other attributes or values
 Example: fingerd’s failure to check input length
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Improper Indivisibility

* Interrupting operations that should be uninterruptable
e Often: “interrupting atomic operations”

* Example: mkdir flaw (UNIX Version 7)

* Created directories by executing privileged operation to create file node of
type directory, then changed ownership to user

* On loaded system, could change binding of name of directory to be that of
password file after directory created but before change of ownership

* Attacker can change administrator’s password
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Improper Sequencing

* Required order of operations not enforced

* Example: one-time password scheme

e System runs multiple copies of its server

* Two users try to access same account
* Server 1 reads password from file
» Server 2 reads password from file
* Both validate typed password, allow user to log in
e Server 1 writes new password to file
e Server 2 writes new password to file

* Should have every read to file followed by a write, and vice versa; not two
reads or two writes to file in a row
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Improper Choice of Operand or Operation

e Calling inappropriate or erroneous instructions

* Example: cryptographic key generation software calling
pseudorandom number generators that produce predictable
sequences of numbers
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Legacy

* First to explore automatic detection of security flaws in programs and
systems

* Methods developed but not widely used
* Parts of procedure could not be automated
* Complexity

* Procedures for obtaining system-independent patterns describing flaws not
complete
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NRL Taxonomy

* Goals:
* Determine how flaws entered system
* Determine when flaws entered system
* Determine where flaws are manifested in system

* 3 different schemes used:
* Genesis of flaws
* Time of flaws
* Location of flaws
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Genesis of Flaws

, Nonreplicating
Trojan horse

Malicious — Trapdoor Replicating
Intentional Logic bomb __~Storage channel
- Covert channel\
NonmaI|C|ous\ Timing channel
Other

* Inadvertent (unintentional) flaws classified using RISOS categories; not shown
above
* |f most inadvertent, better design/coding reviews needed

* If most intentional, need to hire more trustworthy developers and do more security-related
testing
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Time of Flaws

Requirements/specifications/design

Development— Source code
™ Object code

Time of Introduction Maintenance

\Operation

* Development phase: all activities up to release of initial version of software

* Maintenance phase: all activities leading to changes in software performed under configuration
control

e Operation phase: all activities involving patching and not under configuration control

November 3, 2025 ECS 235A, Computer and Information Security Slide 28



Location of Flaw
/System initialization
Memory management
Operating system—_

/ i Process management/scheduling
Software —Application \ Device management

/ \ File management

Location Support
\Hardwa re Identification/authentication
Other/unknown

Privileged utilities
Unprivileged utilities
* Focus effort on locations where most flaws occur, or where most
serious flaws occur
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Legacy

* Analyzed 50 flaws

* Concluded that, with a large enough sample size, an analyst could study
relationships between pairs of classes
* This would help developers focus on most likely places, times, and causes of flaws

* Focused on social processes as well as technical details
* But much information required for classification not available for the 50 flaws
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Aslam’s Model

e Goal: treat vulnerabilities as faults and develop scheme based on fault
trees

* Focuses specifically on UNIX flaws

e Classifications uniqgue and unambiguous

* Organized as a binary tree, with a question at each node. Answer determines
branch you take

* Leaf node gives you classification

 Suited for organizing flaws in a database

November 3, 2025 ECS 235A, Computer and Information Security Slide 31



Top Level

* Coding faults: introduced during software development
* Example: fingerd's failure to check length of input string before storing it in
buffer
* Emergent faults: result from incorrect initialization, use, or application

 Example: allowing message transfer agent to forward mail to arbitrary file on
system (it performs according to specification, but results create a
vulnerability)
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Coding Faults

» Synchronization errors: improper serialization of operations, timing
window between two operations creates flaw
* Example: xterm flaw

* Condition validation errors: bounds not checked, access rights
ignored, input not validated, authentication and identification fails

* Example: fingerd flaw
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Emergent Faults

* Configuration errors: program installed incorrectly

* Example: tftp daemon installed so it can access any file; then anyone can copy
any file

* Environmental faults: faults introduced by environment

o

 Example: on some UNIX systems, any shell with “-” as first char of name is
interactive, so find a setuid shell script, create a link to name “-gotcha”, run it,
and you has a privileged interactive shell
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Legacy

* Tied security flaws to software faults

* Introduced a precise classification scheme

* Each vulnerability belongs to exactly 1 class of security flaws
e Decision procedure well-defined, unambiguous
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Comparison and Analysis

e Point of view

* If multiple processes involved in exploiting the flaw, how does that affect
classification?

