
Lecture 21
November 12, 2025

ECS 235A, Computer and Information Security

November 12, 2025 ECS 235A, Computer and Information Security Slide 1

Administrative Stuff

• Homework 4, Extra Credit 4 posted
• Due on Friday, November 21

• Office hour today is moved to 1:00pm Thursday
• On Thursday, the 12:10pm–1:00pm office hour will be held in 2203

Watershed Sciences, as usual

• On Thursday, a second office hour, from 1:10pm–2:00pm, will be held over
the usual Zoom link

November 12, 2025 ECS 235A, Computer and Information Security Slide 2

Debate about Penetration Testing

• How valid are these tests?
• Not a substitute for good, thorough specification, rigorous design, careful and

correct implementation, meticulous testing

• Very valuable a posteriori testing technique
• Ideally unnecessary, but in practice very necessary

• Finds errors introduced due to interactions with users, environment
• Especially errors from incorrect maintenance and operation

• Examines system, site through eyes of attacker

November 12, 2025 ECS 235A, Computer and Information Security Slide 3

Problems

• Flaw Hypothesis Methodology depends on caliber of testers to
hypothesize and generalize flaws

• Flaw Hypothesis Methodology does not provide a way to examine
system systematically
• Vulnerability classification schemes help here

November 12, 2025 ECS 235A, Computer and Information Security Slide 4

Malware

• Set of instructions that cause site security policy to be violated

November 12, 2025 ECS 235A, Computer and Information Security Slide 5

Example

• Shell script on a UNIX system:
cp /bin/sh /tmp/.xyzzy

chmod u+s,o+x /tmp/.xyzzy

rm ./ls

ls $*

• Place in program called “ls” and trick someone into executing it

• You now have a setuid-to-them shell!

November 12, 2025 ECS 235A, Computer and Information Security Slide 6

Trojan Horse

• Program with an overt purpose (known to user) and a covert purpose
(unknown to user)
• Often called a Trojan

• Named by Dan Edwards in Anderson Report

• Example: previous script is Trojan horse
• Overt purpose: list files in directory

• Covert purpose: create setuid shell

November 12, 2025 ECS 235A, Computer and Information Security Slide 7

Example: Gemini

• Designed for Android cell phones

• Placed in several Android apps on Android markets, forums

• When app was run:
• Gemini installed itself, using several techniques to make it hard to find

• Then it connected to a remote command and control server, waited for
commands

• Commands it could execute included delete SMS messages; send SMS
messages to remote server; dump contact list; dump list of apps

• App was the Trojan horse
• Although the term was used for Gemini, too

November 12, 2025 ECS 235A, Computer and Information Security Slide 8

Rootkits

• Trojan horse corrupting system to carry out covert action without
detection

• Earliest ones installed back doors so attackers could enter systems,
then corrupted system programs to hide entry and actions
• Program to list directory contents altered to not include certain files

• Network status program altered to hide connections from specific hosts

November 12, 2025 ECS 235A, Computer and Information Security Slide 9

Example: Linux Rootkit IV

• Replaced system programs that might reveal its presence
• ls, find, du for file system; ps, top, lsof, killall for processes; crontab to hide

rootkit jobs

• login and others to allow attacker to log in, acquire superuser privileges (and
it suppressed any logging)

• netstat, ifconfig to hide presence of attacker

• tcpd, syslogd to inhibit logging

• Added back doors so attackers could log in unnoticed

• Also added network sniffers to gather user names, passwords

• Similar rootkits existed for other systems

November 12, 2025 ECS 235A, Computer and Information Security Slide 10

Defenses

• Use non-standard programs to obtain the same information that
standard ones should; then compare
• ls lists contents of directory
• dirdump, a program to read directory entries, was non-standard

• Compare output to that if ls; if they differ, ls probably compromised

• Look for specific strings in executables
• Programs to do this analysis usually not rigged, but easy enough to write your

own

• Look for changes using cryptographically strong checksums

• These worked because they bypassed system programs, using system
calls directly

November 12, 2025 ECS 235A, Computer and Information Security Slide 11

Next Step: Alter the Kernel

• Rootkits then altered system calls using kernel-loadable modules
• Thereby eliminating the effectiveness of the earlier defenses

• Example: Knark modifies entries in system call table to involve versions in
new kernel-loadable module; these hide presence of Knark
• Defense: compare system call table in kernel with copy stored at boot time

• Example: SucKIT changes variable in kernel that points to system call table
so it points to a modified table, defeating the Knark defense

