ECS 235B Module 53
Detecting Covert Channels
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Detection

* Manner in which resource is shared controls who can send, receive
using that resource
* Noninterference
* Shared Resource Matrix Methodology
* Information flow analysis
* Covert flow trees
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Noninterference

* View “read”, “write” as instances of information transfer

* Then two processes can communicate if information can be
transferred between them, even in the absence of a direct
communication path

e A covert channel
e Also sounds like interference ...
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Example: SAT

e Secure Ada Target, multilevel security policy
e Approach:

 7t(i, /) removes all instructions issued by subjects dominated by level / from
instruction stream /

* A(i, o) state resulting from execution of i on state &
* o.v(s) describes subject s’s view of state o

e System is noninterference-secure iff for all instruction sequences |,
subjects s with security level /(s), states o,

A(m(i, I(s)), o).v(s) = Ali, c).v(s)
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Theorem

* Version of the Unwinding Theorem

* Let X be set of system states. A specification is noninterference-secure if, for each

subject s at security level [(s), there exists an equivalence relation =: Xx such
that

 foro,, 0, € 2, when 6, =0,, 5,.v(s) = 5,.v(s)
* for 6,, 6, € X and any instruction i, when 6, = G,, Al(i, 5,) =Al(i, G,)

e for o € X and instruction stream i, if ©(i, /(s)) is empty, A(n(i, I(s)), o).v(s) =
o.v(s)
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Intuition

e System is noninterference-secure if:
* Equivalent states have the same view for each subject
* View remains unchanged if any instruction is executed

* Instructions from higher-level subjects do not affect the state from the
viewpoint of the lower-level subjects
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Analysis of SAT

* Focus on object creation instruction and readable object set

* In these specifications:
* ssubject with security level /(s)
e 0 object with security level /(0), type t(0)
* o current state
 Set of existing objects listed in a global object table T(o)
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Specification 1

* object_create:
[ o' = object create(s,0,/(0),t(0),0) A" # G ]
&
[0 ¢ T(o) Al(s) < /(o) ]

* The create succeeds if, and only if, the object does not yet exist and
the clearance of the object will dominate the clearance of its creator

* In accord with the “writes up okay” idea
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Specification 2

* readable object set: set of existing objects that subject could read

e can_read(s, o, o) true if in state o, o is of a type that s can read (ignoring
permissions)

* 0 ¢ readable(s, ) = [0 ¢ T(c) v —=(l(o) < I(s)) v —(can_read(s, o, 6))]

e Can’t read a nonexistent object, one with a security level that the
subject’s security level does not dominate, or object of the wrong

type
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Specification 3

» SAT enforces tranquility
* Adding object to readable set means creating new object
* Add to readable set:
[0 ¢ readable(s, o) A 0 € readable(s, ¢')]
[c' = object _create(s,0,/(0),t(0),0) A0 ¢ T(c) Al(s") <I(o) < (s) A
can_read(s, o, ¢')]

* Says object must be created, levels and discretionary access controls
set properly
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Check for Covert Channels

* G4, G, the same except:
e 0 exists only in latter

* —(llo) < 1(s))
* Specification 2:
* 0 ¢ readable(s, ;) { 0 doesn’t existin o}
* 0 ¢ readable(s, c,) { —(/(o) < /(s)) }
* Thuso, =0,
* Condition 1 of theorem holds

Module 53 ECS 235B, Foundations of Computer and Information Security

11



Continue Analysis

e s’ issues command to create o:
* with /(o) = /(s); and
* of type with can_read(s, o, ;)
* o, state after object_create(s’, o, /(0), t(0), ;)
* Specification 1
* 5, differs from o, with o in T(c,)

* New entry satisfies:
* can_read(s, o, ')
* /(s') £ /(o) £ I(s), where s’ created o
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Continue Analysis

* 0 exists in G, so:
G, = object_create(s’, o, G,) = G,
* But this means
—[ A(object_create(s’, o, I(0), t(0), 5,), G,) =