» xterm, fingerd flaws depend on interaction of two processes (xterm and process to
switch file objects; fingerd and its client)

e Levels of abstraction

 How does flaw appear at different levels?
* Levels are abstract, design, implementation, etc.
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xterm and PA Classification

* Implementation level

* xterm: improper change
* attacker’s program: improper deallocation or deletion
e operating system: improper indivisibility
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xterm and PA Classification

* Consider higher level of abstraction, where directory is simply an
object
 create, delete files maps to writing; read file status, open file maps to reading
* operating system: improper sequencing
* Duringread, a write occurs, violating Bernstein conditions
* Consider even higher level of abstraction

* attacker’s process: improper choice of initial protection domain

* Should not be able to write to directory containing log file
e Semantics of UNIX users require this at lower levels
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xterm and RISOS Classification

* Implementation level

* xterm: asynchronous validation/inadequate serialization
* attacker’s process: exploitable logic error and violable prohibition/limit
* operating system: inconsistent parameter validation
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xterm and RISOS Classification

* Consider higher level of abstraction, where directory is simply an
object (as before)
* all: asynchronous validation/inadequate serialization

* Consider even higher level of abstraction

* attacker’s process: inadequate identification/authentication/authorization
* Directory with log file not protected adequately
» Semantics of UNIX require this at lower levels
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Standards

* Descriptive databases used to identify vulnerabilities and weaknesses

e Examples:
 Common Vulnerabilities and Exposures (CVE)

« Common Weaknesses and Exposures (CWE)
* NIST National Vulnerability Database (NVD)
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CVE

e Goal: create a standard identification catalogue for vulnerabilities

* So different vendors can identify vulnerabilities by one common identifier
* Created at MITRE Corp.

e Governance

* CVE Board provides input on nature of specific vulnerabilities, determines
whether 2 reported vulnerabilities overlap, and provides general direction
and very high-level management

* Numbering Authorities assign CVE numbers within a distinct scope, such as
for a particular vendor

* CVE Numbers: CVE-year-number
 Number begins at 1 each year, and is at least 4 digits
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Structure of Entry

Main fields:

* CVE-ID: CVE identifier

* Description: what is the vulnerability

e References: vendor and CERT security advisories

e Date Entry Created: year month day as a string of 8 digits
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Example: Buffer Overflow in GNU C Library

CVE-ID: CVE-2016-3706

Description: Stack-based buffer overflow in the getaddrinfo function in sysdeps/posix/getaddrinfo.c in the GNU C Library (aka glibc or libc6)
allows remote attackers to cause a denial of service (crash) via vectors involving hostent conversion. NOTE: this vulnerability exists because of
an incomplete fix for CVE-2013-4458

References:

* CONFIRM:https://sourceware.org/bugzilla/show_bug.cgi?id=20010

* CONFIRM:https://sourceware.org/git/gitweb.cgi?p=glibc.git;h=4ab2ab03d4351914ee53248dc5aef4a8c88ff8b9

* CONFIRM:http://www-01.ibm.com/support/docview.wss?uid=swg21995039

* CONFIRM:https://source.android.com/security/bulletin/2017-12-01

* SUSE:openSUSE-SU-2016:1527

* URL:http://lists.opensuse.org/opensuse-updates/2016-06/msg00030.html

* SUSE:openSUSE-SU-2016:1779

* URL:http://lists.opensuse.org/opensuse-updates/2016-07/msg00039.html

* BID:88440

* URL:http://www.securityfocus.com/bid/88440

* BID:102073

* URL:http://www.securityfocus.com/bid/102073

Assigning CNA: N/A

Date Entry Created: 20160330
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CVE Use

e CVE database begun in 1999

 Contains some vulnerabilities from before 1999
* Currently over 82,000 entries

* Used by over 150 organizations
e Security vendors such as Symantec, Trend Micro, Tripwire
e Software and system vendors such as Apple, Juniper Networks, Red Hat, IBM
e Other groups such as CERT/CC, U.S. NIST
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CVSS

 Common Vulnerability Scoring System (CVSS)

* Version 4.0
 Managed by FIRST (Forum for Internet Response Security Teams)

* Scores

CVSS-B: Base metrics — this measures severity, not risk
CVSS-BE: Base and environmental metrics

CVSS-BT: Base and threat metrics

CVSS-BTE: Base, threat, and environmental metrics
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CVSS-B

* Exploitability metrics
e Attack Vector (AV):

* Network (N): vulnerable system is on the network, set of attackers is anywhere on the
Internet

* Adjacent (A): vulnerable system is on the network, set of attackers limited to logically
adjacent topology

* Local (L): vulnerable system is not on the network, attacker's path via r/w/x capabilities
* Physical (P): attacker must physically manipulate the vulnerable system

e Attack Complexity (AC):
* Low (L): attacker must take no measurable action to exploit vulnerability

e High (H): success depends on evading or circumventing security techniques such as ASLR
or gathering target-specific secrets
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CVSS-B

* More exploitability metrics

e Attack Requirements (AT):
* None (N): attack does not depend on deployment, execution condition conditions

* Present (P): attack depends on specific deployment, execution condition conditions such as a
race condition or being able to inject code into a network connection

