April 18, 2025 Outline

Reading: text, §5.2.3–5.3 **Due:** Homework #2, due April 28; Project progress report, due May 7

Module 18 (Reading: text, §5.2.3)

- 1. Bell-LaPadula: formal model
 - (a) Set of requests is R
 - (b) Set of decisions is D
 - (c) $W \subseteq R \times D \times V \times V$ is motion from one state to another.
 - (d) System $\Sigma(R,D,W,z_0) \subseteq X \times Y \times Z$ such that $(x,y,z) \in \Sigma(R,D,W,z_0)$ iff $(x_t,y_t,z_t,z_{t-1}) \in W$ for each $i \in T$; latter is an action of system
 - (e) Theorem: $\Sigma(R, D, W, z_0)$ satisfies the simple security condition for any initial state z_0 that satisfies the simple security condition iff W satisfies the following conditions for each action $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. each $(s, o, x) \in b' b$ satisfies the simple security condition relative to f' (i.e., x is not read, or x is read and $f_s(s)dom f_o(o)$); and
 - ii. if $(s, o, x) \in b$ does not satisfy the simple security condition relative to f', then $(s, o, x) \notin b'$
 - (f) Theorem: $\Sigma(R, D, W, z_0)$ satisfies the *-property relative to $S' \subseteq S$ for any initial state z_0 that satisfies the *-property relative to S' iff W satisfies the following conditions for each $(r_i, d_i, (b', m', f', h'), (b, m, f, h))$:
 - i. for each $s \in S'$, any $(s, o, x) \in b' b$ satisfies the *-property with respect to f'; and
 - ii. for each $s \in S'$, if $(s, o, x) \in b$ does not satisfy the *-property with respect to f', then $(s, o, x) \notin b'$

Module 19 (Reading: text, §5.2.4)

- 2. Using the Bell-LaPadula model
 - (a) Define ssc-preserving, *-property-preserving, ds-property-preserving
 - (b) Define relation $W(\omega)$
 - (c) Show conditions under which rules are ssc-preserving, *-property-preserving, ds-property-preserving
 - (d) Show when adding a state preserves those properties
 - (e) Example instantiation: get-read for Multics

Module 20 (Reading: text, §5.3)

3. Tranquility