A(object _create(s’, o, I(0), t(0), 5,), 5,) ]
* Because create fails in o, but succeeds in G,

* So condition 2 of theorem fails
* This implies a covert channel as system is not noninterference-secure
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Example Exploit

e To send 1:

* High subject creates high object

* Recipient tries to create same object but at low
» Creation fails, but no indication given

e Recipient gives different subject type permission to read, write object
* Again fails, but no indication given

* Subject writes 1 to object, reads it
* Read returns nothing
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Example Exploit

 To send O:

* High subject creates nothing
* Recipient tries to create same object but at low
* Creation succeeds as object does not exist

e Recipient gives different subject type permission to read, write object
e Again succeeds

* Subject writes 1 to object, reads it
 Readreturns1
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Use

* Can analyze covert storage channels

* Noninterference techniques reason in terms of security levels (attributes of
objects)

* Covert timing channels much harder
* You would have to make ordering an attribute of the objects in some way

Module 53 ECS 235B, Foundations of Computer and Information Security

16



SRMM

e Shared Resource Matrix Methodology
e Goal: identify shared channels, how they are shared

* Steps:
* |dentify all shared resources, their visible attributes [rows]

* Determine operations that reference (read), modify (write) resource
[columns]

* Contents of matrix show how operation accesses the resource

Module 53 ECS 235B, Foundations of Computer and Information Security
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Example

* Multilevel security model

 File attributes:
e existence, owner, label, size

* File manipulation operations:

* read, write, delete, create
e create succeeds if file does not exist; gets creator as owner, creator’s label
e others require file exists, appropriate labels

e Subjects:
e High, Low

Module 53 ECS 235B, Foundations of Computer and Information Security
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Shared Resource Matrix

read write delete create
existence R R, M R, M
owner R M
label R R \Y
size M M M

Module 53
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Covert Storage Channel

* Properties that must hold for covert storage channel:
1. Sending, receiving processes have access to same attribute of shared object;
2. Sender can modify that attribute;
3. Receiver can reference that attribute; and
4

. Mechanism for starting processes, properly sequencing their accesses to
resource
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Example

e Consider attributes with both R, M in rows
* Let High be sender, Low receiver

* create operation both references, modifies existence attribute
* Low can use this due to semantics of create

* Need to arrange for proper sequencing accesses to existence
attribute of file (shared resource)
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Use of Channel

3 files: ready, done, 1bit
* Low creates ready at High level

* High checks that file exists
* |If so, to send 1, it creates 1bit; to send O, skip
e Delete ready, create done at High level

* Low tries to create done at High level

e On failure, High is done
* Low tries to create 1bit at level High

* Low deletes done, creates ready at High level
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Covert Timing Channel

* Properties that must hold for covert timing channel:

1.Sending, receiving processes have access to same attribute of shared object;

2.Sender, receiver have access to a time reference (wall clock, timer, event
ordering, ...);

3.Sender can control timing of detection of change to that attribute by receiver;
and

4.Mechanism for starting processes, properly sequencing their accesses to
resource
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Example

e Revisit variant of KVM/370 channel

* Sender, receiver can access ordering of requests by disk arm scheduler
(attribute)

* Sender, receiver have access to the ordering of the requests (time reference)

* High can control ordering of requests of Low process by issuing cylinder
numbers to position arm appropriately (timing of detection of change)

e So whether channel can be exploited depends on whether there is a
mechanism to (1) start sender, receiver and (2) sequence requests as desired
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Uses of SRM Methodology

* Applicable at many stages of software life cycle model
* Flexbility is its strength

* Used to analyze Secure Ada Target
e Participants manually constructed SRM from flow analysis of SAT model
* Took transitive closure

* Found 2 covert channels
* One used assigned level attribute, another assigned type attribute
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Summary

* Methodology comprehensive but incomplete

* How to identify shared resources?
* What operations access them and how?