 Privileges Required (PR):
 None (N): attacker need not authenticate
* Low (L): attacker needs ordinary user privileges
* High (H): attacker needs significant privileges (eg., administrative, root)
* User Interaction (Ul):
* None (N): no user interaction other than that of the attacker
* Passive (P): limited interaction by targeted user with vulnerable system,
* Active (A): Targeted user must perform specific, conscious interaction with vulnerable system
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CVSS-B

* Impact metrics
. Confldentlallty (VC)

None (N): no loss of confidentiality within vulnerable system

* Low (L): access to some confidential information, but attacker does not control what
information and it doesn't cause direct, serious loss to vulnerable system

* High (H): total loss of confidentiality, so attacker can see everything; or, the attacker can
only see some information, but that information poses a direct, serious loss

Confidentiality impact to the subsequent system (SC)
* As above, but to a system attacked from the first

Integrity (VI): as with VC

Integrity impact to the subsequent system (SI): as with SC
Availability (VA): as with VC

 Availability impact to the subsequent system (SA): as with SC

November 3, 2025 ECS 235A, Computer and Information Security Slide 49



CVSS-B

* Exploit maturity E:
* Unreported (U): no knowledge of public proof-of-concept exploits, of
reported attempts to exploit, of public solutions to ameliorate it

* Proof-of-concept (P): public proof-of-concept exploits, no knowledge of
reported attempts to exploit, of public solutions to ameliorate it

» Attacked (A): attacks have been reported, or tools to simplify exploiting
vulnerability are available

* Not defined (X): no threat intelligence available; treated as A when calculating
score
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Environmental Metrics

* Confidentiality Requirements (CR)
* Low (L): Loss of confidentiality has a limited bad effect on organization,

associated people

 Medium (M): Loss of confidentiality has a serious bad effect on organization,
associated people

* High (H): Loss of confidentiality has a catastrophic bad effect on organization,
associated people

* Integrity Requirements (IR): see CR
* Availability Requirements AR): see CR
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Other Metrics

* Modified base metric: adds Not Defined (X) as default

* For subsequent systems (SC, Sl, SA), lowest value is Negligible (N), not None
* Also for subsequent systems integrity, highest severity level is Safety (S)

* Supplemental metrics
 Safety (S)
* Automatable (AU)
* Provider Urgency (U)
e Recovery (R)
* Value Density (V)
* Vulnerability Response Effort (RE)
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Example: CVSS Vector

CVSS:4.0/AV:N/AC:L/AT:N/PR:H/UI:N/

Attackers can attack over the Internet (AV:N), and complexity of attack is low
(AC:L); the attack does not depend on conditions on the vulnerable systems
(AT:N) but requires administrative/root privileges (PR:H); it does not require
anyone (except the attacker) to do anything

VC:L/VI:N/VA:N/

There is some loss of confidentiality, but not of integrity or availability
SC:N/SI:N/SA:N

There is no loss of confidentiality, integrity, or availability to any downstream
system
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CWE

e Database listing weaknesses underlying CVE vulnerabilities
* Developed by CVE list developers, with help from NIST, vulnerabilities
research community

e Organized as a list
* Can also be viewed as a graph as some weaknesses are refinements of others
* Not a tree as some nodes have multiple parents

November 3, 2025 ECS 235A, Computer and Information Security Slide 24-54



Types of Entries

* Category entry: identifies set of entries with a characteristic of the current entry

* Chain entry: sequence of distinct weaknesses that can be linked together within software
* One weakness can create necessary conditions to enable another weakness to be exploited

 Compound element composite entry: multiple weaknesses that must be present to
enable an exploit

* View entry: view of the CWE database for particular weakness or set of weaknesses.

. IWeo/kness variant entry: weakness described in terms of a particular technology or
anguage

* Weakness base entry: more abstract description of weakness than a weakness variant
entry, but in sufficient detail to lead to specific methods of detection and remediation

* Weakness class: describes weakness independently of any specific language or
technology.
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Abstraction Level of Weaknesses

* Goal is to avoid problem of different classifications depending on the
layer of abstraction

e Levels:

* Class: weakness at an abstract level, independent of any programming
language or environment

* Base: weakness at an abstract level, with enough detail to enable
development of methods of detection, prevention, remediation

e Variant: weakness at a low level, usually tied to specific technology, system,
programming language

* Useful demarcation of vulnerabilities related to design,
implementation, or both
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Examples

* CWE-631, Resource-Specific Weaknesses (a view entry)
e Child: CWE-632, Weaknesses that Affect Files or Directories
e Child: CWE-633, Weaknesses that Affect Memory
e Child: CWE-634, Weaknesses that Affect System Processes

 CWE-680, Integer Overflow to Buffer Overflow (a chain entry)
* Begins with integer overflow (CWE-190)
* Leads to failure to restrict some operations to bounds of buffer (CWE-119)

e CWE-61, UNIX Symbolic Link (Symlink) Following (a composite entry)

* Requires 5 weaknesses to be present before it can be exploited
e CWE-362, CWE-340, CWE-216, CWE-386, CWE-732
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