
Lecture 25
November 21, 2025

ECS 235A, Computer and Information Security

November 21, 2025 ECS 235A, Computer and Information Security Slide 1

Compiler-Based Mechanisms

• Detect unauthorized information flows in a program during
compilation

• Analysis not precise, but secure
• If a flow could violate policy (but may not), it is unauthorized

• No unauthorized path along which information could flow remains
undetected

• Set of statements certified with respect to information flow policy if
flows in set of statements do not violate that policy

November 21, 2025 ECS 235A, Computer and Information Security Slide 2

Example

if x = 1 then y := a;

else y := b;

• Information flows from x and a to y, or from x and b to y

• Certified only if x ≤ y and a ≤ y and b ≤ y
• Note flows for both branches must be true unless compiler can determine

that one branch will never be taken

November 21, 2025 ECS 235A, Computer and Information Security Slide 3

Declarations

• Notation:
x: int class { A, B }

 means x is an integer variable with security class at least lub{ A, B }, so
lub{ A, B } ≤ x

• Distinguished classes Low, High
• Constants are always Low

November 21, 2025 ECS 235A, Computer and Information Security Slide 4

Input Parameters

• Parameters through which data passed into procedure

• Class of parameter is class of actual argument

ip: type class { ip }

November 21, 2025 ECS 235A, Computer and Information Security Slide 5

Output Parameters

• Parameters through which data passed out of procedure
• If data passed in, called input/output parameter

• As information can flow from input parameters to output parameters,
class must include this:

op: type class { r1, …, rn }

 where ri is class of ith input or input/output argument

November 21, 2025 ECS 235A, Computer and Information Security Slide 6

Example

proc sum(x: int class { A };

 var out: int class { A, B });

begin

 out := out + x;

end;

• Require x ≤ out and out ≤ out

November 21, 2025 ECS 235A, Computer and Information Security Slide 7

Array Elements

• Information flowing out:

… := a[i]

 Value of i, a[i] both affect result, so class is lub{ a[i], i }

• Information flowing in:

a[i] := …

• Only value of a[i] affected, so class is a[i]

November 21, 2025 ECS 235A, Computer and Information Security Slide 8

Assignment Statements

x := y + z;

• Information flows from y, z to x, so this requires lub{ y, z } ≤ x

More generally:

y := f(x1, …, xn)

• the relation lub{ x1, …, xn } ≤ y must hold

November 21, 2025 ECS 235A, Computer and Information Security Slide 9

Compound Statements

x := y + z; a := b * c – x;

• First statement: lub{ y, z } ≤ x

• Second statement: lub{ b, c, x } ≤ a

• So, both must hold (i.e., be secure)

More generally:

S1; … Sn;

• Each individual Si must be secure

November 21, 2025 ECS 235A, Computer and Information Security Slide 10

Conditional Statements

if x + y < z then a := b else d := b * c – x; end

• Statement executed reveals information about x, y, z, so lub{ x, y, z } ≤
glb{ a, d }

More generally:

if f(x1, …, xn) then S1 else S2; end

• S1, S2 must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S1, S2 }

November 21, 2025 ECS 235A, Computer and Information Security Slide 11

Iterative Statements

while i < n do begin a[i] := b[i]; i := i + 1; end

• Same ideas as for “if”, but must terminate

More generally:

while f(x1, …, xn) do S;

• Loop must terminate;

• S must be secure

• lub{ x1, …, xn } ≤ glb{y | y target of assignment in S }

November 21, 2025 ECS 235A, Computer and Information Security Slide 12

Goto Statements

• No assignments
• Hence no explicit flows

• Need to detect implicit flows

• Basic block is sequence of statements that have one entry point and
one exit point
• Control in block always flows from entry point to exit point

November 21, 2025 ECS 235A, Computer and Information Security Slide 13

Example Program
proc tm(x: array[1..10][1..10] of integer class {x};

 var y: array[1..10][1..10] of integer class {y});

var i, j: integer class {i};

begin

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j]; j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

end;