• Example: adore-ng modifies virtual file system layer to hide files with
rootkit’s UID or GID; manipulates /proc and other pseudofiles to control
what process monitoring programs report
• Takes advantage of the ability to access OS entities like processes through file system

November 12, 2025 ECS 235A, Computer and Information Security Slide 12

Oops …

• Sony BMG developed rootkit to implement DRM on a music CDs
• Only worked on Windows systems; users had to install a proprietary program

to play the music
• Also installed software that altered functions in Windows OS to prevent

playing music using other programs
• This software concealed itself by altering kernel not to list any files or folders

beginning with “sys” and storing its software in such a folder
• On boot, software contacted Sony to get advertisements to display when

music was played
• Once made public, attackers created Trojan horses with names beginning with

“sys (like “sysdrv.exe”)

• Result: lawsuits, flood of bad publicity, and recall of all such CDs

November 12, 2025 ECS 235A, Computer and Information Security Slide 13

Replicating Trojan Horse

• Trojan horse that makes copies of itself
• Also called propagating Trojan horse

• Early version of animal game used this to delete copies of itself

• Hard to detect
• 1976: Karger and Schell suggested modifying compiler to include Trojan horse

that copied itself into specific programs including later version of the compiler

• 1980s: Thompson implemented this
• See his lecture given upon receiving the Turing Award

November 12, 2025 ECS 235A, Computer and Information Security Slide 14

Thompson's Compiler
• Modify the compiler so that when it compiles login.c, login executable

accepts the user's correct password or a fixed password (the same
one for all users)

• Then modify the compiler again, so when it compiles a new version of
the compiler, the extra code to do the first step is automatically
inserted

• Recompile the compiler

• Delete the source containing the modification and put the
undoctored source back

November 12, 2025 ECS 235A, Computer and Information Security Slide 15

login source correct compiler login executable

user password

login source doctored compiler doctored
login executable

magic password

user password or

logged in

logged in

The login Program

November 12, 2025 ECS 235A, Computer and Information Security Slide 16

{what is
expected

{what is
done

compiler source correct compiler compiler executable

compiler source

compiler source doctored compiler doctored
compiler executable

correct compiler executable

compiler source

rigged compiler executable

The Compiler

November 12, 2025 ECS 235A, Computer and Information Security Slide 17

{what is
expected

{what is
done

Comments

• Great pains taken to ensure second version of compiler never
released
• Finally deleted when a new compiler executable from a different system

overwrote the doctored compiler

• The point: no amount of source-level verification or scrutiny will
protect you from using untrusted code
• Also: having source code helps, but does not ensure you’re safe

November 12, 2025 ECS 235A, Computer and Information Security Slide 18

Computer Virus

• Program that inserts itself into one or more files and performs some
action
• Insertion phase is inserting itself into file

• Execution phase is performing some (possibly null) action

• Insertion phase must be present
• Need not always be executed

• Lehigh virus inserted itself into boot file only if boot file not infected

November 12, 2025 ECS 235A, Computer and Information Security Slide 19

Pseudocode
beginvirus:

 if spread-condition then begin

 for some set of target files do begin

 if target is not infected then begin

 determine where to place virus instructions

 copy instructions from beginvirus to endvirus

 into target

 alter target to execute added instructions

 end;

 end;

 end;

 perform some action(s)

 goto beginning of infected program

endvirus:

November 12, 2025 ECS 235A, Computer and Information Security Slide 20

Trojan Horse Or Not?

• Yes
• Overt action = infected program’s actions

• Covert action = virus’ actions (infect, execute)

• No
• Overt purpose = virus’ actions (infect, execute)

• Covert purpose = none

• Semantic, philosophical differences
• Defenses against Trojan horse also inhibit computer viruses

November 12, 2025 ECS 235A, Computer and Information Security Slide 21

History

• Programmers for Apple II wrote some
• Not called viruses; very experimental

• Fred Cohen
• Graduate student who described them

• Teacher (Len Adleman, of RSA fame) named it “computer virus”

• Tested idea on UNIX systems and UNIVAC 1108 system

November 12, 2025 ECS 235A, Computer and Information Security Slide 22

Cohen’s Experiments

• UNIX systems: goal was to get superuser privileges
• Max time 60m, min time 5m, average 30m

• Virus small, so no degrading of response time

• Virus tagged so it could be removed quickly

• UNIVAC 1108 system: goal was to spread
• Implemented simple security property of Bell-LaPadula

