ECS 235B Module 53
Detecting Covert Channels

MMMMMMMM

Detection

* Manner in which resource is shared controls who can send, receive
using that resource
* Noninterference
* Shared Resource Matrix Methodology
* Information flow analysis
* Covert flow trees

Module 53 ECS 235B, Foundations of Computer and Information Security

Noninterference

* View “read”, “write” as instances of information transfer

* Then two processes can communicate if information can be
transferred between them, even in the absence of a direct
communication path

e A covert channel
e Also sounds like interference ...

Module 53 ECS 235B, Foundations of Computer and Information Security

Example: SAT

e Secure Ada Target, multilevel security policy
e Approach:

 7t(i, /) removes all instructions issued by subjects dominated by level / from
instruction stream /

* A(i, o) state resulting from execution of i on state &
* o.v(s) describes subject s’s view of state o

e System is noninterference-secure iff for all instruction sequences |,
subjects s with security level /(s), states o,

A(m(i, I(s)), o).v(s) = Ali, c).v(s)

Module 53 ECS 235B, Foundations of Computer and Information Security

Theorem

* Version of the Unwinding Theorem

* Let X be set of system states. A specification is noninterference-secure if, for each

subject s at security level [(s), there exists an equivalence relation =: Xx such
that

 foro,, 0, € 2, when 6, =0,, 5,.v(s) = 5,.v(s)
* for 6,, 6, € X and any instruction i, when 6, = G,, Al(i, 5,) =Al(i, G,)

e for o € X and instruction stream i, if ©(i, /(s)) is empty, A(n(i, I(s)), o).v(s) =
o.v(s)

Module 53 ECS 235B, Foundations of Computer and Information Security 5

Intuition

e System is noninterference-secure if:
* Equivalent states have the same view for each subject
* View remains unchanged if any instruction is executed

* Instructions from higher-level subjects do not affect the state from the
viewpoint of the lower-level subjects

Module 53 ECS 235B, Foundations of Computer and Information Security

Analysis of SAT

* Focus on object creation instruction and readable object set

* In these specifications:
* ssubject with security level /(s)
e 0 object with security level /(0), type t(0)
* o current state
 Set of existing objects listed in a global object table T(o)

Module 53 ECS 235B, Foundations of Computer and Information Security

Specification 1

* object_create:
[o' = object create(s,0,/(0),t(0),0) A" # G]
&
[0 ¢ T(o) Al(s) < /(o)]

* The create succeeds if, and only if, the object does not yet exist and
the clearance of the object will dominate the clearance of its creator

* In accord with the “writes up okay” idea

Module 53 ECS 235B, Foundations of Computer and Information Security

Specification 2

* readable object set: set of existing objects that subject could read

e can_read(s, o, o) true if in state o, o is of a type that s can read (ignoring
permissions)

* 0 ¢ readable(s,) = [0 ¢ T(c) v —=(l(o) < I(s)) v —(can_read(s, o, 6))]

e Can’t read a nonexistent object, one with a security level that the
subject’s security level does not dominate, or object of the wrong

type

Module 53 ECS 235B, Foundations of Computer and Information Security

Specification 3

» SAT enforces tranquility
* Adding object to readable set means creating new object
* Add to readable set:
[0 ¢ readable(s, o) A 0 € readable(s, ¢')]
[c' = object _create(s,0,/(0),t(0),0) A0 ¢ T(c) Al(s") <I(o) < (s) A
can_read(s, o, ¢')]

* Says object must be created, levels and discretionary access controls
set properly

Module 53 ECS 235B, Foundations of Computer and Information Security

10

Check for Covert Channels

* G4, G, the same except:
e 0 exists only in latter

* —(llo) < 1(s))
* Specification 2:
* 0 ¢ readable(s, ;) { 0 doesn’t existin o}
* 0 ¢ readable(s, c,) { —(/(o) < /(s)) }
* Thuso, =0,
* Condition 1 of theorem holds