November 21, 2025 ECS 235A, Computer and Information Security Slide 14

Flow of Control

b1 b2 b7

b6 b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

November 21, 2025 ECS 235A, Computer and Information Security Slide 15

Immediate Forward Dominators

• Idea: when two paths out of basic block, implicit flow occurs
• Because information says which path to take

• When paths converge, either:
• Implicit flow becomes irrelevant; or

• Implicit flow becomes explicit

• Immediate forward dominator of basic block b (written IFD(b)) is first
basic block lying on all paths of execution passing through b

November 21, 2025 ECS 235A, Computer and Information Security Slide 16

IFD Example

• In previous procedure:
• IFD(b1) = b2 one path

• IFD(b2) = b7 b2→b7 or b2→b3→b6→b2→b7

• IFD(b3) = b4 one path

• IFD(b4) = b6 b4→b6 or b4→b5→b6

• IFD(b5) = b4 one path

• IFD(b6) = b2 one path

November 21, 2025 ECS 235A, Computer and Information Security Slide 17

Requirements

• Bi is set of basic blocks along an execution path from bi to IFD(bi)
• Analogous to statements in conditional statement

• xi1, …, xin variables in expression selecting which execution path
containing basic blocks in Bi used
• Analogous to conditional expression

• Requirements for secure:
• All statements in each basic blocks are secure

• lub{ xi1, …, xin } ≤ glb{ y | y target of assignment in Bi }

November 21, 2025 ECS 235A, Computer and Information Security Slide 18

Example of Requirements

November 21, 2025 ECS 235A, Computer and Information Security

b1 b2 b7

b6 b3

b4

b5

i > n

i ≤ n

j > n

j ≤ n

Low ≤ i

Low ≤ i
lub{ Low, i } ≤ i

lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j

b1 i := 1;

b2 L2: if i > 10 goto L7;

b3 j := 1;

b4 L4: if j > 10 then goto L6;

b5 y[j][i] := x[i][j];

 j := j + 1; goto L4;

b6 L6: i := i + 1; goto L2;

b7 L7:

Slide 19

Example of Requirements

• Within each basic block:
b1: Low ≤ i b3: Low ≤ j b6: lub{ Low, i } ≤ i

b5: lub{ x[i][j], i, j } ≤ y[j][i] }; lub{ Low, j } ≤ j

• Combining, lub{ x[i][j], i, j } ≤ y[j][i] }

• From declarations, true when lub{ x, i } ≤ y

• B2 = {b3, b4, b5, b6}
• Assignments to i, j, y[j][i]; conditional is i ≤ 10

• Requires i ≤ glb{ i, j, y[j][i] }

• From declarations, true when i ≤ y

November 21, 2025 ECS 235A, Computer and Information Security Slide 20

Example (continued)

• B4 = { b5 }
• Assignments to j, y[j][i]; conditional is j ≤ 10

• Requires j ≤ glb{ j, y[j][i] }

• From declarations, means i ≤ y

• Result:
• Combine lub{ x, i } ≤ y; i ≤ y; i ≤ y

• Requirement is lub{ x, i } ≤ y

November 21, 2025 ECS 235A, Computer and Information Security Slide 21

Procedure Calls

tm(a, b);

From previous slides, to be secure, lub{ x, i } ≤ y must hold

• In call, x corresponds to a, y to b

• Means that lub{ a, i } ≤ b, or a ≤ b

More generally:
proc pn(i1, …, im: int; var o1, …, on: int); begin S end;

• S must be secure

• For all j and k, if ij ≤ ok, then xj ≤ yk

• For all j and k, if oj ≤ ok, then yj ≤ yk

November 21, 2025 ECS 235A, Computer and Information Security Slide 22

Exceptions

proc copy(x: integer class { x };

 var y: integer class Low);

var sum: integer class { x };

 z: int class Low;

begin

 y := z := sum := 0;

 while z = 0 do begin

 sum := sum + x;

 y := y + 1;

 end

end

November 21, 2025 ECS 235A, Computer and Information Security Slide 23

Exceptions (cont)

