Outline for February 22, 2001
- Greetings and felicitations!
- Friday Feb 23 1:10-2:30 (if not in this room, look in 1062 Banier);
go to 1101 Hart Hall to view
- No class Tuesday (another trip, sigh ...)
- Design Principles
- Example Mechanism: MULTICS ring mechanism
- MULTICS rings: used for both data and procedures; rights are REWA
- (b1, b2) access bracket - can access freely;
(b3, b4) call bracket - can call segment through
gate; so if a's access bracket is (32,35) and its call bracket is
(36,39), then assuming permission mode (REWA) allows access, a procedure
in:
rings 0-31: can access a, but ring-crossing fault occurs
rings 32-35: can access a, no ring-crossing fault
rings 36-39: can access a, provided a valid gate is used as an
entry point
rings 40-63: cannot access a
- If the procedure is accessing a data segment d, no call bracket
allowed; given the above, assuming permission mode (REWA) allows access,
a procedure in:
rings 0-32: can access d
rings 33-35: can access d, but cannot write to it (W or A)
rings 36-63: cannot access d
- Confidentiality: Bell-LaPadula Lattice Model
- Set of classes SC is a partially ordered set under relation
dom; with GLB (glb), LUB (lub)
- Note: dom is reflexive, transitive, antisymmetric
- Application to MLS: forms a lattice with elements being the
Cartesian product of the linear lattice of levels and the subset lattices
of categories
- Examples: (A, C) dom (A', C') iff A' <= A and C' SUBSET C;
lub((A, C), (A', C')) = (max(A, A'), C UNION C')
glb((A, C), (A', C')) = (min(A, A'), C INTER C')
- Integrity Policy: Biba
- Integrity Policy: Clark-Wilson
- Theme: military model does not provide enough controls for
commercial fraud, etc. because it does not cover the right aspects of
integrity
- Data items: "Constrained Data Items" (CDI) to which the
model applies, "Unconstrained Data Items (UDIs) to which no
integrity checks are applied, "Integrity Verification
Procedures" (IVP) that verify conformance to the integrity spec
when IVP is run, "Transaction Procedures" (TP) takes system
from one well-formed state to another
- Certification and enforcement rules:
C1. All IVPs must ensure that all CDIs are in a valid state when the IVP
is run
C2. All TPs must be certified to be valid, and each TP is assocated with
a set of CDIs it is authorized to manipulate
E1. The system must maintain these lists and must ensure only those TPs
manipulate those CDIs
E2: The system must maintain a list of User IDs, TP, and CDIs that that
TP can manipulate on behalf of that user, and must ensure only those
executions are performed.
C3. The list of relations in E2 must be certified to meet the separation
of duty requirement.
E3. The sysem must authenticate the identity of each user attempting to
execute a TP.
C4. All TPs must be certified to write to an append-only CDI (the log)
all information necessary to resonstruct the operation.
C5. Any TP taking a UDI as an input must be certified to perform only
valid transformations, else no transformations, for any possible value
of the UDI. The transformation should take the input from a UDI to a
CDI, or the UDI is rejected (typically, for edits as the keyboard is a
UDI).
E4. Only the agent permitted to certify entities may change the list of
such entities associated with a TP. An agent that can certify an entity
may not have any execute rights with respect to that entity.
- Cryptography
- basics (cryptosystems, attacks, codes vs. ciphers, superencryption)
- substitution ciphers (Cæsar cipher, Vigenère cipher)
- transposition ciphers (rail-fence cipher)
- product cipher (DES)
- public key crypto (RSA, DH)
- cryptographic checksums
- key management (Kerberos, PKI)
- digital signatures
- authentication
- Examples: PEM, PGP, IPSec
Saltzer's and Schroeder's Design Principles
Principle of Economy of Mechanism
The protection mechanism should have a simple and small design.
Principle of Fail-safe Defaults
The protection mechanism should deny access by default, and grant access
only when explicit permission exists.
Principle of Complete Mediation
The protection mechanism should check every access to every object.
Principle of Open Design
The protection mechanism should not depend on attackers being ignorant
of its design to succeed. It may however be based on the attacker's
ignorance of specific information such as passwords or cipher keys.
Principle of Separation of Privilege
The protection mechanism should grant access based on more than one
piece of information.
Principle of Least Privilege
The protection mechanism should force every process to operate with the
minimum privileges needed to perform its task.
Principle of Least Common Mechanism
The protection mechanism should be shared as little as possible among
users.
Principle of Psychological Acceptability
The protection mechanism should be easy to use (at least as easy as not
using it).
|
Matt Bishop
Office: 3059 Engineering Unit II
Phone: +1 (530) 752-8060
Fax: +1 (530) 752-4767
Email: bishop@cs.ucdavis.edu
|
Copyright Matt Bishop, 2001.
All federal and state copyrights reserved for all original material
presented in this course through any medium, including lecture or print.
|
Page last modified on 3/1/2001