Module 53 ECS 235B, Foundations of Computer and Information Security

11

Continue Analysis

e s’ issues command to create o:
* with /(o) = /(s); and
* of type with can_read(s, o, ;)
* o, state after object_create(s’, o, /(0), t(0), ;)
* Specification 1
* 5, differs from o, with o in T(c,)

* New entry satisfies:
* can_read(s, o, ')
* /(s') £ /(o) £ I(s), where s’ created o

Module 53 ECS 235B, Foundations of Computer and Information Security 12

Continue Analysis

* 0 exists in G, so:
G, = object_create(s’, o, G,) = G,
* But this means
—[A(object_create(s’, o, I(0), t(0), 5,), G,) =

A(object _create(s’, o, I(0), t(0), 5,), 5,)]
* Because create fails in o, but succeeds in G,

* So condition 2 of theorem fails
* This implies a covert channel as system is not noninterference-secure

Module 53 ECS 235B, Foundations of Computer and Information Security

13

Example Exploit

e To send 1:

* High subject creates high object

* Recipient tries to create same object but at low
» Creation fails, but no indication given

e Recipient gives different subject type permission to read, write object
* Again fails, but no indication given

* Subject writes 1 to object, reads it
* Read returns nothing

Module 53 ECS 235B, Foundations of Computer and Information Security

14

Example Exploit

 To send O:

* High subject creates nothing
* Recipient tries to create same object but at low
* Creation succeeds as object does not exist

e Recipient gives different subject type permission to read, write object
e Again succeeds

* Subject writes 1 to object, reads it
 Readreturns1

Module 53 ECS 235B, Foundations of Computer and Information Security

15

Use

* Can analyze covert storage channels

* Noninterference techniques reason in terms of security levels (attributes of
objects)

* Covert timing channels much harder
* You would have to make ordering an attribute of the objects in some way

Module 53 ECS 235B, Foundations of Computer and Information Security

16

SRMM

e Shared Resource Matrix Methodology
e Goal: identify shared channels, how they are shared

* Steps:
* |dentify all shared resources, their visible attributes [rows]

* Determine operations that reference (read), modify (write) resource
[columns]

* Contents of matrix show how operation accesses the resource

Module 53 ECS 235B, Foundations of Computer and Information Security

17

Example

* Multilevel security model

 File attributes:
e existence, owner, label, size

* File manipulation operations:

* read, write, delete, create
e create succeeds if file does not exist; gets creator as owner, creator’s label
e others require file exists, appropriate labels

e Subjects:
e High, Low

Module 53 ECS 235B, Foundations of Computer and Information Security

18

Shared Resource Matrix

read write delete create
existence R R, M R, M
owner R M
label R R \Y
size M M M

Module 53

ECS 235B, Foundations of Computer and Information

Security

Slide 18-19

Covert Storage Channel

* Properties that must hold for covert storage channel:
1. Sending, receiving processes have access to same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4

. Mechanism for starting processes, properly sequencing their accesses to
resource

Module 53 ECS 235B, Foundations of Computer and Information Security 20

Example

e Consider attributes with both R, M in rows
* Let High be sender, Low receiver

* create operation both references, modifies existence attribute
* Low can use this due to semantics of create

* Need to arrange for proper sequencing accesses to existence
attribute of file (shared resource)

Module 53 ECS 235B, Foundations of Computer and Information Security

21

Use of Channel

3 files: ready, done, 1bit
* Low creates ready at High level

* High checks that file exists
* |If so, to send 1, it creates 1bit; to send O, skip
e Delete ready, create done at High level

* Low tries to create done at High level

e On failure, High is done
* Low tries to create 1bit at level High

* Low deletes done, creates ready at High level

Module 53 ECS 235B, Foundations of Computer and Information Security

22

Covert Timing Channel

* Properties that must hold for covert timing channel:

1.Sending, receiving processes have access to same attribute of shared object;

2.Sender, receiver have access to a time reference (wall clock, timer, event
ordering, ...);