• When sum overflows, integer overflow trap
• Procedure exits

• Value of sum is MAXINT/y

• Information flows from y to sum, but sum ≤ y never checked

• Need to handle exceptions explicitly
• Idea: on integer overflow, terminate loop

on integer_overflow_exception sum do z := 1;

• Now information flows from sum to z, meaning sum ≤ z

• This is false (sum = { x } dominates z = Low)

November 21, 2025 ECS 235A, Computer and Information Security Slide 24

Infinite Loops

proc copy(x: integer 0..1 class { x };

 var y: integer 0..1 class Low);

begin

 y := 0;

 while x = 0 do

 (* nothing *);

 y := 1;

end

• If x = 0 initially, infinite loop
• If x = 1 initially, terminates with y set to 1
• No explicit flows, but implicit flow from x to y

November 21, 2025 ECS 235A, Computer and Information Security Slide 25

Semaphores

Use these constructs:

wait(x): if x = 0 then block until x > 0; x := x – 1;

signal(x): x := x + 1;

• x is semaphore, a shared variable

• Both executed atomically

Consider statement

wait(sem); x := x + 1;

• Implicit flow from sem to x
• Certification must take this into account!

November 21, 2025 ECS 235A, Computer and Information Security Slide 26

Flow Requirements

• Semaphores in signal irrelevant
• Don’t affect information flow in that process

• Statement S is a wait
• shared(S): set of shared variables read

• Idea: information flows out of variables in shared(S)

• fglb(S): glb of assignment targets following S

• So, requirement is shared(S) ≤ fglb(S)

• begin S1; … Sn end
• All Si must be secure

• For all i, shared(Si) ≤ fglb(Si)

November 21, 2025 ECS 235A, Computer and Information Security Slide 27

Example

begin

 x := y + z; (* S1 *)

 wait(sem); (* S2 *)

 a := b * c – x; (* S3 *)

end

• Requirements:
• lub{ y, z } ≤ x

• lub{ b, c, x } ≤ a

• sem ≤ a
• Because fglb(S2) = a and shared(S2) = sem

November 21, 2025 ECS 235A, Computer and Information Security Slide 28

Concurrent Loops

• Similar, but wait in loop affects all statements in loop
• Because if flow of control loops, statements in loop before wait may be

executed after wait

• Requirements
• Loop terminates

• All statements S1, …, Sn in loop secure

• lub{ shared(S1), …, shared(Sn) } ≤ glb(t1, …, tm)
• Where t1, …, tm are variables assigned to in loop

November 21, 2025 ECS 235A, Computer and Information Security Slide 29

Loop Example

while i < n do begin

 a[i] := item; (* S1 *)

 wait(sem); (* S2 *)

 i := i + 1; (* S3 *)

end

• Conditions for this to be secure:
• Loop terminates, so this condition met

• S1 secure if lub{ i, item } ≤ a[i]

• S2 secure if sem ≤ i and sem ≤ a[i]

• S3 trivially secure

November 21, 2025 ECS 235A, Computer and Information Security Slide 30

cobegin/coend

cobegin

 x := y + z; (* S1 *)

 a := b * c – y; (* S2 *)

coend

• No information flow among statements
• For S1, lub{ y, z } ≤ x

• For S2, lub{ b, c, y } ≤ a

• Security requirement is both must hold
• So this is secure if lub{ y, z } ≤ x  lub{ b, c, y } ≤ a

November 21, 2025 ECS 235A, Computer and Information Security Slide 31

Soundness

• Above exposition intuitive

• Can be made rigorous:
• Express flows as types

• Equate certification to correct use of types

• Checking for valid information flows same as checking types conform to
semantics imposed by security policy

November 21, 2025 ECS 235A, Computer and Information Security Slide 32

Execution-Based Mechanisms

• Detect and stop flows of information that violate policy
• Done at run time, not compile time

• Obvious approach: check explicit flows
• Problem: assume for security, x ≤ y

if x = 1 then y := a;

• When x ≠ 1, x = High, y = Low, a = Low, appears okay—but implicit flow
violates condition!

