ECS 235B Module 54
Analyzing Covert Channels



Analyzing Covert Channels

* Policy and operational issues determine how dangerous it is
* What follows assumes a policy saying all covert channels are a problem

e Amount of information that can be transmitted affects how serious a
problem a covert channel is

* 1 bit per hour: probably harmless in most circumstances

* 1,000,000 bits per second: probably dangerous in most circumstances
e Begin here. ..
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Measuring Capacity

* Intuitively, difference between unmodulated, modulated channel

* Normal uncertainty in channel is 8 bits
» Attacker modulates channel to send information, reducing uncertainty to 5
bits
e Covert channel capacity is 3 bits
* Modulation in effect fixes those bits
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Formally

* [nputs:
e Ainput from Alice (sender)
* Vinput from everyone else
* X output of channel

* Capacity measures uncertainty in X given A
* In other terms: maximize
I(A; X) = H(X) — H(X | A)
with respect to A
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Noninterference and Covert Channels

* If A, Vare independent and A noninterfering with X, then /(A; X) =0

* Why? Intuition is that A and X are independent

* If so, then only V affects X (noninterference)
* So information from A cannot affect X unless A influences V
* But A and V are independent, so information from A does not affect X

* But noninterference is not necessary
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Example: Noninterference Not Necessary

* System has 1 bit of state; 3 inputs /,, I, I; one output O,

e Each input flips state, and state’s value is then output
e System initially in state O

* w sequence of inputs corresponding to output x(w) = length(w) mod 2
* |, not noninterfering as deleting its inputs may change output

e Define terms

W random variable corresponding to length of input sequences

 Arandom variable corresponding to length of input sequences contributed by
l,; V random variable corresponding to other contributions; A, Vindependent

* X random variable corresponding to output state
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Two Cases

e V=0;thenas W=(A+V)mod 2, W=A, and so A, W not
independent; neitherare A, X. Soif V=0, I(A, X) #0

* I, |- produce inputs such that p(V=0) = p(V=1) = 0.5; then
p(X=x) = p(V=x, A=0) + p(V=1-x, A=1)
Because A, Vindependent, this becomes
p(X=x) = p(V=x, A=0) + p(V=1-x)p(A =1)
and so p(X=x) = 0.5. Also,
p(X=x | A=a) = p(X=(a +x) mod 2)=0.5
establishing A, X independent; so /(A, X) =0

Module 54 ECS 235B, Foundations of Computer and Information Security



Meaning

* Note A, X noninterfering, and I(A; X) =0

* So covert channel capacity is O if either of the following hold:

* Inputis noninterfering with output; or

* Input comes from independent sources, all possible values from at least one
source are equally probable
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Example (More Formally)

 If A, Vindependent, take p=p(A=0), g=p(V=0):
* p(A=0,V=0) = pq
* p(A=1,V=0) = (1-p)q
* p(A=0,V=1) = p(1-q)
* p(A=1,V=1) = (1-p)(1—q)

* So
* p(X=0) = p(A=0,V=0)+p(A=1,V=1) = pq + (1-p)(1-q)
* p(X=1) = p(A=0,V=1)+p(A=1,V=0) = (1-p)q + p(1-q)
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Example (con’t)

* Also:
* p(X=0]|A=0)=gq
* p(X=0|A=1) =1—q
e p(X=1]|A=0) =1—q
* p(X=1]A=1) =g
* SO you can compute:
* H(X) =-[(1-p)g + p(1—q)] Ig [(1-p)q + p(1-q)]

* HIX|A)=-qlg g—(1—q) Ig (1—q)
« I(A;X) = H(X)—-H(X|A)
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Example (con’t)

*So l(A; X)==I[pg+(1-p)(1—-q)llglpg+(1-p)(1-qg)]l-
[(1-p)g+p(1-q)]lg[(1-p)g+p(l-q)]+
glgg+(1-q)lg(l1-q)

* Maximum when p = 0.5; then

I(A;X)=1+qlgq+(1-q) g (1-q) = 1-H(V)

e So, if g = 0 (meaning Vis constant) then I(A;X) = 1

e Also,ifg=p=0.5,1(A;X)=0
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Analyzing Capacity

* Assume a noisy channel

* Examine covert channel in MLS database that uses replication to
ensure availability

e 2-phase commit protocol ensures atomicity
e Coordinator process manages global execution
* Participant processes do everything else
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How It Works

e Coordinator sends message to each participant asking whether to
abort or commit transaction
* |f any says “abort”, coordinator stops

* Coordinator gathers replies
e If all say “commit”, sends commit messages back to participants
* |f any says “abort”, sends abort messages back to participants
e Each participant that sent commit waits for reply; on receipt, acts accordingly
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Exceptions

* Protocol times out, causing party to act as if transaction aborted,
when:
e Coordinator doesn’t receive reply from participant
* Participant who sends a commit doesn’t receive reply from coordinator
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Covert Channel Here

* Two types of components
* One at Low security level, other at High

* Low component begins 2-phase commit
* Both High, Low components must cooperate in the 2-phase commit protocol

* High sends information to Low by selectively aborting transactions

* Can send abort messages
e Can just not do anything
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Note

* If transaction always succeeded except when High component
sending information, channel not noisy
* Capacity would be 1 bit per trial

* But channel noisy as transactions may abort for reasons other than the
sending of information
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Analysis

X random variable: what High user wants to send

e Assume abortis 1, commitis O
* p = p(X=0) probability High sends O

* A random variable: what Low receives
 For noiseless channel X=A

* n+2 users

* Sender, receiver, n others that act independently of one another
* g probability of transaction aborting at any of these n users
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Basic Probabilities

* Probabilities of receiving given sending
* p(A=0]X=0) = (1—q)"
* p(A=1]|X=0) = 1-(1-q)"
« p(A=0|X=1)=0
e p(A=1|X=1) =1

* So probabilities of receiving values:
* p(A=0) = p(1-q)"
* p(A=1) = 1-p(1-q)"
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More Probabilities

* Given sending, what is receiving?
* p(X=0]|A=0) =1
« p(X=1|A=0)=0
* p(X=0|A=1) = p[1-(1-q)"] / [1-p(1—q)"]
* p(X=1]|A=1) = (1-p) / [1-p(1-q)"]
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Entropies

You can compute these:

* HX)=-plgp—(1-p) lg (1-p)

* H(X|A) = —p[1-(1—-q)"] Ig p — p[1-(1—q)"] Ig [1-(1-q)"] +
[1-p(1—-q)"] Ig [1-p(1-q)"] — (1-p) Ig (1-p)

* I(A;X) ==p(1—q)" Ig p + p[1-(1—q)"] Ig [1-(1—q)"] -
[1-p(1-q)"] Ig [1-p(1-q)"]
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Capacity

* Maximize this with respect to p (probability that High sends 0)
« Notation: m = (1—q)", M = (1-m)t-m)
e Maximum when p = M&/m) /(M /mm+1)
* Capacity is:
I(A;X) =Mmlg p + M(1-m) lg (1-m) + |g (Mm+1)
(Mm+1)
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