ECS 235B Module 43
Introduction to Assurance



Overview

* Trust

* Problems from lack of assurance
* Types of assurance

* Life cycle and assurance

» Waterfall life cycle model

e Other life cycle models



Trust

* Trustworthy entity has sufficient credible evidence leading one to
believe that the system will meet a set of requirements

e Trust is a measure of trustworthiness relying on the evidence

* Assurance is confidence that an entity meets its security
requirements based on evidence provided by applying assurance
techniques



Relationships

Policy

|

Assurance

|

Mechanisms

Statement of requirements that explicitly define
the security expectations of the mechanism(s)

Provides justification that the mechanism meets
policy through assurance evidence and approvals
based on evidence

Executable entities that are designed and imple-
mented to meet the requirements of the policy



Trusted System

* System that has been shown to meet well-defined requirements
under an evaluation by a credible body of experts who are certified to
assign trust ratings or assurance levels to evaluated products and
systems

* Use specific methodologies to gather assurance evidence
* These methodologies typically have increasing ”levels of trust”



Problem Sources

Requirements definitions, omissions, and mistakes

System design flaws

Hardware implementation flaws, such as wiring and chip flaws
Software implementation errors, program bugs, and compiler bugs
System use and operation errors and inadvertent mistakes

Willful system misuse

Hardware, communication, or other equipment malfunction
Environmental problems, natural causes, and acts of God

L o0 N UL kA WwWDNRE

Evolution, maintenance, faulty upgrades, and decommissions



Examples

* Challenger explosion
e Sensors removed from booster rockets to meet accelerated launch schedule

e Deaths from faulty radiation therapy system

* Hardware safety interlock removed
* Flaws in software design

* Bell V22 Osprey crashes

* Failure to correct for malfunctioning components; two faulty ones could
outvote a third

* Intel 486 chip

e Bug in trigonometric functions



Role of Requirements

* Requirements are statements of goals that must be satisfied
* Vary from high-level, generic issues to low-level, concrete issues

e Security objectives are high-level security issues
e Security requirements are specific, concrete issues

e Security policy is set of specific statements that, when enforced, resultin a
secure system
e Alternatively, a statement that partitions states of system into a set of authorized
states and a set of unauthorized states

e Security model describes a family of policies, systems, or entities and is
more abstract than a policy

* A policy is specific to particular entities



Types of Assurance

* Policy assurance is evidence establishing security requirements in
policy is complete, consistent, technically sound

* Design assurance is evidence establishing design sufficient to meet
requirements of security policy

* Implementation assurance is evidence establishing implementation
consistent with security requirements of security policy



Types of Assurance

* Operational assurance is evidence establishing system sustains the
security policy requirements during installation, configuration, and
day-to-day operation

* Also called administrative assurance



Life Cycle

Security requirements

Design and
implementation
of refinement

Design

Assurance
justification

Implementation

Module 43 ECS 235B, Foundations of Computer and Information Security Slide 19-11



Life Cycle for Building Secure, Trusted Systems

* Life cycle process establish discipline, control in the building of a
product or system
e This provides confidence in consistency, quality of resulting system

* Assurance requires life cycle model end engineering process in every
situation

* Size and complexity will vary

e Life cycle defined in stages



Generic Life Cycle Model

These are present in all models, but the emphasis and focus is different
for each project, and will be more detailed than what is presented here

* Conception

* Manufacture

* Deployment

* Fielded Product Life



Conception

* |dea
* Decisions to pursue it

* Proof of concept
* See if idea has merit

* High-level requirements analysis
* What does “secure” mean for this concept?
* |s it possible for this concept to meet this meaning of security?

* |s the organization willing to support the additional resources required to
make this concept meet this meaning of security?

* |dentify threats, assumptions



Manufacture

* Develop detailed plans for each group involved
* May depend on use; internal product requires no sales

* Implement the plans to create entity

* Includes decisions whether to proceed, for example due to market needs
* Software development, engineering process is in this stage



Deployment

e Delivery

e Assure that correct masters are delivered to production and protected
* Assure integrity of what is delivered to customers, sales organizations

* Installation and configuration

* Ensure product works appropriately for specific environment into which it is
installed

e Service people know security procedures

* Example of configuration failure

e 2013: Target breached via a third party vendor, as network architected with
improper security controls



Fielded Product Life

* Routine maintenance, patching
e Responsibility of engineering in small organizations
* Responsibility may be in different group than one that manufactures product