November 21, 2025 ECS 235A, Computer and Information Security Slide 33

Fenton’s Data Mark Machine

• Each variable has an associated class

• Program counter (PC) has one too

• Idea: branches are assignments to PC, so you can treat implicit flows
as explicit flows

• Stack-based machine, so everything done in terms of pushing onto
and popping from a program stack

November 21, 2025 ECS 235A, Computer and Information Security Slide 34

Instruction Description

• skip: instruction not executed

• push(x, x): push variable x and its security class x onto program
stack

• pop(x, x) : pop top value and security class from program stack,
assign them to variable x and its security class x respectively

November 21, 2025 ECS 235A, Computer and Information Security Slide 35

Instructions

• x := x + 1 (increment)
• Same as:
 if PC ≤ x then x := x + 1 else skip

• if x = 0 then goto n else x := x – 1 (branch and save PC on
stack)
• Same as:
 if x = 0 then begin

 push(PC, PC); PC := lub{PC, x}; PC := n;

 end else if PC ≤ x then

 x := x - 1

 else

 skip;

November 21, 2025 ECS 235A, Computer and Information Security Slide 36

More Instructions

• if’ x = 0 then goto n else x := x – 1 (branch without
saving PC on stack)
• Same as:

 if x = 0 then

 if x ≤ PC then PC := n else skip

 else

 if PC ≤ x then x := x - 1 else skip

November 21, 2025 ECS 235A, Computer and Information Security Slide 37

More Instructions

• return (go to just after last if)
• Same as:

 pop(PC, PC);

• halt (stop)
• Same as:

 if program stack empty then halt

• Note stack empty to prevent user obtaining information from it after halting

November 21, 2025 ECS 235A, Computer and Information Security Slide 38

Example Program

1 if x = 0 then goto 4 else x := x - 1

2 if z = 0 then goto 6 else z := z - 1

3 halt

4 z := z + 1

5 return

6 y := y + 1

7 return

Initially x = 0 or x = 1, y = 0, z = 0

Program copies value of x to y

November 21, 2025 ECS 235A, Computer and Information Security Slide 39

Example Execution: Initial Setting

x y z PC PC stack check

1 0 0 1 Low —

November 21, 2025 ECS 235A, Computer and Information Security Slide 40

Example Execution: Step 1

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ≤ x
if x = 0 then goto 4 else x := x – 1

November 21, 2025 ECS 235A, Computer and Information Security

if x = 0 then begin

 push(PC, PC); PC := lub{PC, x}; PC := n;

end else if PC ≤ x then

 x := x - 1

else

 skip;

Slide 41

Example Execution: Step 2

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ≤ x

0 0 0 6 z (3, Low) PC ≤ y

if z = 0 then goto 6 else z := z - 1

November 21, 2025 ECS 235A, Computer and Information Security

if z = 0 then begin

 push(PC, PC); PC := lub{PC, z}; PC := n;

end else if PC ≤ z then

 z := z - 1

else

 skip;

Slide 42

Example Execution: Step 3
x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y

0 1 0 7 z (3, Low)
y := y + 1

November 21, 2025 ECS 235A, Computer and Information Security

if PC ≤ y then y := y + 1 else skip

Slide 43

Example Execution: Step 4

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ≤ x

0 0 0 6 z (3, Low) PC ≤ y

0 1 0 7 z (3, Low)

return

November 21, 2025 ECS 235A, Computer and Information Security

pop(PC, PC);

Slide 44

Example Execution: Step 5

x y z PC PC stack check

1 0 0 1 Low —

0 0 0 2 Low — Low ≤ x
0 0 0 6 z (3, Low) PC ≤ y

0 1 0 7 z (3, Low)
0 1 0 3 Low —
halt

November 21, 2025 ECS 235A, Computer and Information Security

if program stack empty then halt

Slide 45

Handling Errors

• Ignore statement that causes error, but continue execution
• If aborted or a visible exception taken, user could deduce information

• Means errors cannot be reported unless user has clearance at least equal to
that of the information causing the error

November 21, 2025 ECS 235A, Computer and Information Security Slide 46

Variable Classes

• Up to now, classes fixed
• Check relationships on assignment, etc.

