Table of Notation for Noninterference and Nondeducibility | symbol | meaning | |--------------------------|--| | S | set of subjects s | | Σ | set of states σ | | 0 | set of outputs o | | Z | set of commands z | | C | set of state transition commands (s, z) , where subject s executes command z | | C^* | set of possible sequences of commands c_0, \ldots, c_n | | ν | empty sequence | | C_{S} | sequence of commands | | $T(c, \sigma_i)$ | resulting state when command c is executed in state σ_i | | $T^*(c_s, \sigma_i)$ | resulting state when command sequence c_s is executed in state σ_i | | $P(c, \sigma_i)$ | output when command c is executed in state σ_i | | $P^*(c_s, \sigma_i)$ | output when command sequence c_s is executed in state σ_i | | $proj(s, c_s, \sigma_i)$ | set of outputs in $P^*(c_s, \sigma_i)$ that subject s is authorized to see | | $\pi_G(c_s)$ | subsequence of c_s with all elements (s, z) , $s \in G$, deleted | | $\pi_A(c_s)$ | subsequence of c_s with all elements (s, z) , $z \in A$, deleted | | $\pi_{G,A}(c_s)$ | subsequence of c_s with all elements (s, z) , $s \in G$ and $z \in A$ deleted | | dom(c) | protection domain in which c is executed | | $\sim^{dom(c)}$ | equivalence relation on system states | | $\pi'_d(c_s)$ | analogoua to π above, but with protection domain and subject included |