• As writing not inhibited (no *-property enforcement), viruses spread easily

November 12, 2025 ECS 235A, Computer and Information Security Slide 23

First Reports of Viruses in the Wild

• Brain (Pakistani) virus (1986)
• Written for IBM PCs

• Alters boot sectors of floppies, spreads to other floppies

• MacMag Peace virus (1987)
• Written for Macintosh

• Prints “universal message of peace” on March 2, 1988 and deletes itself

November 12, 2025 ECS 235A, Computer and Information Security Slide 24

More Reports

• Duff’s experiments (1987)
• Small virus placed on UNIX system, spread to 46 systems in 8 days

• Wrote a Bourne shell script virus

• Highland’s Lotus 1-2-3 virus (1989)
• Stored as a set of commands in a spreadsheet and loaded when spreadsheet

opened

• Changed a value in a specific row, column and spread to other files

November 12, 2025 ECS 235A, Computer and Information Security Slide 25

Infection Vectors

• Boot sector infectors

• Executable infectors

• Data infectors

• These are not mutually exclusive; some viruses do two or three of
these

November 12, 2025 ECS 235A, Computer and Information Security Slide 26

Boot Sector Infectors

• A virus that inserts itself into the boot sector of a disk
• Section of disk containing code

• Executed when system first “sees” the disk
• Including at boot time …

• Example: Brain virus
• Moves disk interrupt vector from 13H to 6DH

• Sets new interrupt vector to invoke Brain virus

• When new floppy disk inserted, check for 1234H at location 4
• If not there, copies itself onto disk after saving original boot block; if no free space,

doesn’t infect but if any free space, it infects, possibly overwriting used disk space

• If there, jumps to vector at 6DH

November 12, 2025 ECS 235A, Computer and Information Security Slide 27

Executable Infectors

• A virus that infects executable programs
• Can infect either .EXE or .COM on PCs

• May append itself (as shown) or put itself anywhere, fixing up binary so it is
executed at some point

November 12, 2025 ECS 235A, Computer and Information Security

Header Executable instructions and data

First program instruction to be executed

Header Executable instructions and data

Jump to the beginning of the virus
1000 1000

Return to the beginning of the program

Slide 19-28

Executable Infectors (con’t)

• Jerusalem (Israeli) virus
• Checks if system infected

• If not, set up to respond to requests to execute files

• Checks date
• If not 1987 or Friday 13th, set up to respond to clock interrupts and then run program

• Otherwise, set destructive flag; will delete, not infect, files

• Then: check all calls asking files to be executed
• Do nothing for COMMAND.COM

• Otherwise, infect or delete

• Error: doesn’t set signature when .EXE executes
• So .EXE files continually reinfected

November 12, 2025 ECS 235A, Computer and Information Security Slide 29

Macro Viruses

• A virus composed of a sequence of instructions that are interpreted
rather than executed directly

• Can infect either executables (Duff’s shell virus) or data files
(Highland’s Lotus 1-2-3 spreadsheet virus)

• Independent of machine architecture
• But their effects may be machine dependent

November 12, 2025 ECS 235A, Computer and Information Security Slide 30

Example

• Melissa
• Infected Microsoft Word 97 and Word 98 documents

• Windows and Macintosh systems

• Invoked when program opened infected file

• Installed itself as “open” macro and copied itself into Normal template
• This way, infected any files that are opened in future

• Invoked mail program, sent itself to everyone in user’s address book
• Used a mail program that most Macintosh users didn’t use, so this was rare for

Macintosh users

November 12, 2025 ECS 235A, Computer and Information Security Slide 31

Multipartite Viruses

• A virus that can infect either boot sectors or executables

• Typically, two parts
• One part boot sector infector

• Other part executable infector

November 12, 2025 ECS 235A, Computer and Information Security Slide 32

Concealment

• Terminate and stay resident (TSR)

• Stealth

• Encryption

• Polymorphism

• Metamorphism

November 12, 2025 ECS 235A, Computer and Information Security Slide 33

TSR Viruses

• A virus that stays active in memory after the application (or
bootstrapping, or disk mounting) is completed
• Non-TSR viruses only execute when host application executes

• Examples: Brain, Jerusalem viruses
• Stay in memory after program or disk mount is completed

November 12, 2025 ECS 235A, Computer and Information Security Slide 34

Stealth Viruses

• A virus that conceals infection of files

• Example: IDF (also called Stealth or 4096) virus modifies DOS service
interrupt handler as follows:
• Request for file length: return length of uninfected file

• Request to open file: temporarily disinfect file, and reinfect on closing

• Request to load file for execution: load infected file

November 12, 2025 ECS 235A, Computer and Information Security Slide 35

Encrypted Viruses

• A virus that is enciphered except for a small deciphering routine
• Detecting virus by signature now much harder as most of virus is enciphered