3.Sender can control timing of detection of change to that attribute by receiver;
and

4.Mechanism for starting processes, properly sequencing their accesses to
resource

Module 53 ECS 235B, Foundations of Computer and Information Security 23

Example

e Revisit variant of KVM/370 channel

* Sender, receiver can access ordering of requests by disk arm scheduler
(attribute)

* Sender, receiver have access to the ordering of the requests (time reference)

* High can control ordering of requests of Low process by issuing cylinder
numbers to position arm appropriately (timing of detection of change)

e So whether channel can be exploited depends on whether there is a
mechanism to (1) start sender, receiver and (2) sequence requests as desired

Module 53 ECS 235B, Foundations of Computer and Information Security 24

Uses of SRM Methodology

* Applicable at many stages of software life cycle model
* Flexbility is its strength

* Used to analyze Secure Ada Target
e Participants manually constructed SRM from flow analysis of SAT model
* Took transitive closure

* Found 2 covert channels
* One used assigned level attribute, another assigned type attribute

Module 53 ECS 235B, Foundations of Computer and Information Security

25

Summary

* Methodology comprehensive but incomplete

* How to identify shared resources?
* What operations access them and how?

* Incompleteness a benefit
* Allows use at different stages of software engineering life cycle

* Incompleteness a problem

* Makes use of methodology sensitive to particular stage of software
development

Module 53 ECS 235B, Foundations of Computer and Information Security

26

Information Flow Analysis

* When exception occurs due to value of variable, information leaks
about the value — a covert channel

e Same for synchronization and IPC primitives, because one process controls
when it sends message or blocks to receive one

* Shared variables are not covert channel as they are intended to share values

* Method for identifying covert storage channels in source code

* Assertion: these arise when processes can view, alter kernel variables

* So identify these variables
* May be directly referenced or indirectly referenced via system calls

Module 53 ECS 235B, Foundations of Computer and Information Security 27

Step 1

* |dentify kernel functions, processes for analysis

* Processes function at privileged level, but carry out actions for ordinary users

* Ignore those executing on behalf of administrators (they can leak information
directly)

 Same with system calls available only to system administrator

Module 53 ECS 235B, Foundations of Computer and Information Security 28

Step 2

* |dentify kernel variables user process can view and/or alter

* Process must control how variable is altered
* Process must be able to detect that variable was altered

* Detection criteria
* Value of a variable is obtained from system call
e Calling process can detect at least 2 different states of that variable

* Examples

* |f system call assigns fixed value to a particular variable, process cannot
control how that variable is altered

 |f value of x causes an error, state of x can be determined from the error
indicator

Module 53 ECS 235B, Foundations of Computer and Information Security 29

Directly vs. Indirectly Visible

x directly visible to caller as it is
returned directly to caller

X o=

i1f x

X

return X;

Module 53

y not directly visible to caller, but

through z
func (abc, def);
— 0 then vy := func(abc, def);
= x + 10; if v = 0 then
z = 1;
else
z = 0;

return z;

ECS 235B, Foundations of Computer and Information Security

indirectly visible as its state observed

30

Step 3

* Analyze variables looking for covert channels

e Use method similar to that of SRM

 Discard primitives associated with variables that can only be altered or only
be viewed

* Assume recipient’s clearance does not dominate sender’s, and compare
resulting primitives to model of access control

Module 53 ECS 235B, Foundations of Computer and Information Security

31

Covert Flow Trees

* Information flow through shared resources modeled using tree
* Flow paths identified, and analyzed to see if each is legitimate

* 5 types of nodes

Goal symbols: states that must exist for information to flow

Operation symbol:. symbol representing primitive operation

Failure symbol: information cannot be sent along the path containing it

And symbol: goal reached when these hold for all children
 If the child is a goal, then the goal is reached; and
* The child is an operation
Or symbol: goal reached when either of these hold for any children
* If the child is a goal, then the goal is reached; or
* The child is an operation