• Consider variable classes
• Fenton’s Data Mark Machine does this for PC

• On assignment of form y := f(x1, …, xn), y changed to lub{ x1, …, xn }

• Need to consider implicit flows, also

November 21, 2025 ECS 235A, Computer and Information Security Slide 47

Example Program

(* Copy value from x to y. Initially, x is 0 or 1 *)

proc copy(x: integer class { x };

 var y: integer class { y })

var z: integer class variable { Low };

begin

 y := 0;

 z := 0;

 if x = 0 then z := 1;

 if z = 0 then y := 1;

end;

• z changes when z assigned to

• Assume y < x (that is, x strictly dominates y; they are not equal)

November 21, 2025 ECS 235A, Computer and Information Security Slide 48

Analysis of Example

• x = 0
• z := 0 sets z to Low

• if x = 0 then z := 1 sets z to 1 and z to x

• So on exit, y = 0

• x = 1
• z := 0 sets z to Low

• if z = 0 then y := 1 sets y to 1 and checks that lub{Low, z} ≤ y

• So on exit, y = 1

• Information flowed from x to y even though y < x

November 21, 2025 ECS 235A, Computer and Information Security Slide 49

Handling This (1)

• Fenton’s Data Mark Machine detects implicit flows violating
certification rules

November 21, 2025 ECS 235A, Computer and Information Security Slide 50

Handling This (2)

• Raise class of variables assigned to in conditionals even when branch
not taken

• Also, verify information flow requirements even when branch not
taken

• Example:
• In if x = 0 then z := 1, z raised to x whether or not x = 0

• Certification check in next statement, that z ≤ y, fails, as z = x from previous
statement, and y < x

November 21, 2025 ECS 235A, Computer and Information Security Slide 51

Handling This (3)

• Change classes only when explicit flows occur, but all flows (implicit
as well as explicit) force certification checks

• Example
• When x = 0, first if sets z to Low, then checks x ≤ z

• When x = 1, first if checks x ≤ z

• This holds if and only if x = Low
• Not possible as y < x = Low by assumption and there is no class that Low strictly

dominates

November 21, 2025 ECS 235A, Computer and Information Security Slide 52

Integrity Mechanisms

• The above also works with Biba, as it is mathematical dual of Bell-
LaPadula

• All constraints are simply duals of confidentiality-based ones
presented above

November 21, 2025 ECS 235A, Computer and Information Security Slide 53

Example 1

For information flow of assignment statement:

y := f(x1, …, xn)

the relation glb{ x1, …, xn } ≥ y must hold

• Why? Because information flows from x1, …, xn to y, and under Biba,
information must flow from a higher (or equal) class to a lower one

November 21, 2025 ECS 235A, Computer and Information Security Slide 54

Example 2

For information flow of conditional statement:

if f(x1, …, xn) then S1; else S2; end;

then the following must hold:

• S1, S2 must satisfy integrity constraints

• glb{ x1, …, xn } ≥ lub{y | y target of assignment in S1, S2 }

November 21, 2025 ECS 235A, Computer and Information Security Slide 55

Example Information Flow Control Systems

• Privacy and Android Cell Phones
• Analyzes data being sent from the phone

• Firewalls

November 21, 2025 ECS 235A, Computer and Information Security Slide 56

Privacy and Android Cell Phones

• Many commercial apps use advertising libraries to monitor clicks,
fetch ads, display them
• So they send information, ostensibly to help tailor advertising to you

• Many apps ask to have full access to phone, data
• This is because of complexity of permission structure of Android system

• Ads displayed with privileges of app
• And if they use Javascript, that executes with those privileges
• So if it has full access privilege, it can send contact lists, other information to

others

• Information flow problem as information is flowing from phone to
external party