* Incompleteness a benefit
* Allows use at different stages of software engineering life cycle

* Incompleteness a problem

* Makes use of methodology sensitive to particular stage of software
development
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Information Flow Analysis

* When exception occurs due to value of variable, information leaks
about the value — a covert channel

e Same for synchronization and IPC primitives, because one process controls
when it sends message or blocks to receive one

* Shared variables are not covert channel as they are intended to share values

* Method for identifying covert storage channels in source code

* Assertion: these arise when processes can view, alter kernel variables

* So identify these variables
* May be directly referenced or indirectly referenced via system calls
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Step 1

* |dentify kernel functions, processes for analysis

* Processes function at privileged level, but carry out actions for ordinary users

* Ignore those executing on behalf of administrators (they can leak information
directly)

 Same with system calls available only to system administrator
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Step 2

* |dentify kernel variables user process can view and/or alter

* Process must control how variable is altered
* Process must be able to detect that variable was altered

* Detection criteria
* Value of a variable is obtained from system call
e Calling process can detect at least 2 different states of that variable

* Examples

* |f system call assigns fixed value to a particular variable, process cannot
control how that variable is altered

 |f value of x causes an error, state of x can be determined from the error
indicator
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Directly vs. Indirectly Visible

x directly visible to caller as it is
returned directly to caller

X o=

i1f x

X

return X;

Module 53

y not directly visible to caller, but

through z
func (abc, def);
— 0 then vy := func(abc, def);
= x + 10; if v = 0 then
z = 1;
else
z = 0;

return z;

ECS 235B, Foundations of Computer and Information Security
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Step 3

* Analyze variables looking for covert channels

e Use method similar to that of SRM

 Discard primitives associated with variables that can only be altered or only
be viewed

* Assume recipient’s clearance does not dominate sender’s, and compare
resulting primitives to model of access control

Module 53 ECS 235B, Foundations of Computer and Information Security
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Covert Flow Trees

* Information flow through shared resources modeled using tree
* Flow paths identified, and analyzed to see if each is legitimate

* 5 types of nodes

Goal symbols: states that must exist for information to flow

Operation symbol:. symbol representing primitive operation

Failure symbol: information cannot be sent along the path containing it

And symbol: goal reached when these hold for all children
 If the child is a goal, then the goal is reached; and
* The child is an operation
Or symbol: goal reached when either of these hold for any children
* If the child is a goal, then the goal is reached; or
* The child is an operation

Module 53 ECS 235B, Foundations of Computer and Information Security
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More on Goal Symbols

* Modification goal: reached when attribute is modified
* Recognition goal: reached when modification of attribute is detected

* Direct recognition goal: reached when subject can detect modification of
attribute by direct reference or calling a function that returns it

* Inferred recognition goal: reached when subject can detect modification of
attribute without directly referencing it or calling a function that references
attribute directly

* Inferred-via goal: reached when information passed from one attribute to
others using specified primitive operation

* Recognized-new-state goal: reached when an attribute that was modified
when information passed using it is specified by inferred-via goal
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Example Program

procedure Lockfile(f: file): boolean; (* lock file if not locked; return *)
begin (* false 1f locked, true otherwise ¥*)
if not f.locked and empty(f.inuse) then
f.locked := true;
Lockfile := not f.locked;
end;
procedure Unlockfile(f: file); (* unlock file *)
begin
if f.locked then
f.locked := false;
end;
function Filelocked (f: file): boolean; (* return state of file locking *)
begin
Filelocked := f.locked;
end;

Module 53 ECS 235B, Foundations of Computer and Information Security
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Example Program

procedure Openfile(f: file); (* open file if not locked and ¥*)
begin (* permissions allow it ¥*)
if not f.locked and read access(process id, f) then

(* add the process ID to the inuse set *)

f.inuse = f.inuse + process 1id;
end;
function Fileopened(f: file): boolean; (* if permissions allow process to read file, *)
begin (* say 1f open; else return random value. *)
if not read access(process 1d, f) then
Fileopened := random(true, false);
else
Fileopened := not isempty(f.inuse);
end;
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Step 1