* Example of failure: 2017 Equifax breach believed due to failing to install an
important system patch, resulting in breach of financial information for
hundreds of millions of people

* Customer service, support organizations
e Retirement or decommission of product



Watertall Life Cycle Model

* Requirements definition and analysis

* Functional and non-functional
* General (for customer), specifications

e System and software design

* Implementation and unit testing
* Integration and system testing

* Operation and maintenance




Relationship of Stages

Requirements
definition and

analysis
e System and
\ \
AN software
\ \ ~
AN *\\ d .
KRN ~--- desien Implementa-
VN el \ TR tion and unit
\ S ~“§ \ \\55 .
AN \\\ i A Tt testlng
~ \ N .
RN R s Integration
N \\\ \\ \ o
\\\ \\\§ \\\ \\\s \\ \\~~ and System
~ \~~ ~§~~—- - .
R IS E T Yo -------7 testing
\\ \\ —— e\ ———— = .
S~ Ss AN X Operation
IR T T=----___lII---zzzzzzZ maintenance

Module 43 ECS 235B, Foundations of Computer and Information Security Slide 19-19



Agile Software Development

» Software development is creative process, always changing, never
really completed

* Leads to agile methodologies
e Focuses on working together
* Agile team efficiently works together in their environment

 Team engages customer as a member of the team, developing requirements
and scoping of the project

* Accept, adapt to rapidly changing requirements
* Allows for continuous improvement




Agile Methodologies

Term “Agile software development” used to describe several Agile
methodologies

* Scrum
e Kanban
* Extreme Programming (XP)

e Others

e Feature-Driven Development (FDD), Dynamic Systems Development Method
(DSDM), Pragmatic Programming

In all, evidence of trustworthiness for assurance adduced afte
development




Scrum

e Split project into small parts that can be done in a short timeframe (called
a sprint)
* This product backlog created by product owner, who represents customer, product
stakeholders

e Scrum team agrees on a small subset from top of backlog, decides how to
design, implement it
* Goal: complete this within the sprint

* Every day, team meets to evaluate progress, adjust as needed to get a
workable solution within each sprint

* At the end, work completed should be ready to ship, demo, or put back i
if not complete

* |terate until product complete




Kanban

* |dentify lanes of work: to be done, in progress, completed, deployed

* Each lane except the last has limit on how many items can be in that
lane

* Based on staff available to perform the work

* Teams take item off to be done lane, work on it until completed

* When implemented correctly, team is completing work on top item in lane
when another item arrives

* Goal: deliver product to customer within expected timeline
 Methodology originated at Toyota




Extreme Programming

e Rapid prototyping and “best practices”

* Project driven by business decisions

* Requirements open until project complete

* Programmers work in teams

* Components tested, integrated several times a day

* Objective is to get system into production as quickly as possible, then
enhance it




Models

* Exploratory programming

e Develop working system quickly

* Used when detailed requirements specification cannot be formulated in
advance, and adequacy is goal

* No requirements or design specification, so low assurance

* Prototyping
* Objective is to establish system requirements
e Future iterations (after first) allow assurance techniques




Models

 Formal transformation
* Create formal specification
* Translate it into program using correctness-preserving transformations
* Very conducive to assurance methods

e System assembly from reusable components
* Depends on whether components are trusted
e Must assure connections, composition as well
* Very complex, difficult to assure




Key Points

* Assurance critical for determining trustworthiness of systems

 Different levels of assurance, from informal evidence to rigorous
mathematical evidence

e Assurance needed at all stages of system life cycle



	Slide 1: ECS 235B Module 43 Introduction to Assurance
	Slide 2: Overview
	Slide 3: Trust
	Slide 4: Relationships
	Slide 5: Trusted System
	Slide 6: Problem Sources
	Slide 7: Examples
	Slide 8: Role of Requirements
	Slide 9: Types of Assurance
	Slide 10: Types of Assurance
	Slide 11: Life Cycle
	Slide 12: Life Cycle for Building Secure, Trusted Systems
	Slide 13: Generic Life Cycle Model
	Slide 14: Conception
	Slide 15: Manufacture
	Slide 16: Deployment
	Slide 17: Fielded Product Life
	Slide 18: Waterfall Life Cycle Model
	Slide 19: Relationship of Stages
	Slide 20: Agile Software Development
	Slide 21: Agile Methodologies
	Slide 22: Scrum
	Slide 23: Kanban
	Slide 24: Extreme Programming
	Slide 25: Models
	Slide 26: Models
	Slide 27: Key Points