Module 53 ECS 235B, Foundations of Computer and Information Security

32

More on Goal Symbols

* Modification goal: reached when attribute is modified
* Recognition goal: reached when modification of attribute is detected

* Direct recognition goal: reached when subject can detect modification of
attribute by direct reference or calling a function that returns it

* Inferred recognition goal: reached when subject can detect modification of
attribute without directly referencing it or calling a function that references
attribute directly

* Inferred-via goal: reached when information passed from one attribute to
others using specified primitive operation

* Recognized-new-state goal: reached when an attribute that was modified
when information passed using it is specified by inferred-via goal

Module 53 ECS 235B, Foundations of Computer and Information Security 33

Example Program

procedure Lockfile(f: file): boolean; (* lock file if not locked; return *)
begin (* false 1f locked, true otherwise ¥*)
if not f.locked and empty(f.inuse) then
f.locked := true;
Lockfile := not f.locked;
end;
procedure Unlockfile(f: file); (* unlock file *)
begin
if f.locked then
f.locked := false;
end;
function Filelocked (f: file): boolean; (* return state of file locking *)
begin
Filelocked := f.locked;
end;

Module 53 ECS 235B, Foundations of Computer and Information Security

34

Example Program

procedure Openfile(f: file); (* open file if not locked and ¥*)
begin (* permissions allow it ¥*)
if not f.locked and read access(process id, f) then

(* add the process ID to the inuse set *)

f.inuse = f.inuse + process 1id;
end;
function Fileopened(f: file): boolean; (* if permissions allow process to read file, *)
begin (* say 1f open; else return random value. *)
if not read access(process 1d, f) then
Fileopened := random(true, false);
else
Fileopened := not isempty(f.inuse);
end;

Module 53 ECS 235B, Foundations of Computer and Information Security 35

Step 1

* Determine attributes that primitive operations reference, modify,

return

Lockfile Unlockfile | Filelocked | Openfile Fileopened
reference | locked,inuse locked locked locked,inuse inuse
modify locked 1) 1) inuse 1)
return 1) 1) locked 1) inuse

Module 53

ECS 235B, Foundations of Computer and Information Security

36

Step 2

e Construct the flow tree; controlled by type of goal

* Construction ends when all paths terminate in either operation
symbol of failure symbol
* If loops occur, a parameter defines number of times path may be traversed

Module 53 ECS 235B, Foundations of Computer and Information Security

37

Step 2 (con’t)

* Topmost goal: requires attribute be modified and the modification be
recognized
* 1 child (and) with 2 goals (modification, recognition goal symbols)

* Modification goal: requires primitive operation to modify attribute

1 child (or) with 1 child operation symbol per operation for all operations that
modify attribute

* Recognition goal: subject directly recognize or infer change in
attribute

1 child (or) with 2 children (direct recognition, inferred recognition goals)

Module 53 ECS 235B, Foundations of Computer and Information Security 38

Step 2 (con’t)

* Direct recognition goal: operation accesses attribute
1 child (or) with 1 child operation symbol per operation for each operation that returns
attribute
Inferred recognition goal: modification referred on basis of 1 or more attributes
1 child (or) with 1 child inferred-via symbol per operation for each operation that references
an attribute and modifies an attribute

Inferred-via goal: value of attribute inferred via some operation and new state of
attribute recognized
1 child (and) with 2 children (operation, recognize-new-state goal symbols)

Recognize-new-state goal: value of attribute inferred via some operation and new
state of attribute recognized, requiring a recognition goal for attribute

1 child (or) and for each attribute enabling inference of modification of attribute in question,
1 child (recognition goal symbol)

Module 53 ECS 235B, Foundations of Computer and Information Security 39

Example: Goal State and Modification Branch

* The next few slides build covert flow tree for attribute locked

Covert storage channel

goal ___— via attribute locked

state

and . /.