* Determine attributes that primitive operations reference, modify,

return

Lockfile Unlockfile | Filelocked | Openfile Fileopened
reference | locked,inuse locked locked locked,inuse inuse
modify locked 1) 1) inuse 1)
return 1) 1) locked 1) inuse

Module 53
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Step 2

e Construct the flow tree; controlled by type of goal

* Construction ends when all paths terminate in either operation
symbol of failure symbol
* If loops occur, a parameter defines number of times path may be traversed

Module 53 ECS 235B, Foundations of Computer and Information Security
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Step 2 (con’t)

* Topmost goal: requires attribute be modified and the modification be
recognized
* 1 child (and) with 2 goals (modification, recognition goal symbols)

* Modification goal: requires primitive operation to modify attribute

1 child (or) with 1 child operation symbol per operation for all operations that
modify attribute

* Recognition goal: subject directly recognize or infer change in
attribute

1 child (or) with 2 children (direct recognition, inferred recognition goals)
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Step 2 (con’t)

* Direct recognition goal: operation accesses attribute
1 child (or) with 1 child operation symbol per operation for each operation that returns
attribute
Inferred recognition goal: modification referred on basis of 1 or more attributes
1 child (or) with 1 child inferred-via symbol per operation for each operation that references
an attribute and modifies an attribute

Inferred-via goal: value of attribute inferred via some operation and new state of
attribute recognized
1 child (and) with 2 children (operation, recognize-new-state goal symbols)

Recognize-new-state goal: value of attribute inferred via some operation and new
state of attribute recognized, requiring a recognition goal for attribute

1 child (or) and for each attribute enabling inference of modification of attribute in question,
1 child (recognition goal symbol)
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Example: Goal State and Modification Branch

* The next few slides build covert flow tree for attribute locked

Covert storage channel

goal ___— via attribute locked

state

and . /.

node [
Modification of Recognition of
attribute /ocked attribute /ocked

Module 53

Modification of
attribute locked

or

+\e— node

ECS 235B, Foundations of Computer and Information Security
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Example: Recognition Branch

Module 53

Recognition of
attribute locked

Direct recognition of
attribute locked

Indirect recognition of
attribute locked

[

Indirect attribute /ocked
via attribute inuse

ECS 235B, Foundations of Computer and Information Security
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Example: Indirect Branch

Module 53

Indirect attribute locked
via attribute inuse

[

Recognition of

Openfile
peny attribute inuse
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Example: Recognhize New Goal State Branch

Module 53

Recognition of
attribute inuse

Direct recognition of
attribute inuse

Indirect recognition of
attribute locked

Fileopened

ECS 235B, Foundations of Computer and Information Security
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Example: Analysis

* Put those parts of the tree together in the obvious way

e First list: ((Lockfile), (Unlockfile))
* As both modify attribute locked and lie on “modified” branch

» Second list: ((Filelocked), (Openfile, Fileopened))
 From direct recognition of modification of inuse attribute; second, from indirect
recognition of modification of attribute /ocked
* These result in 4 paths of communication:
* Lockfile followed by Filelocked
* Unlockfile followed by Filelocked
» Lockfile followed by Openfile, then Fileopened
* Unlockfile followed by Openfile, then Fileopened

Module 53 ECS 235B, Foundations of Computer and Information Security
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Example: Analysis

* First two sequences in combination represent direct covert storage
channel
* High process transmits information to Low process by locking, unlocking file

 Last two sequences represent indirect covert storage channel
* High process locks file to send 0, unlocks to send 1
* Low process tries to open the file, then uses Fileopened to see if it succeeded

* |f opened, file was not locked and it’s a 1, if not opened, file is locked, and it’s
al
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Summary

* Covert flow trees, SRM come from idea that covert channels require
shared resources that one process can modify and another view

* Both can be used at any point in life cycle

* Covert flow trees identify explicit sequences of operations causing
information to flow

 SRM identifies channels, not sequences of operations

Module 53 ECS 235B, Foundations of Computer and Information Security
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