November 12, 2025 ECS 235A, Computer and Information Security

Virus code
Deciphering

routine
Enciphered
virus code

Deciphering key

Slide 19-36

Example

(* Decryption code of the 1260 virus *)

(* initialize the registers with the keys *)

rA = k1;

rB = k2;

(* initialize rC with the virus; starts at sov, ends at eov *)

rC = sov;

(* the encipherment loop *)

while (rC != eov) do begin

 (* encipher the byte of the message *)

 (*rC) = (*rC) xor rA xor rB;

 (* advance all the counters *)

 rC = rC + 1;

 rA = rA + 1;

end

November 12, 2025 ECS 235A, Computer and Information Security Slide 37

Polymorphic Viruses

• A virus that changes its form each time it inserts itself into another
program

• Idea is to prevent signature detection by changing the “signature” or
instructions used for deciphering routine
• At instruction level: substitute instructions

• At algorithm level: different algorithms to achieve the same purpose

• Toolkits to make these exist (Mutation Engine, Trident Polymorphic
Engine)

• After decipherment, same virus loaded into memory
• Virus is encrypted; decryption routine is obscured (polymorphicized?)

November 12, 2025 ECS 235A, Computer and Information Security Slide 38

Example

• These are different instructions (with different bit patterns) but have
the same effect:
• add 0 to register

• subtract 0 from register

• xor 0 with register

• no-op

• Polymorphic virus would pick randomly from among these
instructions

November 12, 2025 ECS 235A, Computer and Information Security Slide 39

Metamorphic

• Like polymorphic, but virus itself is also obscured
• So two instances of virus would look different when loaded into memory

• When decrypted, virus may have:
• Two completely different implementations

• Two completely different algorithms producing same result

November 12, 2025 ECS 235A, Computer and Information Security Slide 40

Example

• W95/Zmist virus distributes itself throughout code being infected

• On finding file to infect:
• p = 0.1: insert jump instructions between each set of non-jump instructions

• p = 0.1: infect file with unencrypted copy of Zmist

• p = 0.8: if file has section with initialized data that is writeable, infect file with
polymorphic encrypted version of Zmist; otherwise, infect file with
unencrypted copy of Zmist
• In first case, virus expands that section, inserts virus code as it is decrypted, and executes

that code; decrypting code preserves registers so they can be restored

• On execution, allocates memory to put virus engine in; that creates
new instance of (transformed) virus

November 12, 2025 ECS 235A, Computer and Information Security Slide 41

Computer Worm

• A program that copies itself from one computer to another

• Originated as a tool for distributed computations
• Schoch and Hupp: animations, broadcast messages

• Segment: part of program copied onto workstation

• Segment processes data, communicates with worm’s controller

• Any activity on workstation caused segment to shut down

November 12, 2025 ECS 235A, Computer and Information Security Slide 19-42

	Slide 1: Lecture 21 November 12, 2025
	Slide 2: Administrative Stuff
	Slide 3: Debate about Penetration Testing
	Slide 4: Problems
	Slide 5: Malware
	Slide 6: Example
	Slide 7: Trojan Horse
	Slide 8: Example: Gemini
	Slide 9: Rootkits
	Slide 10: Example: Linux Rootkit IV
	Slide 11: Defenses
	Slide 12: Next Step: Alter the Kernel
	Slide 13: Oops …
	Slide 14: Replicating Trojan Horse
	Slide 15: Thompson's Compiler
	Slide 16: The login Program
	Slide 17: The Compiler
	Slide 18: Comments
	Slide 19: Computer Virus
	Slide 20: Pseudocode
	Slide 21: Trojan Horse Or Not?
	Slide 22: History
	Slide 23: Cohen’s Experiments
	Slide 24: First Reports of Viruses in the Wild
	Slide 25: More Reports
	Slide 26: Infection Vectors
	Slide 27: Boot Sector Infectors
	Slide 28: Executable Infectors
	Slide 29: Executable Infectors (con’t)
	Slide 30: Macro Viruses
	Slide 31: Example
	Slide 32: Multipartite Viruses
	Slide 33: Concealment
	Slide 34: TSR Viruses
	Slide 35: Stealth Viruses
	Slide 36: Encrypted Viruses
	Slide 37: Example
	Slide 38: Polymorphic Viruses
	Slide 39: Example
	Slide 40: Metamorphic
	Slide 41: Example
	Slide 42: Computer Worm