node [
Modification of Recognition of
attribute /ocked attribute /ocked

Module 53

Modification of
attribute locked

or

+\e— node

ECS 235B, Foundations of Computer and Information Security

40

Example: Recognition Branch

Module 53

Recognition of
attribute locked

Direct recognition of
attribute locked

Indirect recognition of
attribute locked

[

Indirect attribute /ocked
via attribute inuse

ECS 235B, Foundations of Computer and Information Security

41

Example: Indirect Branch

Module 53

Indirect attribute locked
via attribute inuse

[

Recognition of

Openfile
peny attribute inuse

ECS 235B, Foundations of Computer and Information Security

42

Example: Recognhize New Goal State Branch

Module 53

Recognition of
attribute inuse

Direct recognition of
attribute inuse

Indirect recognition of
attribute locked

Fileopened

ECS 235B, Foundations of Computer and Information Security

43

Example: Analysis

* Put those parts of the tree together in the obvious way

e First list: ((Lockfile), (Unlockfile))
* As both modify attribute locked and lie on “modified” branch

» Second list: ((Filelocked), (Openfile, Fileopened))
 From direct recognition of modification of inuse attribute; second, from indirect
recognition of modification of attribute /ocked
* These result in 4 paths of communication:
* Lockfile followed by Filelocked
* Unlockfile followed by Filelocked
» Lockfile followed by Openfile, then Fileopened
* Unlockfile followed by Openfile, then Fileopened

Module 53 ECS 235B, Foundations of Computer and Information Security

44

Example: Analysis

* First two sequences in combination represent direct covert storage
channel
* High process transmits information to Low process by locking, unlocking file

 Last two sequences represent indirect covert storage channel
* High process locks file to send 0, unlocks to send 1
* Low process tries to open the file, then uses Fileopened to see if it succeeded

* |f opened, file was not locked and it’s a 1, if not opened, file is locked, and it’s
al

Module 53 ECS 235B, Foundations of Computer and Information Security 45

Summary

* Covert flow trees, SRM come from idea that covert channels require
shared resources that one process can modify and another view

* Both can be used at any point in life cycle

* Covert flow trees identify explicit sequences of operations causing
information to flow

 SRM identifies channels, not sequences of operations

Module 53 ECS 235B, Foundations of Computer and Information Security

46

	Slide 1: ECS 235B Module 53 Detecting Covert Channels
	Slide 2: Detection
	Slide 3: Noninterference
	Slide 4: Example: SAT
	Slide 5: Theorem
	Slide 6: Intuition
	Slide 7: Analysis of SAT
	Slide 8: Specification 1
	Slide 9: Specification 2
	Slide 10: Specification 3
	Slide 11: Check for Covert Channels
	Slide 12: Continue Analysis
	Slide 13: Continue Analysis
	Slide 14: Example Exploit
	Slide 15: Example Exploit
	Slide 16: Use
	Slide 17: SRMM
	Slide 18: Example
	Slide 19: Shared Resource Matrix
	Slide 20: Covert Storage Channel
	Slide 21: Example
	Slide 22: Use of Channel
	Slide 23: Covert Timing Channel
	Slide 24: Example
	Slide 25: Uses of SRM Methodology
	Slide 26: Summary
	Slide 27: Information Flow Analysis
	Slide 28: Step 1
	Slide 29: Step 2
	Slide 30: Directly vs. Indirectly Visible
	Slide 31: Step 3
	Slide 32: Covert Flow Trees
	Slide 33: More on Goal Symbols
	Slide 34: Example Program
	Slide 35: Example Program
	Slide 36: Step 1
	Slide 37: Step 2
	Slide 38: Step 2 (con’t)
	Slide 39: Step 2 (con’t)
	Slide 40: Example: Goal State and Modification Branch
	Slide 41: Example: Recognition Branch
	Slide 42: Example: Indirect Branch
	Slide 43: Example: Recognize New Goal State Branch
	Slide 44: Example: Analysis
	Slide 45: Example: Analysis
	Slide 46: Summary