November 21, 2025 ECS 235A, Computer and Information Security Slide 57

Analyzing Android Flows

• Android based on Linux
• App executables in bytecode format (Dalvik executables, or DEX) and run in

Dalvik VM

• Apps event driven

• Apps use system libraries to do many of their functions

• Binder subsystem controls interprocess communication

• Analysis uses 2 security levels, untainted and tainted
• No categories, and tainted < untainted

November 21, 2025 ECS 235A, Computer and Information Security Slide 58

TaintDroid: Checking Information Flows

• All objects tagged tainted or untainted
• Interpreters, Binder augmented to handle tags

• Android native libraries trusted
• Those communicating externally are taint sinks

• When untrusted app invokes a taint sink library, taint tag of data is recorded

• Taint tags assigned to external variables, library return values
• These are assigned based on knowledge of what native code does

• Files have single taint tag, updated when file is written

• Database queries retrieve information, so tag determined by database query
responder

November 21, 2025 ECS 235A, Computer and Information Security Slide 59

TaintDroid: Checking Information Flows

• Information from phone sensor may be sensitive; if so, tainted
• TaintDroid determines this from characteristics of information

• Experiment 1 (2010): selected 30 popular apps out of a set of 358
that required permission to access Internet, phone location, camera,
or microphone; also could access cell phone information
• 105 network connections accessed tainted data

• 2 sent phone identification information to a server

• 9 sent device identifiers to third parties, and 2 didn’t tell user

• 15 sent location information to third parties, none told user

• No false positives

November 21, 2025 ECS 235A, Computer and Information Security Slide 60

TaintDroid: Checking Information Flows

• Experiment 2 (2012): revisited 18 out of the 30 apps (others did not
run on current version of Android)
• 3 still sent location information to third parties

• 8 sent device identification information to third parties without consent
• 3 of these did so in 2010 experiment

• 5 were new

• 2 new flows that could reveal tainted data

• No false positives

November 21, 2025 ECS 235A, Computer and Information Security Slide 61

Firewalls

• Host that mediates access to a network
• Allows, disallows accesses based on configuration and type of access

• Example: block Conficker worm
• Conficker connects to botnet, which can use system for many purposes

• Spreads through a vulnerability in a particular network service

• Firewall analyze packets using that service remotely, and look for Conficker
and its variants
• If found, packets discarded, and other actions may be taken

• Conficker also generates list of host names, tried to contact botnets at those
hosts
• As set of domains known, firewall can also block outbound traffic to those hosts

November 21, 2025 ECS 235A, Computer and Information Security Slide 62

Filtering Firewalls

• Access control based on attributes of packets and packet headers
• Such as destination address, port numbers, options, etc.

• Also called a packet filtering firewall

• Does not control access based on content

• Examples: routers, other infrastructure systems

November 21, 2025 ECS 235A, Computer and Information Security Slide 63

Proxy

• Intermediate agent or server acting on behalf of endpoint without
allowing a direct connection between the two endpoints
• So each endpoint talks to proxy, thinking it is talking to other endpoint

• Proxy decides whether to forward messages, and whether to alter them

November 21, 2025 ECS 235A, Computer and Information Security Slide 64

Proxy Firewall

• Access control done with proxies
• Usually bases access control on content as well as source, destination

addresses, etc.

• Also called an applications level or application level firewall

• Example: virus checking in electronic mail
• Incoming mail goes to proxy firewall

• Proxy firewall receives mail, scans it

• If no virus, mail forwarded to destination

• If virus, mail rejected or disinfected before forwarding

November 21, 2025 ECS 235A, Computer and Information Security Slide 65

Example

• Want to scan incoming email for malware

• Firewall acts as recipient, gets packets making up message and
reassembles the message
• It then scans the message for malware

• If none, message forwarded

• If some found, mail is discarded (or some other appropriate action)

• As email reassembled at firewall by a mail agent acting on behalf of
mail agent at destination, it’s a proxy firewall (application layer
firewall)

November 21, 2025 ECS 235A, Computer and Information Security Slide 66

Stateful Firewall

• Keeps track of the state of each connection

• Similar to a proxy firewall
• No proxies involved, but this can examine contents of connections

• Analyzes each packet, keeps track of state

• When state indicates an attack, connection blocked or some other
appropriate action taken

November 21, 2025 ECS 235A, Computer and Information Security Slide 67

Network Organization: DMZ

• DMZ is portion of network separating a purely internal network from
external network

• Usually put systems that need to connect to the Internet here

• Firewall separates DMZ from purely internal network

• Firewall controls what information is allowed to flow through it
• Control is bidirectional; it control flow in both directions

November 21, 2025 ECS 235A, Computer and Information Security Slide 68

One Setup of DMZ

One dual-homed firewall that
routes messages to internal
network or DMZ as
appropriate

firewall
internal
network

DMZ

November 21, 2025 ECS 235A, Computer and Information Security Slide 69

Internet

Another Setup of DMZ

Two firewalls, one (outer
firewall) connected to the
Internet, the other (inner
firewall) connected to internal
network, and the DMZ is
between the firewalls

outer
firewall

internal
network

DMZ
inner

firewall

November 21, 2025 ECS 235A, Computer and Information Security Slide 70

Internet

	Slide 1: Lecture 25 November 21, 2025
	Slide 2: Compiler-Based Mechanisms
	Slide 3: Example
	Slide 4: Declarations
	Slide 5: Input Parameters
	Slide 6: Output Parameters
	Slide 7: Example
	Slide 8: Array Elements
	Slide 9: Assignment Statements
	Slide 10: Compound Statements
	Slide 11: Conditional Statements
	Slide 12: Iterative Statements
	Slide 13: Goto Statements
	Slide 14: Example Program
	Slide 15: Flow of Control
	Slide 16: Immediate Forward Dominators
	Slide 17: IFD Example
	Slide 18: Requirements
	Slide 19: Example of Requirements
	Slide 20: Example of Requirements
	Slide 21: Example (continued)
	Slide 22: Procedure Calls
	Slide 23: Exceptions
	Slide 24: Exceptions (cont)
	Slide 25: Infinite Loops
	Slide 26: Semaphores
	Slide 27: Flow Requirements
	Slide 28: Example
	Slide 29: Concurrent Loops
	Slide 30: Loop Example
	Slide 31: cobegin/coend
	Slide 32: Soundness
	Slide 33: Execution-Based Mechanisms
	Slide 34: Fenton’s Data Mark Machine
	Slide 35: Instruction Description
	Slide 36: Instructions
	Slide 37: More Instructions
	Slide 38: More Instructions
	Slide 39: Example Program
	Slide 40: Example Execution: Initial Setting
	Slide 41: Example Execution: Step 1
	Slide 42: Example Execution: Step 2
	Slide 43: Example Execution: Step 3
	Slide 44: Example Execution: Step 4
	Slide 45: Example Execution: Step 5
	Slide 46: Handling Errors
	Slide 47: Variable Classes
	Slide 48: Example Program
	Slide 49: Analysis of Example
	Slide 50: Handling This (1)
	Slide 51: Handling This (2)
	Slide 52: Handling This (3)
	Slide 53: Integrity Mechanisms
	Slide 54: Example 1
	Slide 55: Example 2
	Slide 56: Example Information Flow Control Systems
	Slide 57: Privacy and Android Cell Phones
	Slide 58: Analyzing Android Flows
	Slide 59: TaintDroid: Checking Information Flows
	Slide 60: TaintDroid: Checking Information Flows
	Slide 61: TaintDroid: Checking Information Flows
	Slide 62: Firewalls
	Slide 63: Filtering Firewalls
	Slide 64: Proxy
	Slide 65: Proxy Firewall
	Slide 66: Example
	Slide 67: Stateful Firewall
	Slide 68: Network Organization: DMZ
	Slide 69: One Setup of DMZ
	Slide 70: Another Setup of DMZ

